A unified approach to the problems of outliers and related eigenvectors for spiked additive or multiplicative deformations of classical random matrices as well as Information-Plus-Noise type models, through free subordination properties.

M. Capitaine

I M T Univ Toulouse 3, Equipe de Statistique et Probabilités, CNRS

Notation:

For any $N \times N$ hermitian matrix X, $\lambda_1(X) \geq \lambda_2(X) \geq \cdots \geq \lambda_N(X)$ eigenvalues of X.

$$\mu_{X} := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}(X)}$$

A) Seminal works on spiked models dealing with finite rank perturbations

I) The BBP phase transition

L.U.E matrix

Definition

$$X_N = \frac{1}{p} B_N B_N^*$$

 B_N is a $N \times p(N)$ matrix,

$$(B_N)_{u,v} = Z_{u,v} + iY_{u,v}$$

 $Z_{u,v}$, $Y_{u,v}$, $u=1,\ldots,N$, $v=1,\ldots,p(N)$ are independent Gaussian variables $\mathcal{N}(0,\frac{1}{2})$

Convergence of the spectral measure:

Theorem

Marchenko-Pastur (1967):

If
$$c_{N}:=rac{N}{p}
ightarrow c\in]0;1]$$
 when $N
ightarrow \infty$,

$$\mu_{\frac{B_NB_N^*}{p}}:=rac{1}{N}\sum_{i=1}^N \lambda_i(rac{B_NB_N^*}{p})
ightarrow \mu_c$$
 a.s when $N
ightarrow +\infty$

$$\frac{d\mu_c}{dx}(x) = \frac{1}{2\pi cx} \sqrt{(b-x)(x-a)} \, 1_{[a,b]}(x)$$

$$a = (1 - \sqrt{c})^2$$
, $b = (1 + \sqrt{c})^2$,

Convergence of the largest eigenvalue

Theorem

(Geman 1980) (Bai-Yin-Krishnaiah 1988) (Bai-Silverstein-Yin 1988)

$$\lambda_1(\frac{B_N B_N^*}{p(N)}) \to (1+\sqrt{c})^2$$
 a.s when $N \to +\infty$.

$$\lambda_N(\frac{B_N B_N^*}{p(N)}) \to (1-\sqrt{c})^2$$
 a.s when $N \to +\infty$.

$$M_N = rac{1}{p} \Sigma^{1/2} B_N B_N^* \Sigma^{1/2}$$
 $\Sigma = ext{diag} \left(\underbrace{1, \dots, 1}_{N-r ext{ times}}, \pi_1, \dots, \pi_r
ight)$

r: fixed, independent of N.

$$\pi_1 \ge \pi_2 \ge \pi_r > 0$$
 fixed, independent of N ; $\forall i \in \{1, \dots, r\}, \ \pi_i \ne 1$. (spikes)

 Σ is a finite rank perturbation of I_N $\implies \mu_{M_N} := \frac{1}{N} \sum_{i=1}^N \lambda_i(M_N) \to \mu_c \quad \text{a.s when} \quad N \to +\infty$ $\frac{d\mu_c}{dx}(x) = \frac{1}{2\pi cx} \sqrt{(b-x)(x-a)} \, 1_{[a,b]}(x)$

Baik-Ben Arous-Péché (2005) (BBP phase transition)

 π_1 : the largest eigenvalue of Σ distinct from 1.

$$\omega_c = 1 + \sqrt{c}$$

• If $\pi_1 > \omega_c$, a.s when $N \to +\infty$

$$\lambda_1\left(\frac{1}{\rho}\Sigma^{1/2}B_NB_N^*\Sigma^{1/2}\right)\to\sigma^2\pi_1\left(1+\frac{c}{(\pi_1-1)}\right)>(1+\sqrt{c})^2.$$

Therefore the largest eigenvalue of $\frac{1}{\rho}\Sigma^{1/2}B_NB_N^*\Sigma^{1/2}$ is an "outlier" since it converges outside the support of the limiting empirical spectral distribution μ_c and then does not stick to the bulk.

• If $\pi_1 \leq \omega_c$, a.s when $N \to +\infty$

$$\lambda_1 \left(\frac{1}{\rho} \Sigma^{1/2} B_N B_N^* \Sigma^{1/2} \right) \to (1 + \sqrt{c})^2.$$

Baik-Ben Arous-Péché (2005) (BBP phase transition)

 π_1 : the largest eigenvalue of Σ distinct from 1.

$$\omega_c = 1 + \sqrt{c}$$

• If $\pi_1 > \omega_c$, a.s when $N \to +\infty$

$$\lambda_1\left(\frac{1}{\rho}\Sigma^{1/2}B_NB_N^*\Sigma^{1/2}\right)\to\sigma^2\pi_1\left(1+\frac{c}{(\pi_1-1)}\right)>(1+\sqrt{c})^2.$$

Therefore the largest eigenvalue of $\frac{1}{n}\Sigma^{1/2}B_NB_N^*\Sigma^{1/2}$ is an "outlier" since it converges outside the support of the limiting empirical spectral distribution μ_c and then does not stick to the bulk.

• If $\pi_1 < \omega_c$, a.s when $N \to +\infty$

$$\lambda_1 \left(\frac{1}{\rho} \Sigma^{1/2} B_N B_N^* \Sigma^{1/2} \right) \to (1 + \sqrt{c})^2.$$

result extended by Baik-Silversten (2006) when B_N has i.i.d entries which are not necessarily Gaussian

II) Spiked multiplicative

finite rank deformation of a unitarily invariant matrix

$$M_N = (I_N + P_N)^{1/2} U_N B_N U_N^* (I_N + P_N)^{1/2},$$

- B_N is a deterministic $N \times N$ Hermitian non negative definite matrix such that:
 - $\mu_{B_N} := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(B_N)}$ weakly converges to some probability measure μ with compact support [a;b].
 - the smallest and largest eigenvalue of B_N converge to a and b.
- U_N is a random $N \times N$ unitary matrix distributed according to Haar measure.
- P_N is a deterministic Hermitian matrix having r non-zero eigenvalues $\gamma_1 \ge \cdots \ge \gamma_s > 0 > \gamma_{s+1} \ge \cdots \ge \gamma_r > -1$, $r, \gamma_i, i = 1, \ldots r$, fixed independent of N.

$$M_N = (I_N + P_N)^{1/2} U_N B_N U_N^* (I_N + P_N)^{1/2},$$

- B_N is a deterministic $N \times N$ Hermitian non negative definite matrix such that:
 - $\mu_{B_N} := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(B_N)}$ weakly converges to some probability measure μ with compact support [a;b].
 - the smallest and largest eigenvalue of B_N converge to a and b.
- U_N is a random $N \times N$ unitary matrix distributed according to Haar measure.
- P_N is a deterministic Hermitian matrix having r non-zero eigenvalues $\gamma_1 \geq \cdots \geq \gamma_s > 0 > \gamma_{s+1} \geq \cdots \geq \gamma_r > -1$, r, γ_i , $i=1,\ldots r$, fixed independent of N.

