New ICRU* Report on CT Dosimetry

*International Commission on Radiation Units
(and Measurement)

John M. Boone, Ph.D., FAAPM, FSBI, FACR
Professor and Vice Chair (Research) of Radiology
Professor of Biomedical Engineering
University of California Davis Medical Center
Sacramento, California
Disclosures

Paid Consultant to:
- Varian Imaging Systems
- Alston and Bird LLC
- CardioInsight
- DXray

Royalty Income from:
- Lippincott Williams and Wilkins
- Samsung Corporation

Research Funding from:
- Stanford Research Institute
- University of Pittsburgh
- Siemens Medical Systems
- Hologic Corporation
- National Institutes of Health (NIBIB)
\[CTDI_{100} = \frac{1}{nT} \int_{-50\text{mm}}^{+50\text{mm}} D(z) \, dz \]
CTDI - based Dose Metrics

The Tools

The Methods

CTDI_{100} (center & peripheral)

CTDI_w

CTDI_{vol}

DLP
CTDI is a good measure of CT dose to a large plastic phantom, but is not a stand-alone metric for patient dose.

A new look at CT dose measurement: Beyond CTDI

Robert L. Dixon

Med Phys 2003

The trouble with CTDI_{100}

John M. Boone

Departments of Radiology and Biomedical Engineering, University of California Davis Medical Center, Ellison Building, 4860 Y Street, Suite 3100, Sacramento, California 95817

(Received 1 September 2005; revised 26 October 2006; accepted for publication 6 November 2006; published 20 March 2007)

Restructuring CT dosimetry—A realistic strategy for the future

Requiem for the pencil chamber

Robert L. Dixon

CT Dose Index and Patient Dose: They Are Not the Same Thing

Experimental validation of a versatile system of CT dosimetry using a conventional ion chamber: Beyond CTDI100

Robert L. Dixon and Adam C. Ballard

ICRU Report on CT Dosimetry

Introduction & Historical CT Dose Metrics

Dose dependency on patient size

Dose and CT scan length

Phantoms and radiation meters

ICRU extension to AAPM Report 111

Summary
Dose Dependency on patient size

32 cm PMMA phantom
1138 cm²

average patient
615 cm²

85% bigger by mass

ρ = 1.19

ρ = 1.0
practical methods to correct dosimetry estimates for patient size
AAPM Report No. 204

Size Specific Dose Estimates (SSDE) in Pediatric and Adult CT Examinations
CT Dose Summit:
Scan Parameter Optimization
April 29-30, 2010
The Renaissance Concourse Atlanta Airport Hotel
Atlanta, GA

100% Dose, 120 kV

75% Dose, 100 kV
Lower Dose & Brighter Iodine

Default Protocol
Improved Protocol
Size Specific Dose Estimates (SSDE) in Pediatric and Adult CT Examinations
TG-204 Approach

- Four Independent Research Groups
- Studied Size-dependent CT Dose
Family of physical phantoms
Cynthia McCollough, Mayo Clinic
standard phantoms
Tom Toth & Keith Strauss
Anthropomorphic Monte Carlo phantoms
Mike McNitt-Gray, UCLA
Monte Carlo evaluation of CTDI$_\infty$ in infinitely long cylinders of water, polyethylene and PMMA with diameters from 10 mm to 500 mm

Hong Zhou
Department of Radiology and Department of Radiation Oncology, University of California, Davis, Sacramento, California 95817

John M. Boonea)
Department of Radiology and Department of Biomedical Engineering, University of California, Davis, Sacramento, California 95817

Monte Carlo phantoms (1 – 50 cm)
John M. Boone, UC Davis
Figure 2

circle of equal area

effective diameter

AP

lateral
normalization point

32 cm PMMA

CTDI_{vol}
After normalization, the correction factor decreases with increasing patient size. For a patient size of 32 cm, the correction factor is approximately 1.0.
32 cm 120 kV

Conversion Factor

water-equivalent diameter (cm)

Conversion Factor

age in years

0 1 5 10 15

- Mc-GE-120 kV
- Mc-Si-120 kV
- MG-Si-120 kV
- MG-Ph-120 kV
- MG-GE-120 kV
- MG-To-120 kV
- TS-Mx-120 kV
- ZB-GE-120 kV

Conversion Factor

water-equivalent diameter (cm)
16 cm 120 kV

Conversion Factor

age in years

Effective Diameter (cm)
CTDI$_{vol}$ is indicated on most scanners....

