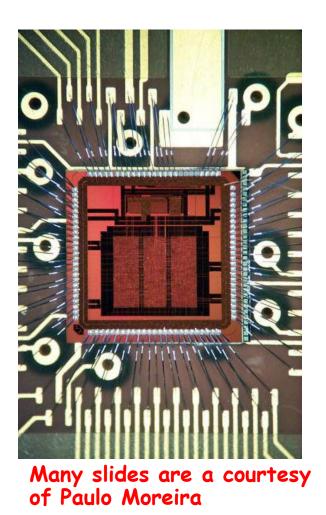


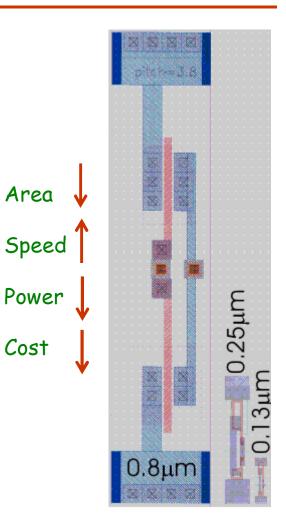
2499-7

International Training Workshop on FPGA Design for Scientific Instrumentation and Computing


11 - 22 November 2013

Introduction to VLSI Digital Design Scaling

> Sandro BONACINI CERN, Geneva Switzerland


Outline

- Introduction
- Transistors
- The CMOS inverter
- Technology
- Scaling
 - Scaling objectives
 - Scaling variables
 - Scaling consequences
- Gates
- Sequential circuits
- Storage elements

Technology scaling

- Technology scaling has a <u>threefold</u> <u>objective</u>:
 - Increase the transistor density
 - Reduce the gate delay
 - Reduce the power consumption
- At present, between two technology generations, the objectives are:
 - Doubling of the transistor density;
 - Reduction of the gate delay by 30% (43% increase in frequency);
 - Reduction of the power by 50% (at 43% increase in frequency);

Technology scaling

- How is scaling achieved?
 - All the device dimensions (lateral and vertical) are reduced by $1/\alpha$
 - Concentration densities are increased by α to make the junctions depletion region smaller by $1/\alpha$
 - Device voltages reduced by $1/\alpha$ (for constant field)
 - Typically $1/\alpha = 0.7$ (30% reduction in the dimensions)

Technology scaling

• The scaling variables are:

 Supply voltage: 	V_{dd}	\rightarrow	V _{dd} / α
 Gate length: 	L	\rightarrow	L/α
 Gate width: 	W	\rightarrow	W / α
 Gate-oxide thickness: 	† _{ox}	\rightarrow	t_{ox} / α
 Junction depth: 	Xj	\rightarrow	Χ j / α
 Substrate doping: 	Ň _A	\rightarrow	$N_A \times \alpha$

This is called <u>constant field</u> scaling because the electric field across the gate-oxide does not change when the technology is scaled

If the power supply voltage is maintained constant the scaling is called <u>constant voltage</u>. In this case, the electric field across the gate-oxide increases as the technology is scaled down.

Due to gate-oxide breakdown, below $0.8\mu m$ only "constant field" scaling is used.

Scaling consequences

Some consequences of 30% scaling in the constant field regime ($\alpha = 1.43$, $1/\alpha = 0.7$):

• Device/die area:

 $W \times L \rightarrow (1/\alpha)^2 = 0.49$

- "Historically", microprocessor <u>die size grows</u> about 25% per technology generation! This is a result of added functionality.
- Transistor density:

(unit area) /(W \times L) \rightarrow α^2 = 2.04

- In practice, <u>memory density</u> has been scaling as expected.