 μ_{M_N} converges to μ .

$$T_{\mu} \colon \mathbb{C} \setminus \operatorname{supp}(\mu) \to \mathbb{C}, \quad T_{\mu}(z) = \int_{\mathbb{R}} \frac{\operatorname{td}\mu(t)}{z-t}.$$

Theorem (Benaych-Georges-Rao (2010))

Denote by $\lambda_1(M_N) \ge \cdots \ge \lambda_N(M_N)$ the ordered eigenvalues of $(I_N + P_N)^{1/2} U_N B_N U_N^* (I_N + P_N)^{1/2}$. Then, we have for each $1 \le i \le s$, almost surely,

$$\lambda_i(M_N) \to_{N \to +\infty} \left\{ \begin{array}{l} T_\mu^{-1}(1/\gamma_i) & \text{if } \gamma_i > 1/\lim_{z \downarrow b} T_\mu(z), \\ b & \text{otherwise.} \end{array} \right.$$

Similarly, for the smallest eigenvalues, we have for each $0 \le j < r - s$, a.s,

$$\lambda_{N-j}(M_N) \to_{N \to +\infty} \left\{ egin{array}{ll} T_\mu^{-1}(1/\gamma_{r-j}) & \textit{if} & \gamma_{r-j} < 1/\lim_{z \uparrow a} T_\mu(z), \\ a & \textit{otherwise}. \end{array} \right.$$

III) Additive finite rank deformation of a Wigner matrix

Definition

A G.U.E (N, σ^2) matrix W_N is a $N \times N$ Hermitian matrix such that :

 $(W_N)_{ii}$, $\sqrt{2}\Re e((W_N)_{ij})_{i< j}$, $\sqrt{2}\Im m((W_N)_{ij})_{i< j}$ are independent gaussian $\mathcal{N}(0,\sigma^2)$ random variables.

Theorem

Convergence of the spectral measure: Wigner (50')

$$\mu_{rac{W_N}{\sqrt{N}}} := rac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(rac{W_N}{\sqrt{N}})}
ightarrow \mu_{\sigma} \ \ a.s \ when \ \ N
ightarrow + \infty$$
 $rac{d\mu_{\sigma}}{dx}(x) = rac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - x^2} \, \mathbb{1}_{[-2\sigma,2\sigma]}(x)$

Theorem

Convergence of the spectral measure: Wigner (50')

$$\mu_{rac{W_N}{\sqrt{N}}} := rac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(rac{W_N}{\sqrt{N}})} o \mu_\sigma \quad a.s \; when \quad N o +\infty$$
 $rac{d\mu_\sigma}{dx}(x) = rac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - x^2} \, \mathbb{1}_{[-2\sigma,2\sigma]}(x)$

Theorem

Convergence of the extremal eigenvalues (Bai-Yin 1988):

$$\lambda_1(rac{W_N}{\sqrt{N}}) o 2\sigma$$
 and $\lambda_N(rac{W_N}{\sqrt{N}}) o -2\sigma$ a.s when $N o +\infty$.

Spiked finite rank deformation:
$$M_N = \frac{1}{\sqrt{N}}W_N + A_N$$

$$A_N = \text{diag} \left(\underbrace{0, \dots, 0}_{N-r \text{ times}}, \gamma_1, \dots, \gamma_r \right)$$

r: fixed, independent of N.

 A_N : a deterministic Hermitian matrix of fixed finite rank r with r non-null eigenvalues (spikes) $\gamma_1 \ge \cdots \ge \gamma_r$ independent of N,

Spiked finite rank deformation:
$$M_N = \frac{1}{\sqrt{N}}W_N + A_N$$

$$A_N = \text{diag} \left(\underbrace{0, \dots, 0}_{N-r \text{ times}}, \gamma_1, \dots, \gamma_r \right)$$

r: fixed, independent of N.

 A_N : a deterministic Hermitian matrix of fixed finite rank r with r non-null eigenvalues (spikes) $\gamma_1 \ge \cdots \ge \gamma_r$ independent of N,

 \Longrightarrow Convergence of the spectral measure $\mu_{M_N} := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(M_N)}$ towards the semi-circular distribution μ_{σ} .

Theorem (Péché 2006)

- If $\gamma_1 \leq \sigma$, $\lambda_1(M_N) \rightarrow 2\sigma$
- If $\gamma_1 > \sigma$, $\lambda_1(M_N) \to \rho_{\theta_1}$ with $\rho_{\gamma_1} := \gamma_1 + \frac{\sigma^2}{\gamma_1}$.

Theorem (Péché 2006)

- If $\gamma_1 \leq \sigma$, $\lambda_1(M_N) \rightarrow 2\sigma$
- If $\gamma_1 > \sigma$, $\lambda_1(M_N) \to \rho_{\theta_1}$ with $\rho_{\gamma_1} := \gamma_1 + \frac{\sigma^2}{\gamma_1}$.

result extended to Wigner matrices whose entries are not necessarily Gaussian by Féral-Péché (2007), Capitaine-Donati-Martin-Féral (2009)

IV) Spiked additive

finite rank deformation of a unitarily invariant matrix

$$M_N = U_N B_N U_N^* + A_N,$$

- B_N is a deterministic $N \times N$ Hermitian matrix such that:
 - $\mu_{B_N} := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(B_N)}$ weakly converges to some probability measure μ with compact support [a;b].
 - the smallest and largest eigenvalue of B_N converge almost surely to a and b.
- U_N is a random $N \times N$ unitary matrix distributed according to Haar measure.
- A_N is a deterministic Hermitian matrix having r non-zero eigenvalues $\gamma_1 \ge \cdots \ge \gamma_s > 0 > \gamma_{s+1} \ge \cdots \ge \gamma_r$, r, γ_i , $i = 1, \ldots r$, fixed independent of N (spikes).

