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Notation:
For any N × N hermitian matrix X ,
λ1(X ) ≥ λ2(X ) ≥ · · · ≥ λN(X ) eigenvalues of X .

µX :=
1

N

N�

i=1

δλi (X )
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A) Seminal works on spiked models

dealing with finite rank perturbations
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I ) The BBP phase transition
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L.U .E matrix

Definition

XN =
1

p
BNB

∗
N

BN is a N × p(N) matrix,

(BN)u,v = Zu,v + iYu,v

Zu,v , Yu,v , u = 1, . . . ,N, v = 1, . . . , p(N) are independent
Gaussian variables N (0, 12)
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Convergence of the spectral measure:

Theorem

Marchenko-Pastur (1967):

If cN := N
p → c ∈]0; 1] when N → ∞,

µBNB∗
N

p

:=
1

N

N�

i=1

λi (
BNB∗

N

p
) → µc a.s when N → +∞

dµc

dx
(x) =

1

2πcx

�
(b − x)(x − a) 1[a,b](x)

a = (1−
√
c)2, b = (1 +

√
c)2,
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Convergence of the largest eigenvalue

Theorem

(Geman 1980) (Bai-Yin-Krishnaiah 1988) (Bai-Silverstein-Yin
1988)

λ1(
BNB∗

N

p(N)
) → (1 +

√
c)2 a.s when N → +∞.

λN(
BNB∗

N

p(N)
) → (1−

√
c)2 a.s when N → +∞.
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MN =
1

p
Σ1/2BNB

∗
NΣ

1/2

Σ = diag ( 1, . . . , 1� �� �
N−r times

, π1, . . . , πr )

r: fixed, independent of N.
π1 ≥ π2 ≥ πr > 0 fixed, independent of N;
∀i ∈ {1, . . . , r}, πi �= 1. (spikes)

Σ is a finite rank perturbation of IN
=⇒ µMN := 1

N

�N
i=1 λi (MN) → µc a.s when N → +∞

dµc

dx
(x) =

1

2πcx

�
(b − x)(x − a) 1[a,b](x)
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Baik-Ben Arous-Péché (2005) (BBP phase transition)
π1: the largest eigenvalue of Σ distinct from 1.
ωc = 1 +

√
c ,

If π1 > ωc , a.s when N → +∞

λ1

�
1

p
Σ1/2BNB

∗
NΣ

1/2

�
→ σ2π1

�
1 +

c

(π1 − 1)

�
> (1+

√
c)2.

Therefore the largest eigenvalue of 1
pΣ

1/2BNB∗
NΣ

1/2 is an
”outlier” since it converges outside the support of the limiting
empirical spectral distribution µc and then does not stick to
the bulk.

If π1 ≤ ωc , a.s when N → +∞

λ1

�
1

p
Σ1/2BNB

∗
NΣ

1/2

�
→ (1 +

√
c)2.

result extended by Baik-Silversten (2006) when BN has i.i.d entries
which are not necessarily Gaussian
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II) Spiked multiplicative

finite rank deformation

of a unitarily invariant matrix
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MN = (IN + PN)
1/2UNBNU

∗
N(IN + PN)

1/2,

• BN is a deterministic N × N Hermitian non negative definite
matrix such that:

µBN := 1
N

�N
i=1 δλi (BN) weakly converges to some probability

measure µ with compact support [a; b].

the smallest and largest eigenvalue of BN converge to a and b.

• UN is a random N × N unitary matrix distributed according to
Haar measure.
• PN is a deterministic Hermitian matrix having r non-zero
eigenvalues γ1 ≥ · · · ≥ γs > 0 > γs+1 ≥ · · · ≥ γr > −1,
r , γi , i = 1, . . . r , fixed independent of N .

µMN converges to µ.
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Tµ : C \ supp(µ) → C, Tµ(z) =
�
R

tdµ(t)
z−t .

