Quasi-long-range spatial coherence in an exciton-polariton condensate

<u>W. H. Nitsche^{1,*}</u>, N. Y. Kim¹, G. Roumpos¹, S. Höfling², A. Forchel², Y. Yamamoto^{1,3}

1) E. L. Ginzton Laboratory, Stanford University, Stanford, CA, U.S.A. 2) Technische Physik, Universität Würzburg, Würzburg, Germany

3) National Institute of Informatics, Tokyo, Japan

* nitsche@stanford.edu http://www.stanford.edu/~nitsche/

Abstract: We measured the first-order spatial correlation function of a Bose-Einstein condensate of exciton-polaritons in a semiconductor microcavity. It behaves as the Berezinskii-Kosterlitz-Thouless theory predicts and decays with a power-law.

Bose-Einstein condensation (BEC) is accompanied by superfluid behavior and spatial coherence. It has been observed with atomic gases ^[1-2] and exciton-polaritons ^[3-4]. True long-range order cannot exist in two-dimensional condensates ^[5-6], however in finite-sized systems, quasi-long-range order is possible at sufficiently high superfluid densities. If the superfluid density drops below a critical value, two-dimensional condensates are predicted to undergo the Berezinskii-Kosterlitz-Thouless (BKT) transition ^[7-8], which results in the creation of free vortices, destroying the spatial coherence. This transition has been demonstrated in superfluid liquid helium ^[9] and superconducting films ^[10-11].

Our recent measurements ^[12] also show that the first-order spatial coherence function $g^{(1)}$ of an exciton-polariton condensate confirms the predictions of the BKT theory. We create an exciton-polariton condensate in a semiconductor sample (at 5 K) which consists of quantum wells embedded in a micro-cavity between two Bragg mirrors. An interference setup (as shown in figure 1a) is used to measure $g^{(1)}$ of the condensate.

Figure 1: Experimental Michelson interference setup^[13] to measure the fringe visibility (a). The intensity of each pixel behaves like a sine function if plotted as a function of the path length change *L* or prism position (b). By performing the sine fit for each pixel (b), we get the two-dimensional visibility plot (c). The region marked by a red rectangular has been used to extract the data shown in figure 2a.

We observe that it decays like a power-law of the form $g^{(1)}(x, -x) \propto |x|^{-a_p}$) where the exponent a_p is approximately 1/4 at threshold, as predicted by the BKT theory. We also confirm that, as predicted by calculations which explain the power-law decay through

the thermal excitation of phononic phase fluctuations ^[14], the measured a_p is nearly the same as $1/(n_s \lambda_T^2)$ where n_s is the superfluid density and λ_T the thermal wavelength.

Figure 2: (a) Measured spatial coherence function (red dots) at a pump-power above condensation threshold. In region I for small distances, $g^{(1)}$ decays like a Gaussian (cyan fit), similar to the case of a thermal distribution. In region II for larger distances, $g^{(1)}$ behaves like a power-law; the black line shows a fit with $a_{\rm P} \simeq 0.08$. For very large distances (region III), a much faster decay is observed which we attribute to a decrease of the condensation fraction towards the edge of the condensate. (b) The measured exponents $a_{\rm P}$ (red circles) are approximately $^{1/4}$ at condensation threshold, and less at higher pump powers. The black line shows our calculated result for $1/(n_s \lambda_T^2)$ and as expected, it matches the measured data points. (c) The measured exponents as a function of $1/(n_s \lambda_T^2)$. Most data points are in the vicinity of the predicted black line $a_{\rm P} = 1/(n_s \lambda_T^2)$. Red circles have been measured at a detuning of -1 meV (same detuning as for a & b) and blue diamonds at +4 meV.

We believe that this is the first observation of the BKT mechanism with excitonpolaritons. Applications might include the distinction of exiton-polariton condensation from VCSEL lasing in similar samples, since the BKT mechanism only applies in the first case.

Acknowledgement

This research has been supported by the Japan Society for the Promotion of Science (JSPS) through its "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)", by the Project for Developing Innovation Systems of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, by Navy/SPAWAR Grant N66001-09-1-2024, and by National Science Foundation ECCS-09 25549. W. H. N. acknowledges the Gerhard Casper Stanford Graduate Fellowship and the ICAM-I2CAM travel grant.

References

- [1] M. Anderson et al., Science 269, 198 (1995)
- [2] K. Davis et al., PRL 75, 3969 (1995)
- [3] H. Deng et al., Science 298, 199 (2002)
- [4] J. Kasprzak et al., Nature 443, 409 (2006)
- [5] N. Mermin et al., PRL 17, 1133 (1966)
- [6] P. Hohenberg, Phys. Rev. 158, 383 (1967)
- [7] V. Berezinskiĭ, Sov. Phys. JETP 34, 610 (1972)
- [8] J. Kosterlitz et al., J. Phys. C 6, 1181 (1973)
- [9] D. Bishop et. al., PRL 40, 1727 (1978)
- [10] M. Beasley et al., PRL 42, 1165 (1979)
- [11] A. Hebrad et al., PRL 44, 291 (1980)
- [12] W. Nitsche et al., CLEO:2013 Technical Digest, QM1D.3 (2013)
- [13] G. Roumpos et al., Proc. Natl. Acad. Sci. U.S.A. 109, 6467 (2012)
- [14] Z. Hadzibabic et al., Rivista del Nuovo Cimento 34, 389 (2011)