$$M_N = U_N B_N U_N^* + A_N,$$

- B_N is a deterministic $N \times N$ Hermitian matrix such that:
 - $\mu_{B_N} := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(B_N)}$ weakly converges to some probability measure μ with compact support [a;b].
 - the smallest and largest eigenvalue of B_N converge almost surely to a and b.
- U_N is a random $N \times N$ unitary matrix distributed according to Haar measure.
- A_N is a deterministic Hermitian matrix having r non-zero eigenvalues $\gamma_1 \ge \cdots \ge \gamma_s > 0 > \gamma_{s+1} \ge \cdots \ge \gamma_r$, r, γ_i , $i = 1, \ldots r$, fixed independent of N (spikes).
- \Longrightarrow Convergence of the spectral measure μ_{M_N} towards μ .

$$g_{\mu} \colon \mathbb{C} \setminus \operatorname{supp}(\nu) \to \mathbb{C}, \quad g_{\mu}(z) = \int_{\mathbb{R}} \frac{d\mu(t)}{z-t}.$$

Theorem (Benaych-Georges-Rao (2010))

Denote by $\lambda_1(M_N) \ge \cdots \ge \lambda_N(M_N)$ the ordered eigenvalues of $M_N = U_N B_N U_N^* + A_N$. Then, we have for each $1 \le i \le s$, almost surely,

$$\lambda_i(M_N) \to_{N \to +\infty} \left\{ \begin{array}{l} g_\mu^{-1}(1/\gamma_i) & \text{if } \gamma_i > 1/\lim_{z \downarrow b} g_\mu(z), \\ b & \text{otherwise.} \end{array} \right.$$

Similarly, for the smallest eigenvalues, we have for each $0 \le j < r - s$, a.s,

$$\lambda_{N-j}(M_N) \to_{N \to +\infty} \left\{ egin{array}{ll} g_\mu^{-1}(1/\gamma_{r-j}) & \mbox{if} & \gamma_{r-j} < 1/\lim_{z \uparrow a} g_\mu(z), \ a & \mbox{otherwise}. \end{array}
ight.$$

V) Spiked Information-plus-noise (finite rank deformation case)

Gaussian "Information plus noise" type model

$$M_N = (\sigma \frac{X_N}{\sqrt{N}} + A_N)(\sigma \frac{X_N}{\sqrt{N}} + A_N)^*$$

 $\sigma > 0$. $n \in \mathbb{N}$, $N \in \mathbb{N}$, n < N.

 X_N : a $n \times N$ matrix such that $(X_N)_{ij} = X_{ij}$. $\{X_{ij}, i \in \mathbb{N}^*, j \in \mathbb{N}^*\}$ independent random standard complex Gaussian variables.

 $A_N A_N^*$ has a **finite** number r of **fixed** eigenvalues (independent of N) (spikes) $\theta_1 > \ldots > \theta_r > 0$, $\theta_i = |a_i|^2$).

Gaussian "Information plus noise" type model

$$M_N = (\sigma \frac{X_N}{\sqrt{N}} + A_N)(\sigma \frac{X_N}{\sqrt{N}} + A_N)^*$$

 $\sigma > 0$. $n \in \mathbb{N}$, $N \in \mathbb{N}$, n < N.

 X_N : a $n \times N$ matrix such that $(X_N)_{ij} = X_{ij}$. $\{X_{ij}, i \in \mathbb{N}^*, j \in \mathbb{N}^*\}$ independent random standard complex Gaussian variables.

 $A_NA_N^*$ has a **finite** number r of **fixed** eigenvalues (independent of N) (spikes) $\theta_1 > \ldots > \theta_r > 0$, $\theta_i = |a_i|^2$). $\mu_{M_N} \longrightarrow \sigma^2 \mu_c$, when $N \to +\infty$ and $n/N \to c \in]0;1].$

Theorem (Benaych-Georges-Rao; Loubaton-Vallet (2010))

Denote by $\lambda_1(M_N) \ge \cdots \ge \lambda_N(M_N)$ the ordered eigenvalues of $M_N = (\sigma \frac{X_N}{\sqrt{N}} + A_N)(\sigma \frac{X_N}{\sqrt{N}} + A_N)^*$. Then, we have for each $1 \le i \le r$, almost surely,

$$\lambda_i(M_N) \longrightarrow \left\{ egin{array}{ll} rac{(\sigma^2+ heta_i)(\sigma^2c+ heta_i)}{ heta_i} & \mbox{if } heta_i > \sigma^2\sqrt{c}, \\ \sigma^2(1+\sqrt{c})^2 & \mbox{otherwise}. \\ n/N \to c \in]0;1] \end{array}
ight.$$

B) How free probability may shed light on these phenomena and provide a unified understanding, allowing to extend them to non-finite rank deformations?

 \mathcal{M} : the set of probability measures supported on the real line \mathcal{M}^+ : the set of probability measures supported on $[0; +\infty[$. Free probability theory defines:

- a binary operation on $\mathcal M$:the free additive convolution $\mu \boxplus \nu$ for μ and ν in $\mathcal M$,
- binary operations on \mathcal{M}^+ : the free multiplicative convolution $\mu \boxtimes \nu$ and the free rectangular convolution with ratio $c \in]0;1]$ $\mu \boxplus_c \nu$, for μ and ν in \mathcal{M}^+ ,

(cf Voiculescu and Benaych-Georges)

For several matricial models where A_N and B_N are independent $N \times N$ Hermitian random matrices, free probability provides a good understanding of the asymptotic global behaviour of the spectrum of $A_N + B_N$ and $A_N^{\frac{1}{2}} B_N A_N^{\frac{1}{2}}$

$$\mu_{A_N + B_N} \to_{N \to +\infty} \mu_a \boxplus \mu_b$$

$$\mu_{A_N^{\frac{1}{2}} B_N A_N^{\frac{1}{2}}} \to_{N \to +\infty} \mu_a \boxtimes \mu_b$$

where $\mu_{A_N} \to_{N \to +\infty} \mu_a$ and $\mu_{B_N} \to_{N \to +\infty} \mu_b$.