Scaling consequences

• Gate capacitance:

W × L /
$$t_{ox} \rightarrow 1/\alpha = 0.7$$

• Drain current:

(W/L)
$$\times$$
 (V²/t_{ox}) \rightarrow 1/ α = 0.7

• Gate delay:

 $(C \times V) / I \rightarrow 1/\alpha = 0.7$ Frequency $\rightarrow \alpha = 1.43$

 In practice, microprocessor frequency has doubled every technology generation (2 to 3 years)! This faster increase rate is due to super-pipelined architectures ("less gates per clock cycle")

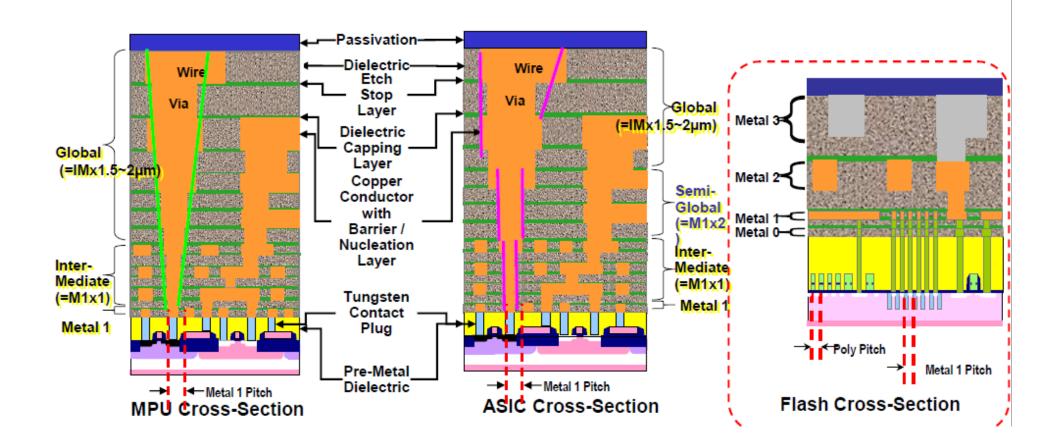
Scaling consequences

• Power:

$$C \times V^2 \times f \rightarrow (1/\alpha)^2 = 0.49$$

• Power density:

$$1/t_{ox} \times V^2 \times f \rightarrow 1$$

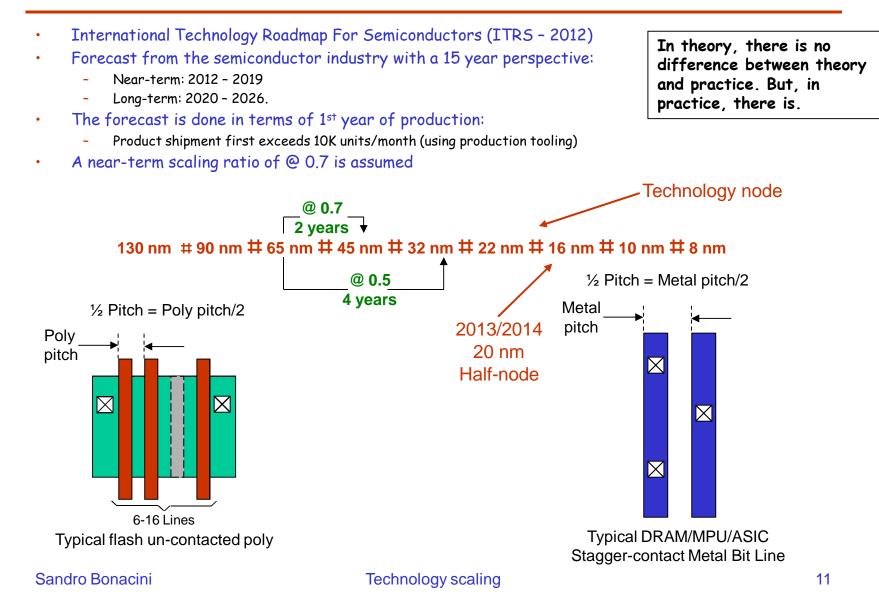

- In practice, the power density has been increasing faster than foreseen by the simple scaling theory. This is due to the faster than foreseen increase in frequency

