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(Some) RECENT RESULTS

PROTON AND HELIUM HARDENINGS AT LOW AND HIGH E (PAMELA, but AMS?)

GAMMA RAYS FROM CLOUDS IN GOULD BELT AND DIFFUSE GAMMA RAY
BACKGROUND

POSITRON RATIO

SMALL/LARGE SCALE ANISOTROPIES

PeV NEUTRINOS

CR ACCELERATION IN SNR AND B-FIELD AMPLIFICATION
CR ACCELERATION IN SNR AND GAMMA RAY SPECTRA

OBSERVATIONS OF BALMER LINES AND CR ACCELERATION

TRANSITION GALACTIC - EXTRAGALACTIC (KASCADE-GRANDE, ICETOP)

CHEMICAL COMPOSITION OF UHECR
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Y80—232Gv = 2.85 £ 0.015(stat) £ 0.004(syst)
Y>232ay = 2.67 +0.03(stat) £ 0.05(syst)
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FOR HELIUM:
Y80—240Gqv = 2.766 £ 0.01(stat) 4+ 0.027(syst)

V>240GV — 2477 + 0.0G(StCLt) T 0.0S(Syst)
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" DIFFUSIVE TRANSPORT

THE DIFFUSIVE TRANSPORT OF CR IN THE GALAXY IS THE WEAKEST LINK
IN THE THEORY

<> PERPENDICULAR vs PARALLEL DIFFUSION
< D(E) INDEPENDENT OF POSITION. SLOPE FROM B/C
<> ORIGIN OF DIFFUSION ? (Alfven, Magnetosonic, cascades, dampings, ...)

< EFFECT OF COSMIC RAYS ON THEIR OWN TRANSPORT !!!




" DIFFUSIVE TRANSPORT
IDELIBERATELY SUMMARIZE HERFE ONLY THE VERY ESSENTIAL POINTS...
1) PROPAGATION MAINLY MODELED BY USING GALPPROP AND DRAGON
2) WE ARE STILL STUCK WITH TWO MAIN POSSIBILITIES:

a. REACCELERATION
D(p)~p!’3 WITH NO LOW ENERGY BREAKS

INJECTION SPECTRUM WITH A FLATTENING BELOW ~2 GV
INJECTION SPECTRUM ~p?* STEEPER THAN PREDICTIONS FROM DSA

b. NO REACCELERATION (Diffusion Models)
D(p)~p’¢ WITH A LOW ENERGY BREAK BELOW FEW GV
POWER LAW IN INJECTION ~p?1
IT HAS SEVERE PROBLEMS WITH ANISOTROPY

NEITHER REACCELERATION MODELS NOR DIFFUSION MODELS
MAY ACCOUNT FOR THE SPECTRAL BREAKS




" NON SEPARABLE D(E,z)

THE STANDARD RULE OF THUMB THAT

n(E)~Q(E) 7(E) ~ Q(E)/D(E)~E~"~°

IS ONLY VALID FOR SPATIALLY CONSTANT DIFFUSION OR FOR SEPARABLE
D(E,2)=H(E)G(2)

EASIEST INSTANCE OF NON-SEPARABILITY:

D(E, 2) = Di(p) = K; (E%>5 for |2 < Hi

02
D(E, z) = D(p) = K2 (£) for Hy < |2| < Ho

D(E) 4 D,

/D1

=




" NON SEPARABLE D(E,z)

THE SIMPLEST FORM OF THE TRANSPORT EQUATION CAN BE WRITTEN AS:

q(p, z) = 2hqo(p)o(2)

N(p)R
00(p) = e

WHERE THE CR DENSITY IN THE DISC IS (e.g. Dogiel 2001, Tomassetti 2012):
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'HE ROLE OF CR ON THEIR OWN TRANSPORT

SUPER-ALFVENIC STREAMING
DRIFT OF CR INSTABILITY

CHANGE OF THE CR
SCATTERING
PROPERTIES

NL THEORY OF
TRANSPORT

THIS NON LINEAR TRANSPORT IS CRUCIAL IN ACCELERATION !!!