CTDI$_{vol}$ 5.11 mGy

CTDI$_{vol}$ 13.2 mGy
Exam Description: CT CHEST WITH CONTRAST

<table>
<thead>
<tr>
<th>Series</th>
<th>Type</th>
<th>Scan Range (mm)</th>
<th>CTDIvol (mGy)</th>
<th>DLP (mGy·cm)</th>
<th>Phantom cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scout</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Helical</td>
<td>1510.250–1700.250</td>
<td>15.55</td>
<td>349.79</td>
<td>Body 32</td>
</tr>
<tr>
<td>4</td>
<td>Helical</td>
<td>150.000–1395.000</td>
<td>17.48</td>
<td>661.77</td>
<td>Body 32</td>
</tr>
<tr>
<td>4</td>
<td>Helical</td>
<td>1230.750–1715.750</td>
<td>16.09</td>
<td>834.64</td>
<td>Body 32</td>
</tr>
<tr>
<td>4</td>
<td>Helical</td>
<td>1230.750–1725.750</td>
<td>7.98</td>
<td>421.68</td>
<td>Body 32</td>
</tr>
</tbody>
</table>

Total Exam DLP: 2267.88
determine patient size
determine patient size

\[D_w \]
Size-Specific Dose Estimate (SSDE)

SSDE conversion factor

\[\text{CTDI}_{\text{vol}} (\text{mGy}) \times f = \text{SSDE (mGy)} \]

SSDE conversion factor

air kerma

absorbed dose

Graph: Normalized Dose Coefficient vs. Effective Diameter (cm)
Example of SSDE calculation from localizer view

CT Radiograph

<table>
<thead>
<tr>
<th>Lateral Dim (cm)</th>
<th>Effective Dia (cm)</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9.2</td>
<td>2.65</td>
</tr>
<tr>
<td>9</td>
<td>9.7</td>
<td>2.60</td>
</tr>
<tr>
<td>10</td>
<td>10.2</td>
<td>2.55</td>
</tr>
<tr>
<td>11</td>
<td>10.7</td>
<td>2.50</td>
</tr>
<tr>
<td>12</td>
<td>11.3</td>
<td>2.45</td>
</tr>
<tr>
<td>13</td>
<td>11.8</td>
<td>2.40</td>
</tr>
<tr>
<td>14</td>
<td>12.4</td>
<td>2.35</td>
</tr>
<tr>
<td>15</td>
<td>13.1</td>
<td>2.29</td>
</tr>
<tr>
<td>16</td>
<td>13.7</td>
<td>2.24</td>
</tr>
<tr>
<td>17</td>
<td>14.3</td>
<td>2.19</td>
</tr>
<tr>
<td>18</td>
<td>15.0</td>
<td>2.13</td>
</tr>
<tr>
<td>19</td>
<td>15.7</td>
<td>2.08</td>
</tr>
<tr>
<td>20</td>
<td>16.4</td>
<td>2.03</td>
</tr>
<tr>
<td>38</td>
<td>32.7</td>
<td>1.11</td>
</tr>
<tr>
<td>39</td>
<td>33.8</td>
<td>1.07</td>
</tr>
<tr>
<td>40</td>
<td>34.9</td>
<td>1.03</td>
</tr>
</tbody>
</table>
Example of SSDE calculation from localizer view

5.40 mGy = CTDI_{vol}

SSDE = 5.4 mGy × 2.5

SSDE = 13.5 mGy
ICRU Report on CT Dosimetry

Introduction & Historical CT Dose Metrics

Dose dependency on patient size

Dose and CT scan length

Phantoms and radiation meters

ICRU extension to AAPM Report 111

Summary
Problems with CTDI$_{vol}$

15 cm phantom

32 cm diameter PMMA phantom

10 cm scan length
How long are the scatter tails in CT?

How long are the scatter tails in CT?

~130 mm

10%

140 kVp

80 kVp

80%
How long are the scatter tails in CT?

