

2484-3

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Novel Medical Radionuclides and Related Nuclear Data

Syed M. Qaim Forschungszentrum Jülich GmbH Germany

Novel Medical Radionuclides and Related Nuclear Data

Syed M. Qaim

INM-5: Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany

Lecture delivered during the Workshop on Nuclear Data for Science and Technology: Medical Applications, Abdus Salam ICTP, Trieste, Italy, 30 September to 4 October 2013

Topics

- Introduction
- Non-standard positron emitters
 - production using low-energy reactions (Examples: ⁶⁴Cu, ^{94m}Tc, ¹²⁴I, etc.)
 - production via intermediate energy reactions (Examples: ⁵²Fe, ⁷³Se, ¹²⁴I, etc.)
- Novel therapeutic radionuclides (Examples: ⁶⁷Cu, ¹⁸⁶Re, ²²⁵Ac, ^{193m}Pt, etc.)
- Conclusions

New Directions in Development of Radiotracers for Nuclear Medicine

- Enhancing the yield, purity and specific activity of presently used radiotracers
- Development of new organ specific radiopharmaceuticals, especially using
 - ^{99m}Tc and ¹²³I for SPECT
 - ¹⁸F and ⁶⁸Ga for PET
- Development of novel longer-lived positron emitters for
 - study of slow metabolic processes
 - improvement of radiation dosimetry
- Development of novel low-energy highly ionising radiation emitters for internal radiotherapy

This lecture deals with development of novel radionuclides

Radionuclide Development

- Nuclear data
 - excitation functions and yield measurements
 - occasionally decay scheme investigations
- High current targetry
- Radiochemical separations
 - dry and wet methods of separation
 - enriched target recovery
- Quality control
- Imaging suitability
 - phantom measurements (PET, SPECT) to determine resolution, background correction, etc.

This lecture concentrates on nuclear data and some production aspects.

Novel Positron Emitters in Medicine

Needs

- Study of slow metabolic processes, e.g. protein synthesis, cell proliferation, etc. (satellite concept)
- Analogue approach
 - Quantification of SPECT-radiopharmaceuticals
 - Therapy planning, exact dosimetry

Problems

- Constraints on production yield and purity
- Imaging difficulties due to high energy positrons and γ -rays
- Demanding metal-chelate chemistry

Production Routes of 64Cu

Nuclear process	Optimum energy range [MeV]	Thick target yield [MBq/µA·h]
⁶⁴ Ni(p,n) ⁶⁴ Cu ^{a)}	12 → 8	304
⁶⁴ Ni(d,2n) ⁶⁴ Cu ^{a)}	17 → 11	430
⁶⁸ Zn(p,αn) ⁶⁴ Cu ^{a)}	$30 \rightarrow 21$ ^{b)}	116
⁶⁶ Zn(p,2pn) ⁶⁴ Cu ^{a)}	$52 \rightarrow 37$	316
⁶⁴ Zn(d,2p) ⁶⁴ Cu ^{a)}	20 → 10	27.1
⁶⁶ Zn(d,α) ⁶⁴ Cu ^{a)}	13 → 5	13.8
^{nat} Zn(d,x) ⁶⁴ Cu	$25 \rightarrow 10^{\circ}$ c)	57.0

a) Using highly enriched target material. Low enrichment leads to impurities

- b) Below threshold of ⁶⁷Cu impurity via the ⁶⁸Zn(p,2p)⁶⁷Cu reaction
- c) Below thresholds of ⁶¹Cu and ⁶⁷Cu impurities via the ⁶⁴Zn(d,αn)⁶¹Cu and ⁶⁸Zn(d,2pn)⁶⁷Cu reaction, respectively

Extensive studies performed at Brussels, Cape Town, Debrecen, Jülich and Segrate

For review cf. Aslam et al., RCA **97**, 669 (2009)

Excitation Function of ⁶⁴Ni(p,n)⁶⁴Cu Reaction

Yield: 304 MBq/µAh

Radiochemical Separation of ⁶⁴Cu Produced via ⁶⁴Ni(p,n)-Process

(Szelecsenyi et al., ARI 44, 557 (1993).)