Theorem (Benaych-Georges-Rao (2010))

Denote by λ1(MN) ≥ · · · ≥ λN(MN) the ordered eigenvalues of
(IN + PN)1/2UNBNU∗

N(IN + PN)1/2. Then, we have for each
1 ≤ i ≤ s, almost surely,

λi (MN) →N→+∞

�
T−1
µ (1/γi ) if γi > 1/ limz↓b Tµ(z),

b otherwise.

Similarly, for the smallest eigenvalues, we have for each
0 ≤ j < r − s, a.s,

λN−j(MN) →N→+∞

�
T−1
µ (1/γr−j) if γr−j < 1/ limz↑a Tµ(z),

a otherwise.
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III) Additive finite rank deformation

of a Wigner matrix
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Definition

A G.U.E (N, σ2) matrix WN is a N × N Hermitian matrix such
that :

(WN)ii ,
√
2�e((WN)ij)i<j ,

√
2�m((WN)ij)i<j are independent

gaussian N (0, σ2) random variables.
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Theorem

Convergence of the spectral measure: Wigner (50’)

µWN√
N

:=
1

N

N�

i=1

δ
λi (

WN√
N
)
→ µσ a.s when N → +∞

dµσ

dx
(x) =

1

2πσ2

�
4σ2 − x2 1[−2σ,2σ](x)

Theorem

Convergence of the extremal eigenvalues (Bai-Yin 1988):

λ1(
WN√
N
) → 2σ and λN(

WN√
N
) → −2σ a.s when N → +∞.
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�
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Spiked finite rank deformation : MN =
1√
N
WN + AN

AN = diag ( 0, . . . , 0� �� �
N−r times

, γ1, . . . , γr )

r: fixed, independent of N.
AN : a deterministic Hermitian matrix of fixed finite rank r with r
non-null eigenvalues (spikes) γ1 ≥ · · · ≥ γr independent of N,

=⇒ Convergence of the spectral measure µMN := 1
N

�N
i=1 δλi (MN)

towards the semi-circular distribution µσ.
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Spiked finite rank deformation : MN =
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Theorem ( Péché 2006)

If γ1 ≤ σ, λ1(MN) → 2σ

If γ1 > σ, λ1(MN) → ρθ1 with ργ1 := γ1 +
σ2

γ1
.

✲

−2σ 2σ ργ1 := γ1 +
σ2

γ1
(γ1 > σ)

result extended to Wigner matrices whose entries are not
necessarily Gaussian by Féral-Péché (2007),
Capitaine-Donati-Martin-Féral (2009)
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Theorem ( Péché 2006)
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IV) Spiked additive

finite rank deformation

of a unitarily invariant matrix
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MN = UNBNU
∗
N + AN ,

• BN is a deterministic N × N Hermitian matrix such that:

µBN := 1
N

�N
i=1 δλi (BN) weakly converges to some probability

measure µ with compact support [a; b].

the smallest and largest eigenvalue of BN converge almost
surely to a and b.

• UN is a random N × N unitary matrix distributed according to
Haar measure.
• AN is a deterministic Hermitian matrix having r non-zero
eigenvalues γ1 ≥ · · · ≥ γs > 0 > γs+1 ≥ · · · ≥ γr ,
r , γi , i = 1, . . . r , fixed independent of N (spikes).

=⇒ Convergence of the spectral measure µMN towards µ.
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gµ : C \ supp(ν) → C, gµ(z) =
�
R

dµ(t)
z−t .

Theorem (Benaych-Georges-Rao (2010))

Denote by λ1(MN) ≥ · · · ≥ λN(MN) the ordered eigenvalues of
MN = UNBNU∗

N + AN . Then, we have for each 1 ≤ i ≤ s, almost
surely,

λi (MN) →N→+∞

�
g−1
µ (1/γi ) if γi > 1/ limz↓b gµ(z),

b otherwise.