Dose profiles as a function of Scan Length
Equilibrium Dose as a function of Scan Length

$D_{eq} \text{ as a function of } L$

$D_o(L)$ vs. Scan Length (mm)
Comprehensive Methodology for the Evaluation of Radiation Dose in X-Ray Computed Tomography

A New Measurement Paradigm Based on a Unified Theory for Axial, Helical, Fan-Beam, and Cone-Beam Scanning With or Without Longitudinal Translation of the Patient Table
Integrating thimble chamber
TG-111 Method
TG-111 Method

![Diagram of TG-111 Method with a graph showing H(L) vs. Scan Length (cm)]
TG-111 Method

[Diagram of TG-111 Method]

[Graph showing H(L) vs. Scan Length (cm) with data points at 0, 5, 10, 15, 20 cm]
TG-111 Method
Cone beam CT dosimetry: A unified and self-consistent approach including all scan modalities—with or without phantom motion

Robert L. Dixon a)
Department of Radiology, Wake Forest University School of Medicine,
Winston-Salem, North Carolina 27160

John M. Boone
Department of Radiology, University of California Davis Medical Center,
Sacramento, California 95817

(Received 3 January 2010; revised 24 February 2010; accepted for publication 24 March 2010; published 19 May 2010)

\[
\text{lsf}(z) = (1 - \varepsilon) \frac{1}{d} \exp(-2|z|/d) + \varepsilon \frac{1}{\delta d} \exp(-2|z|/\delta d),
\]

\[
H(a) = \frac{1}{1 + \eta} + \frac{\eta}{1 + \eta} \left[(1 - \varepsilon)(1 - e^{-a/d}) + \varepsilon(1 - e^{-a/\delta d}) \right].
\]

\[\eta = \text{scatter / primary}\]
ICRU Report on CT Dosimetry

Introduction & Historical CT Dose Metrics

Dose dependency on patient size

Dose and CT scan length

Phantoms and radiation meters

ICRU extension to AAPM Report 111

Summary
Phantom is polyethylene 60 cm long by 30 cm in diameter

Each section is 20 cm long and weighs 13.7 kg (30 lbs)

compared to 32 cm diameter PMMA: 14.4 kg (5% lighter)

Total phantom 41.1 kg (90 lbs)
Integrating thimble chamber
real time probes
The thimble chamber with real time (>1000 Hz) readout rates

*active length
ICRU Report on CT Dosimetry

Introduction & Historical CT Dose Metrics

Dose dependency on patient size

Dose and CT scan length

Phantoms and radiation meters

ICRU extension to AAPM Report 111

Summary
real time thimble chamber
ICRU Report on CT Dosimetry

Introduction & Historical CT Dose Metrics

Dose dependency on patient size

Dose and CT scan length

Phantoms and radiation meters

ICRU extension to AAPM Report 111

Summary
CTDI-based methods need to be updated

SSDE is a method for adjusting for patient size

Scan length dose dependencies $\rightarrow h(L)$

Longer phantoms and faster radiation meters

Methods for automatic size detection

ICRU CT Report Available Q3 2013
Figures from CT Chapter
ICRU Report on CT Dosimetry

Introduction & Historical CT Dose Metrics

Dose dependency on patient size

Dose and CT scan length

Phantoms and radiation meters

ICRU extension to AAPM Report 111

Summary
Method for evaluating bow tie filter angle-dependent attenuation in CT: Theory and simulation results

John M. Boone
Department of Radiology and Department of Biomedical Engineering, UC Davis Medical Center, University of California, Davis, 4860 Y Street, Suite 3100, Sacramento, California 95817

(Received 8 March 2009; revised 20 October 2009; accepted for publication 21 October 2009; published 4 December 2009)
Computer simulation

(a) 120 kVp

(b) 140 kVp, 120 kVp, 100 kVp, 80 kVp
Physical Measurement

- Chart 1: Air Kerma Rate (mGy/s) vs. Time (s)
 - Black: Unfiltered beam
 - Gray: Filtered beam

- Chart 2: Relative Attenuation vs. Fan Angle (degrees)
 - 140 kVp
 - 120 kVp
 - 100 kVp
 - 80 kVp

- Chart 3: Filter Thickness (mm) vs. Fan Angle (degrees)
 - PMMA filter
 - AI Filter