Interconnects scaling

- Interconnects scaling:
 - Higher densities are only possible if the interconnects also scale.
 - Reduced width \rightarrow increased resistance
 - Denser interconnects \rightarrow <u>higher capacitance</u>
 - To account for <u>increased parasitics</u> and <u>integration</u> <u>complexity</u> more interconnection layers are added:
 - thinner and tighter layers \rightarrow local interconnections
 - thicker and sparser layers \rightarrow global interconnections and power

IC Cross Sections

Source: ITRS



Technology scaling

Scaling table

Supply voltage (Vdd) $1/\alpha$ $1/\alpha$ 1 Length (L) $1/\alpha$ $1/\alpha$ $1/\alpha$ Width (W) $1/\alpha$ $1/\alpha$ $1/\alpha$ Gate-oxide thickness (tox) $1/\alpha$ $1/\alpha$ $1/\alpha$ Junction depth (Xj) $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (NA) α α α Electric field across gate oxide (E) 1 α Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ DeviceGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ Drain-current (Idss) $1/\alpha$ α Transconductance (gm) $1/\alpha$ α^3 Gate delay $1/\alpha^2$ α Gate delay $1/\alpha$ $1/\alpha^2$ Power density 1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$ Sandro BonaciniTechnology scaling	Parameter	Constant Field	Cons	tant Voltage
Width (W) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ Gate-oxide thickness (t_{ox}) $1/\alpha$ $1/\alpha$ $1/\alpha$ Junction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (N_A) α α α Electric field across gate oxide (E)1 α Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ α Gate delay $1/\alpha$ α Current density α α^3 Power density1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$	Supply voltage (V _{dd})	1/α	1	↑ [−]
Gate-oxide thickness (t_{ox}) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ VariablesJunction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (N_A) α α α α Electric field across gate oxide (E)1 α α Depletion layer thickness $1/\alpha$ $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ DeviceGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ RepercussionDrain-current (I_{dss}) $1/\alpha$ α α^3 Transconductance (g_m) $1/\alpha$ α^3 α^3 Gate delay $1/\alpha^2$ α^3 α^3 DC & Dynamic power dissipation $1/\alpha^3$ $1/\alpha$ α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$ $1/\alpha$	Length (L)	1/α	1/α	
Gate-oxide thickness (t_{ox}) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ VariablesJunction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (N_A) α α α α α α Electric field across gate oxide (E)1 α $1/\alpha$ $1/\alpha$ Depletion layer thickness $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ $1/\alpha^2$ DeviceGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ α $1/\alpha^2$ α Drain-current (I_{dss}) $1/\alpha$ α α^3 $1/\alpha^2$ α^3 Gate delay $1/\alpha$ $1/\alpha^2$ α α^3 $Circuit$ Gate delay $1/\alpha^2$ α^3 α^3 $Circuit$ Power density1 α^3 $1/\alpha$ $1/\alpha$	Width (W)	1/α	1/α	Scaling
Junction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (N_A) α α Electric field across gate oxide (E)1 α Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m)1 α Gate delay $1/\alpha$ α^3 Current density α α^3 Power density1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$	Gate-oxide thickness (t _{ox})	1/α	1/α	•
Electric field across gate oxide (E)1 α Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ α Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 Dower density $1/\alpha^3$ $1/\alpha$	Junction depth (Xi)	1/α	1/α	
Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ α Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α Power density 1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$	Substrate doping (N _A)	α	α	
Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ $1/\alpha^2$ Device RepercussionGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ $1/\alpha$ RepercussionDrain-current (I_{dss}) $1/\alpha$ α α α Transconductance (g_m) $1/\alpha$ α $1/\alpha^2$ α Gate delay $1/\alpha$ $1/\alpha^2$ α α^3 Current density α α^3 α^3 CircuitDC & Dynamic power dissipation $1/\alpha^2$ α α^3 Power density 1 α^3 $1/\alpha$ $1/\alpha$	Electric field across gate oxide (E)	1	α	Ť
Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ RepercussionDrain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ α Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α Power density 1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$	Depletion layer thickness	1/α	1/α	
Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ RepercussionDrain-current (I_{dss}) $1/\alpha$ α α Transconductance (g_m)1 α $1/\alpha^2$ Gate delay $1/\alpha$ $1/\alpha^2$ α Current density α α^3 α DC & Dynamic power dissipation $1/\alpha^2$ α Power density1 α^3 $1/\alpha$ Power-Delay product $1/\alpha^3$ $1/\alpha$	Gate area (Die area)	1/ α ²	1/ α²	Device
Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) 1 α Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α Power density1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$	Gate capacitance (load) (C)	1/α	1/α	
Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α Power density1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$	Drain-current (I _{dss})	1/α	α	
Current density α α^3 CircuitDC & Dynamic power dissipation $1/\alpha^2$ α RepercussionPower density1 α^3 $1/\alpha$ Power-Delay product $1/\alpha^3$ $1/\alpha$ $1/\alpha$	Transconductance (g _m)	1	α	Ļ
DC & Dynamic power dissipation $1/\alpha^2$ α CircuitPower density1 α^3 RepercussionPower-Delay product $1/\alpha^3$ $1/\alpha$ $\sqrt{2}$	Gate delay	1/α	$1/\alpha^2$	Ť
DC & Dynamic power dissipation $1/\alpha^2$ α RepercussionPower density1 α^3 $1/\alpha^3$ I/ α Power-Delay product $1/\alpha^3$ $1/\alpha$ I/ α	Current density	α	α^3	
Power density1 α^3 Power-Delay product $1/\alpha^3$ $1/\alpha$	DC & Dynamic power dissipation	$1/\alpha^2$	α	
	Power density	1	α^3	Repercussion
Sandro Bonacini Technology scaling	Power-Delay product	1/ α ³	1/α	Ļ
	Sandro Bonacini	Technology scaling		1

