

2572-17

Winter College on Optics: Fundamentals of Photonics -Theory, Devices and Applications

10 - 21 February 2014

Optical Fiber Sensors Basic Principles

Fabrizio Di Pasquale Scuola Superiore Sant'Anna Pisa Italy

	Rayleigh Scattering
Rayleigh scattering:	Microscopic variations of refractive index n with a spatial scale << than signal λ cause scattering of lightwave signal in all directions → power loss
Rayleigh scattering abs coefficient in Silica fibe	sorption ers: $\alpha_s = \frac{(0.76 + 0.51 \cdot \Delta n)}{(\lambda/\mu m)^4} \begin{bmatrix} dB \\ km \end{bmatrix} \longrightarrow \alpha_s = \frac{C}{\lambda^4}$ C: constant
3 rd window: α_s = α_f	_२ ~ 0.1 dB/km, absorption is dominated by Rayleigh scattering
Signal backscatter	ing: A fraction of scattered signal is collected by fiber NA in backward propagating direction
	Rayleigh back-scattering coefficient γ :
	$\gamma = S \cdot \alpha_R$ S: capture factor (fiber geometry, NA)
$S = \left(\frac{NA}{n_0}\right)^2 \cdot \frac{1}{m} \qquad n$	$\gamma \sim 10^{-4} \text{ J/km}$

Backs	scattered power	proportional to $L = S \cdot \alpha$	o pulse dura $W \cdot P \cdot e^{i\theta}$	ition -2αL	$W = \tau \cdot v_{a}$
BACK	SCATTER FAC	TOP is typicall		for ontical fiber	.e.
2, (01)			y opeonieu		0.
	VALUES	- 10 lo	~ (C	W)	
		$= - \mathbf{u} \cdot \mathbf{o}$	ου (β. · α. ·	vv)	
	0	10 10	. ,		
	Fibertype	α _s [km ⁻¹]	s	σ [dB/1 μs]	η [<i>W/J</i>]
[nm]	Fibertype MM-SI 50µ	$\alpha_s [km^{-1}]$ 3.5 · 10 ⁻¹	S	σ [dB/1 μs] 31	η [<i>₩/J</i>] 385
[nm] 350 300	Fibertype MM-SI 50μ MM-GI 62.5μ	$\frac{\alpha_s [\text{km}^{-1}]}{3.5 \cdot 10^{-1}}$ 6.5 \cdot 10^{-2}	$\frac{\mathbf{S}}{1.1 \cdot 10^{-2}}$ 1.0 \cdot 10^{-2}	σ [d B/1 μs] 31 38	η [<i>W/J</i>] 385 65
[nm] 50 300 300	G Fibertype MM-SI 50μ MM-GI 62.5μ MM-GI 50μ	$\frac{\alpha_{s} [\text{km}^{-1}]}{3.5 \cdot 10^{-1}}$ $6.5 \cdot 10^{-2}$ $6.5 \cdot 10^{-2} \cdot 10^{-2} \cdot 10^{-2}$	$\frac{\mathbf{S}}{1.1 \cdot 10^{-2}}$ 1.0 \cdot 10^{-2} 5.0 \cdot 10^{-3}	σ [dB/1 μs] 31 38 41	η [<i>W/J</i>] 385 65 32
A [nm] 350 1300 1300 1310	Fibertype MM-SI 50μ MM-GI 62.5μ MM-GI 50μ SM 9μ	$\frac{\alpha_{s} [\text{km}^{-1}]}{3.5 \cdot 10^{-1}}$ $6.5 \cdot 10^{-2}$ $6.5 \cdot 10^{-2} \cdot 2$ $6.3 \cdot 10^{-2}$	$\frac{S}{1.1 \cdot 10^{-2}}$ 1.0 \cdot 10^{-2} 5.0 \cdot 10^{-3} 1.0 \cdot 10^{-3}	σ [dB/1 μs] 31 38 41 49	η [<i>W/J</i>] 385 65 32 6.3