Similarly, for the smallest eigenvalues, we have for each
0 ≤ j < r − s, a.s,

λN−j(MN) →N→+∞

�
g−1
µ (1/γr−j) if γr−j < 1/ limz↑a gµ(z),

a otherwise.
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V) Spiked Information-plus-noise

(finite rank deformation case)
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Gaussian “Information plus noise” type model

MN = (σ
XN√
N

+ AN)(σ
XN√
N

+ AN)
∗

σ > 0. n ∈ N, N ∈ N, n ≤ N.
XN : a n × N matrix such that (XN)ij = Xij . {Xij , i ∈ N∗, j ∈ N∗}
independent random standard complex Gaussian variables.

AN =





a1 (0)

(0)
. . . (0)

ar
0

(0)
. . . (0)

0 (0)





deterministic.

ANA∗
N has a finite number r of fixed eigenvalues (independent of

N) (spikes) θ1 > . . . > θr > 0, θi = |ai |2 ).

µMN −→ σ2µc , when N → +∞ and n/N → c ∈]0; 1].
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Theorem (Benaych-Georges-Rao; Loubaton-Vallet (2010))

Denote by λ1(MN) ≥ · · · ≥ λN(MN) the ordered eigenvalues of
MN = (σ XN√

N
+ AN)(σ

XN√
N
+ AN)∗. Then, we have for each

1 ≤ i ≤ r , almost surely,

λi (MN) −→

N → +∞
n/N → c ∈]0; 1]

�
(σ2+θi )(σ2c+θi )

θi
if θi > σ2√c ,

σ2(1 +
√
c)2 otherwise.
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B) How free probability may shed

light on these phenomena and

provide a unified understanding,

allowing to extend them to non-finite

rank deformations ?



Seminal works on spiked models Additive Spiked perturbations Multiplicative Spiked deformations Spiked Information-Plus-Noise type matrices Conclusion Limiting Behaviour of eigenvectors

M: the set of probability measures supported on the real line
M+ : the set of probability measures supported on [0;+∞[.
Free probability theory defines:

a binary operation on M :the free additive convolution µ� ν
for µ and ν in M,

binary operations on M+ : the free multiplicative convolution
µ� ν and the free rectangular convolution with ratio c ∈]0; 1]
µ�c ν, for µ and ν in M+,

(cf Voiculescu and Benaych-Georges)
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For several matricial models where AN and BN are independent
N × N Hermitian random matrices, free probability provides a
good understanding of the asymptotic global behaviour of the

spectrum of AN + BN and A
1
2
NBNA

1
2
N

µAN+BN →N→+∞ µa � µb

µ
A

1
2
N BNA

1
2
N

→N→+∞ µa � µb

where µAN →N→+∞ µa and µBN →N→+∞ µb.

Pionnering work 90’ of D. Voiculescu extended by several authors
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For several matricial models where AN and BN are independent
rectangular n × N random matrices such that n/N → c ∈]0; 1],
rectangular free convolution provides a good understanding of the
asymptotic global behaviour of the singular values of AN + BN :

1

n

�

s sing. val. of AN+BN

δs → νa �c νb.

(where
1

n

�

s sing. val. of AN

δs → νa,
1

n

�

s sing. val. of BN

δs → νb)

(cf work of Benaych-Georges when AN or BN is invariant, in law,
under multiplication, on the right and on the left, by any unitary
matrix)
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Does the spectrum of

AN + BN

A
1
2
NBNA

1
2
N

(AN + BN)(AN + BN)∗

have outliers? i.e

For large N, are there eigenvalues of AN + BN , A
1
2
NBNA

1
2
N and

[(AN + BN)(AN + BN)∗]
1
2 outside the support of the respective

limiting empirical spectral distributions µa � µb, µa � µb and
νa �c νb?

Actually free probability will shed light on this question through
free subordination property
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I) Additive Spiked deformations

MN = XN + AN
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General framework

• XN is a N ×N random Hermitian matrix such that almost surely:

µXN → µ weakly , µ compactly supported,

max
1≤j≤N

dist(λ(N)
j (XN), supp(µ)) →N→∞ 0.

• AN is a deterministic Hermitian matrix,

µAN → ν weakly , ν compactly supported.