IN THE CONTEXT OF THE GALAXY, STUDIED BY Skilling (1975). Holmes (1975)
AND MORE RECENTLY BY PB, Aloisio & Serpico (2012)

AROUND THE SOURCES Ptuskin, Zirakashvili & Plesser (2008), Malkov et al. (2013)




THE GROWTH RATE OF THE UNSTABLE MODES INDUCED BY CR IS
PROPORTIONAL TO THEIR SPATIAL GRADIENT

WHERFE THE DISTRIBUTION FQNCTION OF CR IS FOUND FROM THE

kres(p) = 1/rr(p)

Con(k) = g ey 52

Cor(k) =2 x 10710 (
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NSPORT IN SELF-GENERATED WAVES

PB, Amato & Serpico 2012, Aloisio & PB 2013
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« DENOTES THE TYPE OF NUCLEUS (BOTH
PRIMARIES AND SECONDARIES ARE INCLUDED

DIFFUSION COEFFICIENT OUTPUT OF THE CALCULATIONS

CHANGE OF SLOPE OF D(E) - CHANGE OF SLOPE IN SPECTRA WHERE
TRANSPORT SWITCHES FROM SELF-GENERATED TO PRE-EXISTING JB
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E25J(E) (GeV'%/(m? s sr))

Bo=1 ],lG. |c=50 pc, T]B=0.05. E_,CR=0.05

H=4.0 Kpc, hg=0.15 kpc, y=4.2, u=2.4 mg/cm2

n=0.02 cm™>, Qy;=0.535 Q_, 9,,=350 MV

Aloisio & PB 2013
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SPECTRA OF HEAVIER NUCLEI
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DIFFUSION

COEFFICIENT

H=4.0 Kpc, hy=0.15 Kpc, y=4.2
u=2 4 mglem”, B,=1 uG. |.=50 pc
n=0.02 cm™®, £,5=0.05, ng=0.05
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/C UDS IN THE GOULD’S BELT

Neronov et al. 2012 (see also Kachelriess & Ostapchenko 2012)
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FERMI-LAT DATA HAVE BEEN USED TO MEASURE THE CR SPECTRUM IN
SELECTED CLOUDS OFF THE GALACTIC DISC, IN THE GOULD BELT

THE INFERRED CR SPECTRUM SHOWS A LOW ENERGY BREAK AND A

SPECTRUM FOR E>10 GEV WITH SLOPE ~ 2.9 SIMILAR TO PAMELA SLOPE IN
THE RANGE 80 - 200 GV
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THE INFERRED PROTON SPECTRUM AT E>10 GeV HAS THE SAME SLOPE AS

THE PAMELA SPECTRUM, BUT IT IS A FACTOR ~1.4 LARGER (PROBABLY THIS
IS JUST GEOMETRY)

CLEARLY AT E>200 GeV THE INFERRED SPECTRUM DOES NOT SHOW THE
HARDENING SEEN IN PAMELA DATA
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’ PHENOMENA IN CR
ACCELERATION

FOUR NEW PIECES OF OBSERVATIONS HAVE CONSIDERABLY AFFECTED OUR
UNDERSTANDING OF CR ACCELERATION

+ NARROW FILAMENTS OF NON-THERMAL X-RAY SYNCHROTRON EMISSION

+ DETECTION OF THE PION PEAK IN THE GAMMA RAY EMISSION OF SOME
SNRs CLOSE TO MOLECULAR CLOUDS

+ DETECTION OF GAMMA RAY EMISSION FROM GeV to ~50 TeV FROM THE
TYCHO SNR

+ HINTS OF EFFICIENT CR ACCELERATION FROM THE BALMER LINE
EMISSION OF SOME SNR
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RA FILAMENTS IN YOUNG SNR

TYPICAL SIZE OF THE FILAMENTS ~ 102 parsec

The emission in the filaments is non-thermal s = |
synchrotron of the highest energy electrons in the "R il . s
accelerator ) B S

Q‘v‘o ~ \' . *
: N B
P s 2
: R TR i T 4 3
Comparison with the observed . = -7~ . & yomi ?’
thickness leads to an estimate . = - - . Sald R, o
for the local field L & T Y

B =100 uGauss




[ETIC FIELD AMPLIFICATION AND P, ,, .

THE EVIDENCE FOR B-FIELD AMPLIFICATION IS CRUCIAL FOR AT LEAST
TWO REASONS:

+ IN THE ABSENCE OF THIS PHENOMENON THE MAXIMUM ENERGY OF
ACCELERATED PARTICLES IS ~1-10 GeV ONLY

+ MAGNETIC FIELD AMPLIFICATION HAS LONG BEEN EXPECTED AS A BY-
PRODUCT OF CR ACCELERATION (STREAMING INSTABILITY)

IN THE BOHM ASSUMPTION FOR THE TURBULENT COMPONENT:

E
= 3.3 X 10260777,2/8 Bl_()lO,uG (m)

R 1 pc?
e,

D(E) E Vir Ak
e < (1015ev> (5000km/s) Broouc years

CLOSE TO THE TIME OF BEGINNING OF THE SEDOV PHASE...

