

2522-1

Hands-on Tutorial on Electronic Structure Computations

14 - 18 January 2013

Transport with Wannier functions

Pizzi Giovanni EPFL Switzerland

Transport with Wannier functions

Giovanni Pizzi

Theory and Simulation of Materials, EPFL (Switzerland)

THEOS THEORY AND SIMULATION OF MATERIALS

Hands-on Tutorial on Electronic Structure Computations Trieste, Jan 15th, 2013

References

- Marzari, N., and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
- Souza, I., N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)
- N. Marzari et al., Rev. Mod. Phys. 84, 1419–1475 (2012)
- R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge, 2004
- www.wannier.org
- S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997
- First part of the slides: courtesy of Prof. Nicola Marzari. Can be found on the Wannier90 website: <u>www.wannier.org</u> under User Guide > NSF Summer School 2009 > N. Marzari Lecture Slides

Hands-on

www.wannier.org

People involved

WANNIER90 AUTHORS

ARASH MOSTOFI

Arash is Senior Lecturer in Physics and Materials at Imperial College London. He is also a part of the Thomas Young Centre.

JONATHAN YATES

Jonathan is a Lecturer in Materials at the University of Oxford.

YOUNG-SU LEE

Young-Su is a Senior Research Scientist at the Korea Institute of Science and Technology (KIST), South Korea.

WANNIER77 AUTHORS

NICOLA MARZARI

Nicola holds the Chair of Theory and Simulation of Materials at EPFL

IVO SOUZA

Ivo is Research professor at the University of the Basque Country.

DAVID VANDERBILT

David is Professor of Condensed Matter Theory at Rutgers University.

Wannier90 "input data"

- Needs the overlap matrices M_{mn}^(k,k+b) between neighboring k points, and the A_{mn}(k) projection matrices
- Other possible inputs:
 - the **list of eigenvalues** at each *k*-point (for interpolation)
 - the **u**_{nk}(*r*) in real space (for plotting the WFs)
- This input can be obtained from various programs; there exists interfaces for a set of ab-initio codes
 - We will use **Quantum Espresso**
 - **Reminder**: *pw.x* documentation in

<u>http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html</u> (you can find the link in the PDF with the exercises)

How to run a Wannier90 calculation

Note: DON'T MIX the yellow and green path! Otherwise the content of the 'output' folder of Quantum Espresso is overwritten and you will get some error.

First follow one path (e.g. the yellow one), and when you get to the bottom box, start again from NSCF

Exercises 1 and 2: Silicon

- Calculate Wannier functions for Silicon (VB only, and VB+CB)
- Check the results
- Plot the real-space WFs (using XCrysDen)
- Plot the ab-initio and the interpolated band structure (using xmgrace or gnuplot)

Exercises 3 and 4: C chain

 Calculate the band structure, DOS and the Quantum Conductance (QC) of a periodic C chain

Calculate the DOS and QC of a defected C chain

Van Hove singularities in 1D

How to run and input file

- The Wannier90 input file must have a .win extension (e.g.: **ex1.win**)
- To run the code, pass the basename (i.e., the name without the .win extension) as a command line parameter to wannier90.x:
 wannier90.x -pp ex1 (for the pre-process step) wannier90.x ex1 (for the Wannierization step)
- Input file format: very simple, there are *no* namelists but only:
 - Variables (order is not important; not case sensitive) num_wann = 4 mp_grid : 6 6 6
 - Blocks

begin atoms_frac Si -0.25 0.75 -0.25 Si 0.00 0.00 0.00 end atoms_frac

 Default units for lengths are angstrom (bohr are also accepted), for energies are eV

Example of input file (ex1)

num_bands = XXX

= XXX

num_iter = 100

num wann

! restart = plot wannier_plot = true wannier_plot_supercell = 3

bands_plot = true begin kpoint_path L 0.5 0.5 0.5 G 0.0 0.0 0.0 G 0.0 0.0 0.0 X 0.5 0.0 0.5 end kpoint_path

begin projections f=-0.125,-0.125, 0.375:s f= 0.375,-0.125,-0.125:s f=-0.125, 0.375,-0.125:s f=-0.125,-0.125,-0.125:s end projections mp_grid = XXX XXX XXX begin kpoints XXX XXX XXX end kpoints

begin atoms_frac Si -0.25 0.75 -0.25 Si 0.00 0.00 0.00 end atoms_frac

begin unit_cell_cart bohr -5.10 0.00 5.10 0.00 5.10 5.10 -5.10 5.10 0.00 end unit_cell_cart

Practical information

- You can find the PDF with the instructions inside /afs/ictp.it/public/shared/smr2522/WANNIER_TUTORIAL/
- Before starting the tutorials, copy the whole folder above on the local scratch of your computer:

cp -r /afs/ictp.it/public/shared/smr2522/WANNIER_TUTORIAL/ /scratch/WANNIER_TUTORIAL

- To get help (from tomorrow on...): <u>www.wannier.org</u>
 - User guide, tutorials
 - Read the source code!
 - Wannier90 mailing list