Target: 95% enriched ⁶⁴Ni electroplated on Au (thin target) **Irradiation:** 16 MeV p, 4 μA, 5 h **Separation:**

- Irradiated target dissolved in conc. HCI
- Anion-exchange chromatography (Dowex 1x8)
- ⁶⁴Ni eluted with 10 M HCl, collected in 1 ml, and reused for electroplating
- Radiocopper separated from radiocobalt by elution with HCI of lower concentration

Yield of ⁶⁴Cu: 1 GBq Purity: > 98%

Role of Nuclear Data in Optimisation of a Production Route using Charged Particles

Routes for Production of 124

Nuclear	Energy range	Thick target	Impurity [%]		
reaction	[MeV]	yield of ¹²⁴ l [MBq/µA·h]	123	¹²⁵	126
¹²⁴ Te(d,2n)	14 → 10	17.5	-	1.7	-
¹²⁴ Te(p,n)	12 → 8	16	1.0	< 0.1	-
¹²⁵ Te(p,2n)	21 → 15	81	7.4	0.9	-
¹²⁶ Te(p,3n)	$38 \rightarrow 28$	222	148	1.0	1.0
^{nat} Sb(α,xn)	22 → 13	1.02	890	13	16
¹²¹ Sb(α,n)	22 → 13	2.1	895	< 0.2	< 0.2
^{nat} Sb(³ He,xn)	$35 \rightarrow 13$	0.95	3877	0.6	0.6

• All values calculated from excitation functions measured at Jülich

¹²⁴Te(p,n) reaction gives the purest form of ¹²⁴I

Distillation of Radioiodine

Distillation at 750 °C for 15 min

Batch yield : $480 \text{ MBq} (\approx 13 \text{ mCi})^{124}\text{I}$ Radionuclidic purity (%): $^{124}\text{I} (99), ^{123}\text{I} (<1), ^{125}\text{I} (0.1)$ Radiochemical purity:> 98 % iodideChemical impurity:Te (<1µg)</td>

Formation of Isomeric States

Level depends mainly on type of reaction

Example : ⁹⁴Mo(p,n)^{94m,g}Tc

^{94g}Tc impurity in ^{94m}Tc

⁹⁴ Mo(p,n)	: 6%
⁹³ Nb(³ He,2n)	: 25%
⁹² Mo(α,pn)	: 30%

Fundamental investigations mandatory

Qaim et al., NMB **27**, 323 (2000).

Novel Positron Emitters for Medical Applications Produced via Low-Energy Reactions (E ≤ 20 MeV)

Nuclide	Major production route	Energy range [MeV]	Application
⁵⁵ Co (17.6 h)	⁵⁸ Ni(p,α) ⁵⁴ Fe(d,n)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Tumour imaging; neuronal Ca marker
⁶⁴ Cu (12.7 h)	⁶⁴ Ni(p,n)	14 → 9	Radioimmunotherapy
⁶⁶ Ga (9.4 h)	⁶⁶ Zn(p,n)	13 → 8	Quantification of SPECT
⁷² As (26.0 h)	^{nat} Ge(p,xn)	18 → 8	Tumour localisation; immuno-PET
⁷⁶ Br (16.0 h)	⁷⁶ Se(p,n)	15 → 8	Radioimmunotherapy
^{82m} Rb (6.2 h)	⁸² Kr(p,n)	$14 \rightarrow 10$	Cardiology
⁸⁶ Y (14.7 h)	⁸⁶ Sr(p,n)	$14 \rightarrow 10$	Therapy planning
⁸⁹ Zr (78.4 h)	⁸⁹ Y(p,n)	$14 \rightarrow 10$	Immuno-PET
^{94m} Tc (52 min)	⁹⁴ Mo(p,n)	13 → 8	Quantification of SPECT
¹²⁰ I (1.3 h)	¹²⁰ Te(p,n)	$13.5 \rightarrow 12$	Iodopharmaceuticals
¹²⁴ I (4.2 d)	¹²⁴ Te(p,n)	12 → 8	Tumour targeting; dosimetry

Intermediate Energy Nuclear Reactions in Production of Novel Positron Emitters

Problems

- Availability of high intensity cyclotrons
- Large number of competing nuclear reactions (higher significance of nuclear data)
- Targetry more challenging
- Radiochemical separations more demanding (impurity level may be higher)

Advantages

- Generally higher yield
- Occasionally high isotopic enrichment of target not very crucial

Considerable research and development work is called for.