D(E)
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PARTICLE SCATTERING ONLY TAKES PLACE 10° non-resonant mode
10 Im(w) - -~~~
rrL (E) 107%E
POWER IS NEEDED AT THE RESONANT 10®
1
107!
POWER ON DIFFERENT SCALES 10-3F
107 107! 1 10 10° 10* 10* 10°

AT THE RESONANCE: 10°
1
107!
SCALE 10 F
DIFFERENT  INSTABILITIES GENERATE o,
Bell 2004; Amato & PB 2009, B‘Vl@ov 2011

THE NON RESONANT MODE (Bell 2004, 2005) GROWS THE FASTEST BUT ON VERY SMALL
SCALES... IN ORDER FOR THIS MODE TO BE IMPORTANT FOR E,  ~PeV, ITS
SATURATION MUST LEAD TO LARGER SCALES BY A FACTOR OF ~MILLIONS (Inverse

cascade?) —
ROLE OF ESCAPING PARTICLES VERY IMPORTANT

THE PROBLEM OF REACHING THE KNEE (PROTONS) IS STILL NOT QUANTITATIVELY
UNDERSTOOD... EVEN WORSE IF IT WERE NEEDED TO REACH HIGHER E,, , »
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THE IDEA IS THAT THE SMALL SCALE INSTABILITY INCREASES B BY A
FEW...

THE CURRENT TUBES THAT DEVELOP INCREASE THE SCALE TO THE
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BOTH FERMI-ILAT AND AGILE FOUND
EVIDENCE FOR THE PION BUMP IN THE
SPECTRUM OF TWO SNR CLOSE TO

MOLECULAR CLOUDS

ASIDE  FROM = CONFIRMING THAT
HADRONS ARE BEING ACCELERATED,
THIS IS PROBABLY GOING T0O TELL US
MORE ON PROPAGATION THAN PARTICLE

Galactic Latitude (deg)

ACCELERATION (Nava & Gabici 2013; Malkov et B
al. 2013, Giacinti & Kachelriess 2013 Galactic Longitude (deg)
A Ackermann et al. 2013 B
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" PROBLEMATIC SPECTRA

The non linear theory of DSA (as well as the test particle theory) all predict CR spectra
close to E2 and even harder than E-2 at E>10 GeV

This finding does not sit well with:
1) CR ANISOTROPY (THE REQUIRED D(E) HAS TO SCALE AS E’7)
2) GAMMA RAY SPECTRA FROM SELECTED SNRS

o Candidate

Cut—off
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_ 3D(E) Vzner(E,T,t)

c NCR
CR CURRENT

ONE CAN DEFINE THE FIRST TWO MOMENTS:

(6Jcr - 0JcR)Y?
senep(E)

042 =

N

ANISOTROPY DUE TO THE ANISOTROPY DUE TO INDIVIDUAL
OVERALL INHOMOGENEOUS SOURCES. THIS TERM IS ALWAYS
DISTRIBUTION OF SOURCES NON ZERO AND ACTUALLY (IN

(this is zero for a homogeneous PRINCIPLE) DIVERGING
disc)

BOTH CONTRIBUTIONS OR SUMS OF THE TWO ONLY GIVE RISE TO A
DIPOLE ANISOTROPY... THE PHASE OF THE LATTER IS LIKELY TO
CHANGE ERRATICALLY AS A FUNCTION OF ENERGY




ANISOTROPY

6 =0.6
- y+06 =2.67 H=4 l?pc
- SN Rate: 1/30 yr
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6 =1/3 y+6 =2.671 H=1 kpc

6§ =1/3 y+6 =2.67, H=4 kpc
SN Rate: 1/100 yr—

SN Rate: 1/100 yr—
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Amato & PB 2012

BUT 0=1/3 IS NOT COMPATIBLE WITH THE SNR SPECTRA WE GET!
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RVATION OF ANOMALOUS
BALMER LINES

THIS FIELD IS STILL YOUNG, BUT IT HAS A HUGE POTENTIAL IN TERMS OF
‘MEASURING’ THE AMOUNT OF COSMIC RAYS CLOSE TO SNR SHOCKS

THE PHYSICS QUESTION 1S: “WHAT HAPPENS WHEN A COLLISIONLESS
SHOCK CROSSES A PARTIALLY IONIZED MEDIUM?”’