Pionnering work 90' of D. Voiculescu extended by several authors

For several matricial models where A_N and B_N are independent rectangular $n \times N$ random matrices such that $n/N \to c \in]0;1]$, rectangular free convolution provides a good understanding of the asymptotic global behaviour of the singular values of $A_N + B_N$:

$$\frac{1}{n} \sum_{s \text{ sing. val. of } A_N + B_N} \delta_s \to \nu_a \boxplus_c \nu_b.$$

(where
$$\frac{1}{n}\sum_{s \text{ sing. val. of } A_N} \delta_s \to \nu_a$$
, $\frac{1}{n}\sum_{s \text{ sing. val. of } B_N} \delta_s \to \nu_b$)

(cf work of Benaych-Georges when A_N or B_N is invariant, in law, under multiplication, on the right and on the left, by any unitary matrix)

Does the spectrum of

- \bullet $A_N + B_N$
- $A_N^{\frac{1}{2}}B_NA_N^{\frac{1}{2}}$
- $(A_N + B_N)(A_N + B_N)^*$

have outliers? i.e.

For large N, are there eigenvalues of $A_N + B_N$, $A_N^{\frac{1}{2}} B_N A_N^{\frac{1}{2}}$ and $[(A_N + B_N)(A_N + B_N)^*]^{\frac{1}{2}}$ outside the support of the respective limiting empirical spectral distributions $\mu_a \boxplus \mu_b$, $\mu_a \boxtimes \mu_b$ and $\nu_a \boxplus_C \nu_b$?

Does the spectrum of

- \bullet $A_N + B_N$
- $A_N^{\frac{1}{2}}B_NA_N^{\frac{1}{2}}$
- $(A_N + B_N)(A_N + B_N)^*$

have outliers? i.e.

For large N, are there eigenvalues of $A_N + B_N$, $A_N^{\frac{1}{2}} B_N A_N^{\frac{1}{2}}$ and $[(A_N + B_N)(A_N + B_N)^*]^{\frac{1}{2}}$ outside the support of the respective limiting empirical spectral distributions $\mu_a \boxplus \mu_b$, $\mu_a \boxtimes \mu_b$ and $\nu_a \boxplus_C \nu_b$?

Actually free probability will shed light on this question through free subordination property

I) Additive Spiked deformations

$$M_N = X_N + A_N$$

• X_N is a $N \times N$ random Hermitian matrix such that almost surely:

$$\mu_{X_N} o \mu$$
 weakly $, \mu$ compactly supported,
$$\max_{1 \leq j \leq N} \operatorname{dist}(\lambda_j^{(N)}(X_N), \operatorname{supp}(\mu)) o_{N o \infty} 0.$$

• X_N is a $N \times N$ random Hermitian matrix such that almost surely:

$$\mu_{X_N} \to \mu$$
 weakly $,\mu$ compactly supported,
$$\max_{1 \le j \le N} \operatorname{dist}(\lambda_j^{(N)}(X_N),\operatorname{supp}(\mu)) \to_{N \to \infty} 0.$$

 \bullet A_N is a deterministic Hermitian matrix,

$$\mu_{A_{N}}
ightarrow
u$$
 weakly $,
u$ compactly supported.

The eigenvalues of A_N :

• N-r (r fixed) eigenvalues $\beta_i(N)$ such that

$$\max_{i=1}^{N-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$$

• a finite number J of fixed (independent of N) eigenvalues (SPIKES) $\theta_1 > \ldots > \theta_J$, $\forall i = 1, \ldots, J$, $\theta_i \notin \operatorname{supp}(\nu)$, each θ_j having a fixed multiplicity k_j , $\sum_i k_j = r$.

• X_N is a $N \times N$ random Hermitian matrix such that almost surely:

$$\mu_{X_N} \to \mu$$
 weakly , μ compactly supported,
$$\max_{1 \le j \le N} \operatorname{dist}(\lambda_j^{(N)}(X_N), \operatorname{supp}(\mu)) \to_{N \to \infty} 0.$$

 \bullet A_N is a deterministic Hermitian matrix,

$$\mu_{A_N}
ightarrow
u$$
 weakly $,
u$ compactly supported.

The eigenvalues of A_N :

• N-r (r fixed) eigenvalues $\beta_i(N)$ such that

$$\max_{i=1}^{N-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$$

- a finite number J of fixed (independent of N) eigenvalues (SPIKES) $\theta_1 > \ldots > \theta_J$, $\forall i = 1, \ldots, J$, $\theta_i \notin \operatorname{supp}(\nu)$, each θ_j having a fixed multiplicity k_j , $\sum_i k_j = r$.
- Almost surely $\mu_{X_N+A_N} \to_{N\to+\infty} \mu \boxplus \nu$, weakly,

For large N, the β_i (N) are inside $\text{an } \epsilon \text{ neighborhood of the support of } \bigsqcup$

Additive free subordination property

For a probability measure au on \mathbb{R} , $z \in \mathbb{C} \setminus \mathbb{R}$, $g_{ au}(z) = \int_{\mathbb{R}} \frac{d au(x)}{z-x}$.

Theorem (D.Voiculescu, P. Biane)

Let μ and ν be two probability measures on \mathbb{R} , there exists a unique analytic map $\omega_{\mu,\nu}: \mathbb{C}^+ \to \mathbb{C}^+$ such that

$$\forall z \in \mathbb{C}^+, g_{\mu \boxplus \nu}(z) = g_{\nu}(\omega_{\mu,\nu}(z)),$$

 $\forall z \in \mathbb{C}^+, \Im \omega_{\mu,\nu}(z) \geq \Im z \text{ and } \lim_{y \uparrow + \infty} \frac{\omega_{\mu,\nu}(iy)}{iy} = 1.$ $\omega_{\mu,\nu}$ is called the subordination map of $\mu \boxplus \nu$ with respect to ν .

$$g_{\mu\boxplus\nu}(z)=g_{\nu}(\omega_{\mu,\nu}(z))$$

$$g_{\mu \boxplus
u}(z) = g_{
u}(\omega_{\mu,
u}(z))$$
 $M_N = X_N + A_N; \qquad g_{\mu_{M_N}}(z) pprox g_{\mu_{A_N}}(\omega_{\mu,
u}(z))$

$$g_{\mu\boxplus
u}(z)=g_
u(\omega_{\mu,
u}(z))$$

$$M_N = X_N + A_N;$$
 $g_{\mu_{M_N}}(z) \approx g_{\mu_{A_N}}(\omega_{\mu,\nu}(z))$