The eigenvalues of AN :
N − r (r fixed) eigenvalues βi (N) such that

N−r
max
i=1

dist(βi (N), supp(ν)) →N→∞ 0

a finite number J of fixed (independent of N) eigenvalues
(SPIKES) θ1 > . . . > θJ , ∀i = 1, . . . , J, θi �∈ supp(ν),
each θj having a fixed multiplicity kj ,

�
j kj = r .

• Almost surely µXN+AN →N→+∞ µ� ν,weakly.
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Additive free subordination property

For a probability measure τ on R, z ∈ C\R, gτ (z) =
�
R

dτ(x)
z−x .

Theorem (D.Voiculescu, P. Biane)

Let µ and ν be two probability measures on R, there exists a
unique analytic map ωµ,ν : C+ → C+ such that

∀z ∈ C+, gµ�ν(z) = gν(ωµ,ν(z)),

∀z ∈ C+,�ωµ,ν(z) ≥ �z and limy↑+∞
ωµ,ν(iy)

iy = 1.
ωµ,ν is called the subordination map of µ� ν with respect to ν.
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Naive intuition:

gµ�ν(z) = gν(ωµ,ν(z))

MN = XN + AN ; gµMN
(z) ≈ gµAN

(ωµ,ν(z))

If ρ /∈ support µ� ν is a solution of ωµ,ν(ρ) = θi for some
i ∈ {1, . . . , J}

ρ /∈ support µ� ν BUT gµMN
(ρ) ≈ gµAN

(ωµ,ν(ρ)) explodes!

Conjecture

Conjecture: for large N, the θi ’s such that the equation

ωµ,ν(ρ) = θi

has solutions ρ outside support µ� ν generate ki eigenvalues of
MN in a neighborhood of each of these ρ...
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Definition

For each j ∈ {1, . . . , J}, define Oj the set of solutions ρ in
R \ supp(µ� ν) of the equation

ωµ,ν(ρ) = θj ,

and
O =

�

1≤j≤J

Oj .

The sets Oj defined above may be empty, finite, or countably
infinite.
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Conjecture proved when XN is a Wigner matrix (with technical
conditions) by Capitaine-Donati-Martin-Féral-Février (2011) or
when the distribution of XN is invariant under conjugation by any
unitary matrix by Belinschi-Bercovici-Capitaine-Février (2012).

Theorem

Denote by sp(MN) the spectrum of MN = XN + AN The following
results hold almost surely:

for each ρ ∈ Oj , for all small enough ε > 0, for all large
enough N,

card{sp(MN)
�

]ρ− �; ρ+ �[} = kj ;

for all ε > 0, for large enough N,

sp(MN) ⊂ {x ∈ R | d(x , supp(µ�ν) < �}
�

ρ ∈ O

]ρ−�; ρ+�[.



Seminal works on spiked models Additive Spiked perturbations Multiplicative Spiked deformations Spiked Information-Plus-Noise type matrices Conclusion Limiting Behaviour of eigenvectors

The restriction to the real line of some subordination map may be
many-to-one so that for one θj , there may exists several distinct ρ
solving the equation

ωµ,ν(ρ) = θj .

=⇒ A single spiked eigenvalue of AN may generate a finite or
countably infinite set of outliers of XN .

This is not the case in the deformed Wigner model where µ is the
centered semi-circular distribution µσ with variance σ2.

∀z ∈ C+, ωµσ ,ν(z) = z − σ2gµσ�ν(z)

ωµσ ,ν : C+ ∪ R → ωµσ ,ν(C+ ∪ R) is a homeomorphism with
inverse

Hσ,ν : z �→ z + σ2gν(z).