Nuclear Data for Production of ⁷³Se via ⁷⁵As(p,3n)-Process

Excitation Functions

- Optimum energy range: $E_p = 40 \rightarrow 30 \text{ MeV}$
- Yield : 1.4 GBq/µA·h
- ^{72,75}Se impurity: < 0.2 %

The higher the projectile energy, the more are competing reactions.

Mushtaq et al., ARI **39**, 1085 (1988).

Production of some Novel Positron Emitters via Intermediate Energy Reactions (E > 20 MeV)

Nuclide	Production route	Energy range [MeV]	Theor. yield [MBq/μAh]	Radionuclidic impurity (%)
⁵² Fe (8.3 h)	⁵⁵ Mn(p,4n)	100 → 60	22	⁵⁵ Fe (< 2)
⁵⁵ Co (17.6 h)	⁵⁶ Fe(p,2n)	$38 \rightarrow 14$	163	⁵⁶ Co (1.6)
⁶⁴ Cu (12.7 h)	⁶⁸ Zn(p,αn)	$30 \rightarrow 21$	116	⁶⁷ Cu (< 0.5)
⁷³ Se (7.1 h)	⁷⁵ As(p,3n)	$40 \rightarrow 30$	1400	^{72,75} Se (<0.2)
⁷⁵ Br (1.6 h)	⁷⁶ Se(p,2n) ⁷⁵ As(³ He,3n)	$\begin{array}{ccc} 24 & \rightarrow 20 \\ 36 & \rightarrow 25 \end{array}$	1200 278	⁷⁶ Br (2) ⁷⁶ Br (1.7)
⁸³ Sr (32.4 h)	⁸⁵ Rb(p,3n)	$37 \rightarrow 30$	160	⁸⁵ Sr (0.2)
¹²⁴ I (4.2 d)	¹²⁵ Te(p,2n) ¹²⁶ Te(p,3n)	$\begin{array}{ccc} 22 & \rightarrow 15 \\ 36 & \rightarrow 26 \end{array}$	93 190	¹²⁵ I (0.7) ^{125,126} I (~1.5)

• High intensity intermediate energy cyclotrons are very beneficial.

• Several other potentially useful positron emitters could also be produced.

Production of Novel Positron Emitters via Generator Systems

Parent nuclide (T _{1/2})	Daughter nuclide (T _{1/2})	Production method of parent	Energy range [MeV]	Theor. yield of parent [MBq/μAh]
⁴⁴ Ti (60.4 a) ^a	⁴⁴ Sc (3.9 h)	⁴⁵ Sc(p,2n)	32 → 18	~ 3·10 ⁻³
⁵² Fe (8.3 h) ^b	^{52m} Mn (21 min)	⁵⁵ Mn(p,4n)	100 → 60	22
⁶² Zn (9.1 h) ^b	⁶² Cu (9.7 min)	^{nat} Cu(p,xn)	30 → 18	230
⁷² Se (8.5 d)	⁷² As (26.0 h)	⁷⁵ As(p,4n)	$45 \rightarrow 35$	8
¹²² Xe (20.1 h) ^b	¹²² I (3.6 min)	¹²⁷ I(p,6n) ¹²⁴ Xe(p,3n)	$\begin{array}{ccc} 65 & \rightarrow 43 \\ 43 & \rightarrow 35 \end{array}$	230 500
¹⁴⁰ Nd (3.4 d) ^c	¹⁴⁰ Pr (3.4 min)	¹⁴¹ Pr(p,2n) ^{nat} Ce(³ He,xn)	$\begin{array}{l} 30 \rightarrow 15 \\ 35 \rightarrow 20 \end{array}$	210 12

- a) $T_{\frac{1}{2}}$ of parent too long
- b) $T_{\frac{1}{2}}$ of parent rather short
- c) In-vivo generator system