If $\rho \notin \text{support } \mu \boxplus \nu \text{ is a solution of } \omega_{\mu,\nu}(\rho) = \theta_i \text{ for some } i \in \{1,\ldots,J\}$

$$g_{\mu\boxplus
u}(z)=g_
u(\omega_{\mu,
u}(z))$$

$$M_N = X_N + A_N;$$
 $g_{\mu_{M_N}}(z) \approx g_{\mu_{A_N}}(\omega_{\mu,\nu}(z))$

If $\rho \notin \text{support } \mu \boxplus \nu \text{ is a solution of } \omega_{\mu,\nu}(\rho) = \theta_i \text{ for some } i \in \{1,\dots,J\}$

$$\rho \notin \text{support } \mu \boxplus \nu \text{ BUT } g_{\mu_{M_N}}(\rho) \approx g_{\mu_{A_N}}(\omega_{\mu,\nu}(\rho)) \text{ explodes!}$$

$$g_{\mu\boxplus\nu}(z)=g_{\nu}(\omega_{\mu,\nu}(z))$$

$$M_N = X_N + A_N;$$
 $g_{\mu_{M_N}}(z) \approx g_{\mu_{A_N}}(\omega_{\mu,\nu}(z))$

If $\rho \notin \text{support } \mu \boxplus \nu \text{ is a solution of } \omega_{\mu,\nu}(\rho) = \theta_i \text{ for some } i \in \{1,\ldots,J\}$

$$\rho \notin \text{support } \mu \boxplus \nu \text{ BUT } g_{\mu_{M_N}}(\rho) \approx g_{\mu_{A_N}}(\omega_{\mu,\nu}(\rho)) \text{ explodes!}$$

Conjecture

Conjecture: for large N, the θ_i 's such that the equation

$$\omega_{\mu,\nu}(\rho) = \theta_i$$

has solutions ρ outside support $\mu \boxplus \nu$ generate k_i eigenvalues of M_N in a neighborhood of each of these ρ ...

Definition

For each $j \in \{1, ..., J\}$, define O_j the set of solutions ρ in $\mathbb{R} \setminus \operatorname{supp}(\mu \boxplus \nu)$ of the equation

$$\omega_{\mu,\nu}(\rho) = \theta_j,$$

and

$$O = \bigcup_{1 \le i \le J} O_j.$$

The sets O_j defined above may be empty, finite, or countably infinite.

Conjecture proved when X_N is a Wigner matrix (with technical conditions) by Capitaine-Donati-Martin-Féral-Février (2011) or when the distribution of X_N is invariant under conjugation by any unitary matrix by Belinschi-Bercovici-Capitaine-Février (2012).

Theorem

Denote by $\operatorname{sp}(M_N)$ the spectrum of $M_N = X_N + A_N$ The following results hold almost surely:

• for each $\rho \in O_j$, for all small enough $\varepsilon > 0$, for all large enough N,

$$\operatorname{card}\{\operatorname{sp}(M_N)\bigcap]\rho-\epsilon; \rho+\epsilon[\}=k_j;$$

• for all $\varepsilon > 0$, for large enough N,

$$\operatorname{sp}(M_N) \subset \{x \in \mathbb{R} \mid d(x, \operatorname{supp}(\mu \boxplus \nu) < \epsilon\} \bigcup_{\rho \in O}]\rho - \epsilon; \rho + \epsilon[.$$

$$\omega_{\mu,\nu}(\rho)=\theta_j.$$

 \implies A single spiked eigenvalue of A_N may generate a finite or countably infinite set of outliers of X_N .

$$\omega_{\mu,\nu}(\rho)=\theta_j.$$

 \implies A single spiked eigenvalue of A_N may generate a finite or countably infinite set of outliers of X_N .

This is not the case in the deformed Wigner model where μ is the centered semi-circular distribution μ_{σ} with variance σ^2 .

$$\omega_{\mu,\nu}(\rho) = \theta_j.$$

 \implies A single spiked eigenvalue of A_N may generate a finite or countably infinite set of outliers of X_N .

This is not the case in the deformed Wigner model where μ is the centered semi-circular distribution μ_{σ} with variance σ^2 .

$$\forall z \in \mathbb{C}^+, \omega_{\mu_{\sigma},\nu}(z) = z - \sigma^2 g_{\mu_{\sigma} \boxplus \nu}(z)$$

 $\omega_{\mu_{\sigma},\nu}: \mathbb{C}^+ \cup \mathbb{R} \to \omega_{\mu_{\sigma},\nu}(\mathbb{C}^+ \cup \mathbb{R})$ is a homeomorphism with inverse

$$H_{\sigma,\nu}: z \mapsto z + \sigma^2 g_{\nu}(z).$$

$$\omega_{\mu,\nu}(\rho)=\theta_j.$$

 \implies A single spiked eigenvalue of A_N may generate a finite or countably infinite set of outliers of X_N .

This is not the case in the deformed Wigner model where μ is the centered semi-circular distribution μ_{σ} with variance σ^2 .

$$\forall z \in \mathbb{C}^+, \omega_{\mu_{\sigma},\nu}(z) = z - \sigma^2 g_{\mu_{\sigma} \boxplus \nu}(z)$$

 $\omega_{\mu_{\sigma},\nu}: \mathbb{C}^+ \cup \mathbb{R} \to \omega_{\mu_{\sigma},\nu}(\mathbb{C}^+ \cup \mathbb{R})$ is a homeomorphism with inverse

$$H_{\sigma,\nu}: z \mapsto z + \sigma^2 g_{\nu}(z).$$

$$O = \{
ho_{ heta_j} = H_{\sigma,
u}(heta_j), ext{for } heta_j ext{ such that } H'_{\sigma,
u}(heta_j) > 0 \}$$

remark

If supp(μ) = [a; b] and $\nu = \delta_0$,

$$\omega_{\mu,\delta_0}(z) = rac{1}{g_{\mu}(z)}$$

Hence, $\omega_{\mu,\delta_0}(z)=\theta_j$ has a solution on $[b;+\infty[$ if and only if $\theta_j>1/\lim_{z\downarrow b}g_\mu(z)$ and then the solution is equal to $g_\mu^{-1}(1/\theta_j)$ so that we recover the results of Benaych-Georges-Rao and Péché, Baik-Silverstein.