O = {ρθj = Hσ,ν(θj), for θj such that H �
σ,ν(θj) > 0}
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remark

If supp(µ) = [a; b] and ν = δ0,

ωµ,δ0(z) =
1

gµ(z)

Hence, ωµ,δ0(z) = θj has a solution on [b; +∞[ if and only if
θj > 1/ limz↓b gµ(z) and then the solution is equal to g−1

µ (1/θj) so
that we recover the results of Benaych-Georges-Rao and Péché,
Baik-Silverstein.
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II) Multiplicative Spiked
perturbations

MN = Σ
1/2XNΣ

1/2
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General framework

• XN is a N × N random nonnegative matrix such that a.s.:

µXN → µ weakly , µ compactly supported on [0;+∞[

max
1≤j≤N

dist(λ(N)
j (XN), supp(µ)) →N→∞ 0.

• ΣN is a deterministic definite positive Hermitian matrix,

µΣN → ν weakly , ν compactly supported on [0;+∞[

The eigenvalues of ΣN :
N − r (r fixed) eigenvalues βi (N) such that

N−r
max
i=1

dist(βi (N), supp(ν)) →N→∞ 0

a finite number J of fixed (independent of N) eigenvalues
(SPIKES) θ1 > . . . > θJ > 0, ∀i = 1, . . . , J, θi �∈ supp(ν),
each θj having a fixed multiplicity kj ,

�
j kj = r .

• Almost surely µΣ1/2XNΣ1/2 →N→+∞ µ� ν,weakly.
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Multiplicative free subordination property

Ψτ (z) =

�
tz

1− tz
dτ(t) =

1

z
gτ (

1

z
)− 1,

for complex values of z such that 1
z is not in the support of τ .

Theorem (Biane; Belinschi-Bercovici)

Let µ �= δ0 and ν �= δ0 be two probability measures on [0; +∞[.
There exists a unique analytic map Fµ,ν defined on C \ [0; +∞[
such that

∀ z ∈ C \ [0; +∞[, Ψµ�ν(z) = Ψν(Fµ,ν(z))

and ∀ z ∈ C+,

Fµ,ν(z) ∈ C+, Fµ,ν(z) = Fµ,ν(z), arg(Fµ,ν(z)) ≥ arg(z).
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Conjecture

Conjecture: for large N, the θi ’s such that the equation

1

Fµ,ν(
1
ρ)

= θi

has solutions ρ outside support µ� ν generate ki eigenvalues of
MN in a neighborhood of these ρ...



Seminal works on spiked models Additive Spiked perturbations Multiplicative Spiked deformations Spiked Information-Plus-Noise type matrices Conclusion Limiting Behaviour of eigenvectors

This conjecture is true when XN is a Wishart matrix : the results
of R. Rao, J. Silverstein and Z.D Bai, J. Yao can be described in
terms of the subordination function related to the free
multiplicative convolution by the Marchenko-Pastur distribution.

This conjecture is still true when the distribution of XN is invariant
under unitary conjugation (work in progress with Belinschi,
Bercovici, Février).
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III) Spiked
Information-Plus-Noise type
matrices

MN = (σ
XN√
N

+ AN)(σ
XN√
N

+ AN)
∗
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General framework

• XN is a n × N random matrix such that almost surely:

µXNX∗
N
→ µ weakly , µ compactly supported on [0;+∞[

max1≤j≤N dist(λ(N)
j (XNX ∗

N), supp(µ)) →N→∞ 0.
• AN is a deterministic n × N matrix,

µANAN → ν weakly , ν compactly supported on [0;+∞[

The eigenvalues of ANA∗
N :

n − r (r fixed) eigenvalues βi (N)
such that maxn−r

i=1 dist(βi (N), supp(ν)) →N→∞ 0
a finite number J of fixed (independent of N) eigenvalues
(SPIKES) θ1 > . . . > θJ > 0, ∀i = 1, . . . , J, θi �∈ supp(ν),
each θj having a fixed multiplicity kj ,

�
j kj = r .

• Almost surely
µ
(σ

XN√
N
+AN)(σ

XN√
N
+AN)∗

→ N → +∞
n/N → c

(
√
µ�c

√
ν)2,weakly.
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(F. Benaych-Georges):rectangular R-transform with ratio c

τ probability measure on R+; c ∈]0; 1].