Production of Novel Positron Emitters via α-Particle Induced Reactions

Nuclide (T _{1/2})	Production route	Energy range [MeV]	Theor. yield [MBq/μAh]	Radionuclidic impurity (%)
³⁰ P (2.5 min) ^a	²⁷ Al(α,n)	28 → 10	740	-
³⁸ K (7.6 min) ^a	³⁵ Cl(α,n)	22 → 7	270	-
⁷³ Se (7.1 h) ^b	⁷⁰ Ge(α,n)	28 → 13	126	^{72,73} Se (0.5)
⁸² Sr (25.3 d) ^b	⁸² Kr(α,4n)	60 → 20	~ 3	⁸⁵ Sr (120)

- a) Produced exclusively via the α -particle induced reaction.
- b) Applicable if intermediate energy proton beam not available; yield is, however, considerably smaller than via the (p,xn)-process.

Development Work Related to Therapeutic Radionuclides

Aims

- Enhance the yield, purity and specific activity of presently used radionuclides
- Development of novel therapeutic radionuclides
- Improve internal radiation dosimetry

New Trends

 Low-range high-intensity radiation emitters (α-particles, low-energy electrons, X-rays)

Reaction 68 Zn(p,2p) 67 Cu at $E_p = 70 \rightarrow 30$ MeV most promising, but needs an intermediate energy accelerator.

Rhenium-186 ($T_{\frac{1}{2}}$ = 3.7 d; E_{β} - = 1070 keV; I_{β} - = 92.5 %)

Evaluated Data

Results from three nuclear model calculational codes (EMPIRE, STAPRE, TALYS) are consistent.

LICH

 Production of ²²⁵Ac in GBq quantities is possible and technology is being developed.

Pt-193m ($T_{\frac{1}{2}}$ = 4.33 d; Auger electrons ~ 33 per decay)

High-spin isomer

Production Method: α -particles on enriched ¹⁹²Os

Excitation Function

Actinium-225 Production via ²³²Th(p,x)-Process

Data measurements: Ermolaev et al., RCA **100**, 223 (2012) Weidner et al., ARI **70**, 2602 (2012)

Yield and Purity

All methods of ²²⁵Ac production need further development.

Production of some Potentially Useful Therapeutic Radionuclides using Intermediate Energy Multiple Particle Cyclotrons

Radionuclide (T _{1/2})	Radiation emitted	Production route	Energy range (MeV)
⁶⁷ Cu (2.6 d)	β ⁻	⁶⁸ Zn(p,2p)	$80 \rightarrow 50$
⁷⁷ Br (2.4 d)	Auger electrons	⁷⁵ As(α,2n)	35 ightarrow 15
^{117m} Sn (13.6 d)	Conversion electrons Auger electrons	¹¹⁶ Cd(α,3n)	$40 \rightarrow 25$
¹³¹ Cs (9.7 d)	Auger electrons	¹³³ Cs(p,3n) ¹³¹ Ba → ¹³¹ Cs	$40 \rightarrow 25$
¹⁵³ Sm (1.9 d)	β-	¹⁵⁰ Nd(α,n)	$30 \rightarrow 15$
^{193m} Pt (4.3 d)	Conversion electrons Auger electrons	¹⁹² Os(α,3n)	$38 \rightarrow 25$
²¹¹ At (7.2 h)	α	²⁰⁹ Bi(α,2n)	$30 \rightarrow 20$
²²⁵ Ac (10.0 d)	α	²²⁶ Ra(p,2n)	30 → 18

Increasing use of cyclotrons in production of therapeutic radionuclides

Conclusions

- There is constant need of development of novel radionuclides. New demands are related to longer lived non-standard positron emitters and low-energy highly ionising radiation emitters for internal radiotherapy.
- Development work involves both nuclear data research and technological innovation; interdisciplinary approach is vital.

Conclusions (cont'd)

- Small-sized cyclotrons are conveniently used for production of several novel positron emitters, e.g. ⁶⁴Cu, ⁸⁶Y, ^{94m}Tc, ¹²⁴I, etc.
 Purity of product is high; yield is, however, rather low.
- High intensity intermediate energy cyclotrons have great potential for extending the list of novel positron emitters and therapeutic radionuclides.
- The α-particle beam possesses some advantages regarding production of therapeutic radionuclides.

Combination of interesting science and useful technology