II) Multiplicative Spiked perturbations

$$M_N = \Sigma^{1/2} X_N \Sigma^{1/2}$$

• X_N is a $N \times N$ random nonnegative matrix such that a.s.:

$$\mu_{X_N} \to \mu$$
 weakly $,\mu$ compactly supported on $[0;+\infty[$
$$\max_{1 \le i \le N} \operatorname{dist}(\lambda_j^{(N)}(X_N),\operatorname{supp}(\mu)) \to_{N \to \infty} 0.$$

• Σ_N is a deterministic definite positive Hermitian matrix,

$$\mu_{\Sigma_N} \to \nu$$
 weakly $, \nu$ compactly supported on $[0; +\infty[$

The eigenvalues of Σ_N :

• N - r (r fixed) eigenvalues $\beta_i(N)$ such that

$$\max_{i=1}^{N-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$$

- a **finite** number J of **fixed** (independent of N) eigenvalues **(SPIKES)** $\theta_1 > \ldots > \theta_J > 0$, $\forall i = 1, \ldots, J$, $\theta_i \notin \operatorname{supp}(\nu)$, each θ_i having a fixed multiplicity k_i , $\sum_i k_i = r$.
- ullet Almost surely $\mu_{\Sigma^{1/2}X_N\Sigma^{1/2}} \to_{N \to +\infty} \mu \boxtimes \nu$, weakly.

Multiplicative free subordination property

$$\Psi_{ au}(z)=\int rac{tz}{1-tz}d au(t)=rac{1}{z}g_{ au}(rac{1}{z})-1,$$

for complex values of z such that $\frac{1}{z}$ is not in the support of τ .

Theorem (Biane; Belinschi-Bercovici)

Let $\mu \neq \delta_0$ and $\nu \neq \delta_0$ be two probability measures on $[0; +\infty[$. There exists a unique analytic map $F_{\mu,\nu}$ defined on $\mathbb{C} \setminus [0; +\infty[$ such that

$$\forall z \in \mathbb{C} \setminus [0; +\infty[, \Psi_{\mu \boxtimes \nu}(z) = \Psi_{\nu}(F_{\mu,\nu}(z))]$$

and $\forall z \in \mathbb{C}^+$.

$$F_{\mu,\nu}(z)\in\mathbb{C}^+,\ F_{\mu,\nu}(\overline{z})=\overline{F_{\mu,\nu}(z)},\ \operatorname{arg}(F_{\mu,\nu}(z))\geq\operatorname{arg}(z).$$

Conjecture

Conjecture: for large N, the θ_i 's such that the equation

$$\frac{1}{F_{\mu,\nu}(\frac{1}{\rho})} = \theta_i$$

has solutions ρ outside support $\mu \boxtimes \nu$ generate k_i eigenvalues of M_N in a neighborhood of these ρ ...

This conjecture is true when X_N is a Wishart matrix: the results of R. Rao, J. Silverstein and Z.D Bai, J. Yao can be described in terms of the subordination function related to the free multiplicative convolution by the Marchenko-Pastur distribution.

This conjecture is true when X_N is a Wishart matrix: the results of R. Rao, J. Silverstein and Z.D Bai, J. Yao can be described in terms of the subordination function related to the free multiplicative convolution by the Marchenko-Pastur distribution.

This conjecture is still true when the distribution of X_N is invariant under unitary conjugation (work in progress with Belinschi, Bercovici, Février).

III) Spiked Information-Plus-Noise type matrices

$$M_N = (\sigma \frac{X_N}{\sqrt{N}} + A_N)(\sigma \frac{X_N}{\sqrt{N}} + A_N)^*$$

• X_N is a $n \times N$ random matrix such that almost surely:

$$\mu_{X_N X_N^*} \to \mu$$
 weakly $,\mu$ compactly supported on $[0;+\infty[$
$$\max_{1 \le j \le N} \operatorname{dist}(\lambda_j^{(N)}(X_N X_N^*), \operatorname{supp}(\mu)) \to_{N \to \infty} 0.$$

• A_N is a deterministic $n \times N$ matrix,

$$\mu_{A_NA_N} o \nu$$
 weakly $, \nu$ compactly supported on $[0; +\infty[$

The eigenvalues of $A_N A_N^*$:

- n-r (r fixed) eigenvalues $\beta_i(N)$ such that $\max_{i=1}^{n-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$
- a finite number J of fixed (independent of N) eigenvalues (SPIKES) $\theta_1 > \ldots > \theta_J > 0$, $\forall i = 1, \ldots, J$, $\theta_i \notin \operatorname{supp}(\nu)$, each θ_i having a fixed multiplicity k_i , $\sum_i k_i = r$.
- Almost surely

$$\mu_{(\sigma\frac{X_N}{\sqrt{N}}+A_N)(\sigma\frac{X_N}{\sqrt{N}}+A_N)^*} \to \underset{n/N \to c}{N \to +\infty} (\sqrt{\mu} \boxplus_c \sqrt{\nu})^2, \text{weakly.}$$

(F. Benaych-Georges):rectangular R-transform with ratio c

 τ probability measure on \mathbb{R}^+ ; $c \in]0;1]$.

$$egin{align} M_{ au}(z) &= \int_{\mathbb{R}^+} rac{t^2 z}{1-t^2 z} d au(t). \ H_{ au}^{(c)}(z) &:= z \left(c M_{ au}(z) + 1
ight) \left(c M_{ au}(z) + 1
ight). \ C_{ au}^{(c)}(z) &= T^{(c)-1} \left(rac{z}{H_{ au}^{(c)-1}(z)}
ight), & ext{for } z
eq 0; \ C_{ au}^{(c)}(0) &= 0. \ T^{(c)}(z) &= (cz+1)(z+1). \ \end{cases}$$

Rectangular subordination

Theorem (Belinschi-Benaych-Georges-Guionnet)