Mτ (z) =

�

R+

t2z

1− t2z
dτ(t).

H(c)
τ (z) := z (cMτ (z) + 1) (cMτ (z) + 1) .

C (c)
τ (z) = T (c)−1

�
z

H(c)
τ

−1
(z)

�
, for z �= 0;

C (c)
τ (0) = 0.

T (c)(z) = (cz + 1)(z + 1).
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Rectangular subordination

Theorem (Belinschi-Benaych-Georges-Guionnet)

Assume that the rectangular R-transform C (c)
τ of τ extends

analytically to C \ R+; this happens for example if τ is �c

infinitely divisible. Then there exist two unique meromorphic
functions Ω1, Ω2 on C \ R+ so that

H(c)
τ (Ω1(z)) = H(c)

ν (Ω2(z)) = H(c)
τ�cν

(z),

Ωj(z) = Ωj(z) and limx↑0Ωj(x) = 0, j ∈ {1; 2}.
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µXNX∗
N
→ µ, µANA∗

N
→ ν,

µ
(σ

XN√
N
+AN)(σ

XN√
N
+AN)∗

→ N → +∞
n/N → c

(
√
µ�c

√
ν)2,weakly.

H(c)√
ν
(Ωµ,ν(z)) = H(c)√

µ�c
√
ν
(z)

H(c)√
τ
=

c

z
gτ (

1

z
)2 + (1− c)gτ (

1

z
)

Conjecture

Conjecture: for large N, the θi ’s such that the equation

1

Ωµ,ν(
1
ρ)

= θi

has solutions ρ outside support (
√
µ�c

√
ν)2 generate ki

eigenvalues of MN = (σ XN√
N
+ AN)(σ

XN√
N
+ AN)∗ in a neighborhood

of these ρ...
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This conjecture is proved in [C. 2013] when XN = (Xij) where
{Xij , i ∈ N, j ∈ N} is an infinite set of i.i.d standardized complex
random variables (E(Xij) = 0,E(|Xij |2) = 1) with finite fourth
moment,

AN =





a1(N) (0)
(0)

. . . (0)
(0)

an(N) (0)





supN �AN� < +∞, µANA∗
N
= 1

n

�n
i=1 δλi (ANA∗

N)
→N→+∞ν weakly,

the support of ν is compact and has a finite number of connected
components.
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In the previous case (XN has i.i.d entries), the spikes θ which
generate outliers are explicitely those which satisfy

Φ
�
σ,ν,c(θ) > 0, gν(θ) > − 1

σ2c
,

where gν(z) =
�
R

dν(x)
z−x ,

Φσ,ν,c :
R \ supp(ν) → R
x �→ x(1 + cσ2gν(x))2 + σ2(1− c)(1 + cσ2gν(x))

,

and the corresponding limiting outliers are equal to ρθ = Φσ,ν,c(θ).

Open question: Proof of the conjecture when XN is invariant, in
law, under multiplication, on the right and on the left, by any
unitary matrix, and ν �= δ0.
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Conclusion

Solving the problem of outliers

consists in solving an equation

involving the free subordination

function and the spikes of the

perturbation
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MN = AN + BN

µAN →N→+∞ ν
µBN →N→+∞ µ

MN = A1/2
N BNA

1/2
N

µANA∗
N
→N→+∞ ν

µBNB∗
N
→N→+∞ µ

MN = (AN + BN)(AN + BN)∗

µANA∗
N
→N→+∞ ν

µBNB∗
N
→N→+∞ µ

µMN →N→+∞ µ� ν µMN →N→+∞ µ� ν µMN →N→+∞ (
√
µ�c

√
ν)2

gτ (z) =
�
R

dτ(x)
z−x

Ψτ (z) =
1
z gτ (

1
z )− 1 H(c)√

τ
= c

z gτ (
1
z )