2013 and beyond ...

2013 and beyond ...

ITRS Road Map, 2012 edition:	2013	2017	2020	2023 (year of first production)
Gate length, physical (nm)	20	14	11	8 (7 years for $\frac{1}{2}$ L, 2 nodes)
Gate length, printed (nm)	28	17.7	12.5	8.8
Flash Poly ½ pitch (nm)	18	13	10	8 (flash drives the scaling)
DRAM $\frac{1}{2}$ pitch (nm)	28	179	12.6	8.9
Wafer diameter (mm)	300	450	450	450 (wafers getting larger)
Wiring levels (maximum)	13	14	14	15 (tall metal stack)
DRAM:				
Bits/chip (Gbits)	4.29	8.59	34.36	34.36 (increase and saturate)
Chip size (mm ²)	35	19	37	19 (small chips for low-cost bits)
Gbits/cm ²	12.24	46.25	92.5	185
Flash:				
Bits/chip (Gbits) SLC	69	137	275	412 (3D flash starts in 2016)
Chip size (mm ²)	149.8	135.88	162.42	158.13
Gbits/cm ²	45.9	101	169	261
Bits/chip (Gbits) MLC [3D 2 bits/o	cell] -	550	1100	2199 (end of hard disks??)
Chip size (mm ²)	-	159.82	102.73	124.03
Gbits/cm ²	-	344	1070	1770
μP (high performance):				
Transistors/chip (Millions)	8848	17696	35391	70782 (doubling cores)
Chip size (mm ²)	260	206	206	206 (small chips for cheap MIPS)
Transistors/cm ² (M/cm ²)	3403	8575	17150	34300
Total pads	3072	3072	3072	3072 (66.7% for power/ground)
Performance:				
On-Chip clock (GHz)	4	4.74	5.33	6 (saturate)
GFLOPs [Not ITRS data!] ~ Power supply:	100 (*)	237	533	1200 [not ITRS data!]
Vdd (V):	0.85	0.75	0.68	0.62 (low-power for freg. increase)
Maximum allowable power (W)	149	130	130	? (With heat sink)