NEUTRALS >

SHOCK VELOCITY

INFLOWING T Balmer Lines 43 6 oy
NEUTRALS AND IONS A

Lyman Lines

Ground State = Lowest Energy Level

THE WIDTH OF THE BALMER LINE(S) PROVIDES POWERFUL INFORMATION
ON THE IONS TEMPERATURE DOWNSTREAM OF THE SHOCK - CR
CALORIMETRY !!!
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"BROAD AND NARROW Hg LINE

TWO PROCESSES GET ACTIVATED:

@y JEValC¢ BATMER LINE FROM Ho REFLECTS

ATOMS WITH ) TEMPERATURE OF
[o]N[/#: CEDOWNSTREAM IONS DOWNSTREAM
BROAD BALMER LINE
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Cold neutra.
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"ANOMALOUS Ho LINE WIDTHS
IN THE PRESENCE OF PARTICLE ACCELERATION TWO THINGS HAPPEN:

LOWER TEMPERATURE DOWNSTREAM

A PRECURSOR APPEARS UPSTREAM

SNOAD A= L=
S DI AR KI VY ER

GETS BROADER




Helder et al. 2009
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"THOUGHTS ON THE END OF THE
GALACTIC CR SPECTRUM

THE DIFFICULTY IN REACHING E,,  ,*R~1-10 PeV SUGGESTS THAT THE GALACTIC CR
SPECTRUM MAY END WITH IRON AT ~few 10'7eV

BUT WE HAVE NO EVIDENCE AS YET OF SNR AT THE KNEE (OR ABOVE OF COURSE) -
NOT SURPRISING SINCE E,,,, LAST FOR SHORT TIME AROUND Ty,

SPECTRUM AND COMPOSITION AT 10"7-10” eV CRUCIAL TO UNDERSTAND TRANSITION

STANDARD SNR PARADIGM ONLY CONSISTENT WITH THE DIP MODEL FOR THE
TRANSITION

A MIXED COMPOSITION OF UHECR REQUIRES A THIRD CR COMPONENT (EITHER
GALACTIC, IN THE FORM OF A POPULATION OF SUPERENERGETIC SNR) OR EXTRA-
GALACTIC - EXTRAGALACTIC INJECTION SPEXTRA REQUIRED TO BE VERY HARD!!!

ONLY A PROPER UNDERSTANDING OF THE ORIGIN OF GALACTIC CR CAN ALLOW US TO
SAY SOMETHING MEANINGFUL ON UHECR
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THE DIP IS THE ONLY EXPLANATION OF THE TRANSITION THAT IS
COMPATIBLE WITH THE BASIC PREDICTIONS OF THE SNR
PARADIGM FOR GALACTIC COSMIC RAYS

BUT IT IS INCOMPATIBLE WITH THE OBSERVED COMPOSITION
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RANSITION AND UHECR

¥g=1.0,E =57x10'8 ev

VERY HARD INJECTION
SPECTRA REQUIRED IF

SOURCES GENERATE
NUCLEI

Aloisio, Berezinsky & PB 2013
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" TRANSITION AND UHECR

Additional Extragalactic Component
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"Proliferation of components

Aloisio, Berezinsky & PB 2013
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SUMMARY

+ ALTHOUGH THE GENERAL PICTURE OF THE ORIGIN OF CR APPEARS TO BE
OUTLINED, THERE ARE MANY LOOSE ENDS

+ A COHERENT PICTURE IS STILL MISSING - AMBIGUITY IN THE RESULTS OF
MEASUREMENTS OF SPECTRA, COMPOSITION AND ANISOTROPY

+ IN TERMS OF CR ACCELERATION, THE PROBLEM OF REACHING VERY HIGH
ENERGIES APPEARS TO HAVE BECOME A PLASMA PHYSICS PROBLEM

+ BUT STILL THERE ARE ISSUES WITH ANISOTROPY VS SPECTRA

+ PROPAGATION IS ALL BUT TRIVIAL (PERP/PAR, SPACE DEPENDENCE, SELF-
SCATTERING, ...)

+ IN THE STANDARD PICTURE THE GALACTIC CR SPECTRUM SHOULD END AT
AROUND THE SECOND KNEE, BUT CHEMICAL COMPOSITION OF UHECR?2?

+ NOT ONLY WE COULD USE BETTER THEORETICAL TOOLS, ALSO ALTERNATIVE
OBSERVATIONS WOULD HELP... BALMER OBSERVATIONS MAY BE WHAT WE ARE ARFE
AFTER... UNFORTUNATELY NOT MUCH AFTER HUBBLE SPACE TELESCOPE