2 + (1− c)gτ (
1
z )

gµ�ν(z) = gν(ωµ,ν(z)) Ψµ�ν(z) = Ψν(Fµ,ν(z)) H(c)√
µ�c

√
ν
(z) = H(c)√

ν
(Ωµ,ν(z))

ωµ,ν(ρ) = θ 1
Fµ,ν(1/ρ)

= θ 1
Ωµ,ν(1/ρ)

= θ
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C) When some eigenvalues
deviate from the bulk, how do
the corresponding eigenvectors
project onto those of the
perturbation?
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Conjecture

ρ: a solution of the equation involving the subordination map and
θi
Almost surely, for δ small enough:

for all large N, card {spectMN∩]ρ− δ, ρ+ δ[} = ki.

for any ζ > 0, for N large enough, for any orthonormal system
(ξ1(ρ), · · · , ξki (ρ)) of eigenvectors associated to the ki
eigenvalues of XN in ]ρ− δ, ρ+ δ[, for any n = 1, . . . , ki , for
any l = 1, . . . , J,

����
���PKer (θl IN−AN)

ξn(ρ)
���
2

2
− δl ,iα(ρ)

���� < ζ.

α(ρ) =






1
ω�
µ,ν(ρ)

if MN = XN + AN

ρFµ,ν(1/ρ)

F �
µ,ν(1/ρ)

if MN = A1/2
N XNA

1/2
N
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This conjecture was proved

• for XN + AN when XN is a Wigner matrix [C. 2011] and when
the distribution of XN is unitarily invariant [Belinschi, Bercovici,
C., Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution
of XN is unitarily invariant and dealing with finite rank
perturbations.

Note that we have explicitely for deformed Wigner matrices with
standardized entries ω(ρ) = θ ⇔ ρ = θ + gν(θ) and
α(ρ) = 1−

�
1

(θ−x)2 dν(x)



Seminal works on spiked models Additive Spiked perturbations Multiplicative Spiked deformations Spiked Information-Plus-Noise type matrices Conclusion Limiting Behaviour of eigenvectors

This conjecture was proved

• for XN + AN when XN is a Wigner matrix [C. 2011] and when
the distribution of XN is unitarily invariant [Belinschi, Bercovici,
C., Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution
of XN is unitarily invariant and dealing with finite rank
perturbations.

Note that we have explicitely for deformed Wigner matrices with
standardized entries ω(ρ) = θ ⇔ ρ = θ + gν(θ) and
α(ρ) = 1−

�
1

(θ−x)2 dν(x)



Seminal works on spiked models Additive Spiked perturbations Multiplicative Spiked deformations Spiked Information-Plus-Noise type matrices Conclusion Limiting Behaviour of eigenvectors

• for A1/2
N XNA

1/2
N when XN is a Wishart matrix [C. 2011] and

when the distribution of XN is unitarily invariant [ Belinschi,
Bercovici, C. , Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution
of XN is unitarily invariant and dealing with finite rank
perturbations of the Identity matrix.

Note that when XN is a Wishart matrix, we have

α(ρ) =
1− c

�
x2

(θ−x)2 dν(x)

1 + c
�

x
(θ−x)dν(x)

.

Work in progress for information-plus-noise type models.
First results of Benaych-Georges-Rao (2012) dealing with finite
rank perturbations
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when the distribution of XN is unitarily invariant [ Belinschi,
Bercovici, C. , Février work in progress]

First results of Benaych-Georges-Rao (2010) when the distribution
of XN is unitarily invariant and dealing with finite rank
perturbations of the Identity matrix.

Note that when XN is a Wishart matrix, we have

α(ρ) =
1− c

�
x2

(θ−x)2 dν(x)

1 + c
�

x
(θ−x)dν(x)

.

Work in progress for information-plus-noise type models.
First results of Benaych-Georges-Rao (2012) dealing with finite
rank perturbations


	Seminal works on spiked models
	Additive Spiked perturbations
	Multiplicative Spiked deformations
	Spiked Information-Plus-Noise type matrices
	Conclusion
	Limiting Behaviour of eigenvectors