Assume that the rectangular R-transform $C_{\tau}^{(c)}$ of τ extends analytically to $\mathbb{C} \setminus \mathbb{R}^+$; this happens for example if τ is \boxplus_c infinitely divisible. Then there exist two unique meromorphic functions Ω_1 , Ω_2 on $\mathbb{C} \setminus \mathbb{R}^+$ so that

$$H_{\tau}^{(c)}(\Omega_1(z)) = H_{\nu}^{(c)}(\Omega_2(z)) = H_{\tau \boxplus_{c} \nu}^{(c)}(z),$$

$$\Omega_j(\overline{z}) = \overline{\Omega_j(z)}$$
 and $\lim_{x \uparrow 0} \Omega_j(x) = 0$, $j \in \{1, 2\}$.

$$\begin{array}{c} \mu_{X_N X_N^*} \to \mu, \; \mu_{A_N A_N^*} \to \nu, \\ \mu_{(\sigma \frac{X_N}{\sqrt{N}} + A_N)(\sigma \frac{X_N}{\sqrt{N}} + A_N)^*} & \to N \to +\infty \\ & n/N \to c \end{array} \quad \begin{array}{c} (\sqrt{\mu} \boxplus_c \sqrt{\nu})^2, \text{weakly.} \\ n/N \to c \end{array}$$

$$H_{\sqrt{\nu}}^{(c)}(\Omega_{\mu,\nu}(z)) = H_{\sqrt{\mu}\boxplus_c\sqrt{\nu}}^{(c)}(z)$$

$$H_{\sqrt{\tau}}^{(c)} = \frac{c}{\tau} g_{\tau}(\frac{1}{\tau})^2 + (1-c)g_{\tau}(\frac{1}{\tau}) \end{array}$$

$$\begin{array}{c} \mu_{X_NX_N^*} \to \mu, \; \mu_{A_NA_N^*} \to \nu, \\ \mu_{(\sigma\frac{X_N}{\sqrt{N}} + A_N)(\sigma\frac{X_N}{\sqrt{N}} + A_N)^*} & \to N \to +\infty \\ & n/N \to c \end{array} \quad \begin{array}{c} (\sqrt{\mu} \boxplus_c \sqrt{\nu})^2, \text{weakly.} \\ n/N \to c \end{array}$$

$$H_{\sqrt{\nu}}^{(c)}(\Omega_{\mu,\nu}(z)) = H_{\sqrt{\mu}\boxplus_c\sqrt{\nu}}^{(c)}(z)$$

$$H_{\sqrt{\tau}}^{(c)} = \frac{c}{\tau} g_{\tau}(\frac{1}{\tau})^2 + (1-c)g_{\tau}(\frac{1}{\tau}) \end{array}$$

Conjecture

Conjecture: for large N, the θ_i 's such that the equation

$$rac{1}{\Omega_{\mu,
u}(rac{1}{
ho})}= heta_i$$

has solutions ρ outside support $(\sqrt{\mu} \boxplus_c \sqrt{\nu})^2$ generate k_i eigenvalues of $M_N = (\sigma \frac{X_N}{\sqrt{N}} + A_N)(\sigma \frac{X_N}{\sqrt{N}} + A_N)^*$ in a neighborhood of these ρ ...

This conjecture is proved in [C. 2013] when $X_N=(X_{ij})$ where $\{X_{ij}, i\in\mathbb{N}, j\in\mathbb{N}\}$ is an infinite set of i.i.d standardized complex random variables $(\mathbb{E}(X_{ij})=0,\mathbb{E}(|X_{ij}|^2)=1)$ with finite fourth moment.

$$A_{N} = \begin{pmatrix} a_{1}(N) & & (0) \\ & & (0) & \\ & \ddots & & (0) \\ & & a_{n}(N) & (0) \end{pmatrix}$$

 $\sup_N \|A_N\| < +\infty$, $\mu_{A_NA_N^*} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(A_NA_N^*)} \to_{N \to +\infty} \nu$ weakly, the support of ν is compact and has a finite number of connected components.

In the previous case (X_N has i.i.d entries), the spikes θ which generate outliers are explicitly those which satisfy

$$\Phi_{\sigma,\nu,c}^{'}(\theta)>0,g_{\nu}(\theta)>-rac{1}{\sigma^{2}c},$$

where
$$g_{
u}(z)=\int_{\mathbb{R}}rac{d
u(x)}{z-x}$$
,

$$\Phi_{\sigma,\nu,c}: \begin{array}{c} \mathbb{R}\setminus \operatorname{supp}(
u) o \mathbb{R} \\ x \mapsto x(1+c\sigma^2g_{
u}(x))^2+\sigma^2(1-c)(1+c\sigma^2g_{
u}(x)) \end{array},$$

and the corresponding limiting outliers are equal to $\rho_{\theta} = \Phi_{\sigma,\nu,c}(\theta)$.

In the previous case (X_N has i.i.d entries), the spikes θ which generate outliers are explicitly those which satisfy

$$\Phi_{\sigma,\nu,c}^{'}(\theta) > 0, g_{\nu}(\theta) > -\frac{1}{\sigma^2 c},$$

where
$$g_{\nu}(z)=\int_{\mathbb{R}}rac{d
u(x)}{z-x}$$
,

$$\Phi_{\sigma,\nu,c}: egin{array}{c} \mathbb{R}\setminus \operatorname{supp}(
u) o\mathbb{R} \ x\mapsto x(1+c\sigma^2g_
u(x))^2+\sigma^2(1-c)(1+c\sigma^2g_
u(x)) \end{array},$$

and the corresponding limiting outliers are equal to $\rho_{\theta} = \Phi_{\sigma,\nu,c}(\theta)$.

Open question: Proof of the conjecture when X_N is invariant, in law, under multiplication, on the right and on the left, by any unitary matrix, and $\nu \neq \delta_0$.

Conclusion

Solving the problem of outliers consists in solving an equation involving the free subordination function and the spikes of the perturbation

$$M_{N} = A_{N} + B_{N}$$

$$\mu_{A_{N}} \to_{N \to +\infty} \nu$$

$$\mu_{B_{N}} \to_{N \to +\infty} \mu$$

 $g_{\tau}(z) = \int_{\mathbb{R}} \frac{d\tau(x)}{z-x}$

 $\omega_{\mu,\nu}(\rho) = \theta$

 $\mu_{A_N A_N^*} \to_{N \to +\infty} \nu$ $\mu_{B_N B_N^*} \to_{N \to +\infty} \mu$

 $M_N = A_N^{1/2} B_N A_N^{1/2}$

$$\mu_{M_N} \to_{N \to +\infty} \mu \boxplus \nu$$

$$\mu_{M_N} \to_{N \to +\infty} \mu \boxtimes \nu$$

$$\Psi_{\tau}(z) = \frac{1}{z}g_{\tau}(\frac{1}{z}) - 1$$

 $\frac{1}{F_{\mu,\nu}(1/\rho)} = \theta$

$$\Psi_{ au}(z)=rac{1}{z}g$$

$$_{-\infty} \mu \boxtimes \nu$$

$$\mu_I$$

$$\mu_{M_N}$$

$$\mu_I$$

$$\mu_{E}$$

$$\mu_{B_N B_N^*} \to_{N \to +\infty} \mu$$

 $\frac{1}{\Omega_{\mu,\nu}(1/\rho)} = \theta$

 $\mu_{\mathsf{A}_\mathsf{N}\mathsf{A}_\mathsf{N}^*} \to_{\mathsf{N}\to+\infty} \nu$

 $M_N = (A_N + B_N)(A_N + B_N)^*$

$$\mu_{M_N} \to_{N \to +\infty} (\sqrt{\mu} \boxplus_c \sqrt{\nu})^2$$

$$\overline{\iota} \boxplus_{c} \sqrt{\iota}$$

$$H_{\sqrt{\tau}}^{(c)} = \frac{c}{z} g_{\tau} (\frac{1}{z})^2 + (1-c)g_{\tau} (\frac{1}{z})^2$$

$$g_{\mu\boxplus\nu}(z)=g_{\nu}(\omega_{\mu,\nu}(z)) egin{array}{c} \Psi_{\mu\boxtimes\nu}(z)=\Psi_{
u}(F_{\mu,
u}(z)) & H^{(c)}_{\sqrt{\mu\boxplus_c\sqrt{
u}}}(z)=H^{(c)}_{\sqrt{
u}}(\Omega_{\mu,
u}(z)) & H^{(c)}_{\sqrt{
u}}(z)=H^{(c)}_{\sqrt{
u}}(\Omega_{\mu,
u}(z)) & H^{(c)}_{\sqrt{
u}}(\Omega_{\mu,
u}(\Omega_{\mu,
u}(z)) & H^{(c)}_{\sqrt{
u}}(\Omega_{\mu,
u}(\Omega_{\mu,
u}$$

C) When some eigenvalues deviate from the bulk, how do the corresponding eigenvectors project onto those of the perturbation?

Conjecture

 $\rho \colon$ a solution of the equation involving the subordination map and θ_i

Almost surely, for δ small enough:

- for all large N, card $\{\operatorname{spectM}_{N}\cap]\rho \delta, \rho + \delta[\} = k_{i}$.
- for any $\zeta > 0$, for N large enough, for any orthonormal system $(\xi_1(\rho), \dots, \xi_{k_i}(\rho))$ of eigenvectors associated to the k_i eigenvalues of X_N in $]\rho \delta, \rho + \delta[$, for any $n = 1, \dots, k_i$, for any $l = 1, \dots, J$,

$$\left| \begin{array}{c} \left\| P_{\mathsf{Ker}\;(\theta_{I}I_{N}-A_{N})}\xi_{n}(\rho) \right\|_{2}^{2} - \delta_{I,i}\alpha(\rho) \right| < \zeta. \\ \\ \alpha(\rho) = \left\{ \begin{array}{c} \frac{1}{\omega'_{\mu,\nu}(\rho)} & \text{if } M_{N} = X_{N} + A_{N} \\ \\ \frac{\rho F_{\mu,\nu}(1/\rho)}{F'_{\mu,\nu}(1/\rho)} & \text{if } M_{N} = A_{N}^{1/2}X_{N}A_{N}^{1/2} \end{array} \right.$$

k=1 When N goes to infinity,

V eigenvector associated to $\theta_i = \lambda_p(A_N)$

This conjecture was proved

• for $X_N + A_N$ when X_N is a Wigner matrix [C. 2011] and when the distribution of X_N is unitarily invariant [Belinschi, Bercovici, C., Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution of X_N is unitarily invariant and dealing with finite rank perturbations.

This conjecture was proved

• for $X_N + A_N$ when X_N is a Wigner matrix [C. 2011] and when the distribution of X_N is unitarily invariant [Belinschi, Bercovici, C., Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution of X_N is unitarily invariant and dealing with finite rank perturbations.

Note that we have explicitely for deformed Wigner matrices with standardized entries $\omega(\rho)=\theta \Leftrightarrow \rho=\theta+g_{\nu}(\theta)$ and $\alpha(\rho)=1-\int \frac{1}{(\theta-x)^2}d\nu(x)$

• for $A_N^{1/2} X_N A_N^{1/2}$ when X_N is a Wishart matrix [C. 2011] and when the distribution of X_N is unitarily invariant [Belinschi, Bercovici, C., Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution of X_N is unitarily invariant and dealing with finite rank perturbations of the Identity matrix.

• for $A_N^{1/2}X_NA_N^{1/2}$ when X_N is a Wishart matrix [C. 2011] and when the distribution of X_N is unitarily invariant [Belinschi, Bercovici, C., Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution of X_N is unitarily invariant and dealing with finite rank perturbations of the Identity matrix.

Note that when X_N is a Wishart matrix, we have

$$\alpha(\rho) = \frac{1 - c \int \frac{x^2}{(\theta - x)^2} d\nu(x)}{1 + c \int \frac{x}{(\theta - x)} d\nu(x)}.$$

• for $A_N^{1/2} X_N A_N^{1/2}$ when X_N is a Wishart matrix [C. 2011] and when the distribution of X_N is unitarily invariant [Belinschi, Bercovici, C., Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution of X_N is unitarily invariant and dealing with finite rank perturbations of the Identity matrix.

Note that when X_N is a Wishart matrix, we have

$$\alpha(\rho) = \frac{1 - c \int \frac{x^2}{(\theta - x)^2} d\nu(x)}{1 + c \int \frac{x}{(\theta - x)} d\nu(x)}.$$

Work in progress for information-plus-noise type models. First results of Benaych-Georges-Rao (2012) dealing with finite rank perturbations