
Concepts of Object-Oriented
Programming

Richard Berger
richard.berger@jku.at

Johannes Kepler University Linz

mailto:richard.berger@jku.at

What this talk is about

• Introduction to Objects & Classes
• Building objects

• Composition
• Encapsulation
• Inheritance
• Polymorphism

• Best practices
• Recommendations
• Design Patterns

• Conclusion
• Pro & Cons of OOP

What is Object-Oriented Programming?

• OOP started in 1960s (Simula, SmallTalk)
• Using objects as basic unit of computation
• Allows to extend type system

• Usage: just like basic types (int, double, float, char, …)
• But with own structure and behavior

• Static Languages (C++)
Types are known at compile time

• Dynamic Languages (Python)
Types can be manipulated at runtime

Object

Object

Object

message

message

message

I. Objects & Classes
Defining new objects, object lifetime

Where are these “objects”?

• Objects exist in memory at runtime
• Just like objects of primitive types (integers, floating-point numbers)

• We can interpret 4 bytes of data as integer number
• We can interpret 8 bytes of data as floating point number

• In C we have structs to create composite types containing multiple
primitive types

• In C++ and other OOP languages this is further extended by
associating behavior to a chunk of data through specifying methods
to manipulate that data.

Object

• State
• all properties of an object

• Behavior
• How an object reacts to interactions, such as calling a certain method
• In OOP speak: Response of an object when sending it messages

• Identity
• Multiple objects can have the same state and behavior, but each one is a

unique entity

Structure and Behavior of similar objects is defined by their class.
An object is also called an instance of a class.

Classes

class Vector2D
{
public:
double x;
double y;

double length()
{
return sqrt(x*x + y*y)

}
};

Member Method
• A method which can be called for an object of the class.
• Can access and modify the object state by manipulating

member variables.

Interface
• All methods which can be called on an object from

outside.

Member Variable
• A variable in the scope of a class
• All instances allocate memory for their variables

Class
• defines memory structure of objects
• how we can interact with objects
• how it reacts to interactions

Lifetime of an Object

• Allocation
• Allocate enough memory to store object data/state

• Initialization
• Set an initial object state

• Usage
• Interact with objects through methods
• Access and modify object data

• Cleanup
• Make sure that everything is in order before deletion

• Deletion
• Memory is freed, object ceases to exist

Allocation

Initialization

Usage

Cleanup

Deletion

Allocation
Static / Stack Allocation
void foo(int param1, int param2)

{

…

}

Allocation

Initialization

Usage

Cleanup

Deletion

Stack

v

x

y

double a = 30.0;
double b = 50.0;

Vector2D v;

a
b

param1
param2

+ Fast
+ Automatic cleanup
- Not persistent
- “Limited” storage

Allocation

void foo(int param1, int param2)

{

}

Allocation

Initialization

Usage

Cleanup

Deletion

Stack

x

y

double a = 30.0;
double b = 50.0;

Vector2D * v = new Vector2D;

…

a
b

param1
param2

v

Heap

Pointer

Dynamic / Heap Allocation

+ Persistent
+ “Infinite” storage
- Slow
- Manual cleanup

Initialization

Constructors
• special methods which

initialize an instance of a class
• multiple variants with

different parameters possible
• initialize member variables

class Vector2D {

public:

Vector2D(){

x = 0.0;

y = 0.0;

}

Vector2D(double x1, double y1){

x = x1;

y = y1;

}

};

Allocation

Initialization

Usage

Cleanup

Deletion

Vector2D v1();
Vector2D v2(10.0, 20.0);

Vector2D * v3 = new Vector2D();
Vector2D * v3 = new Vector2D(10.0, 20.0);

Usage

Stack Objects
Vector2D v;

// access members

v.x = 10.0;

v.y = 20.0;

// call member functions

double len = v.length();

Heap Objects

Allocation

Initialization

Usage

Cleanup

Deletion

Vector2D * pv = new Vector2D();

// access members

pv->x = 10.0;

pv->y = 20.0;

// call member functions

double len = pv->length();

Vorführender
Präsentationsnotizen
Talk about the difference between Java and C++. All objects are on the heap. There are no pointers, only references.This is an oversimplification. You can access heap objects with dot syntax, but you first have to reference them.

Cleanup

Destructor
• Cleanup before destruction
• Free any acquired resources

(file handles, heap memory)

class MyVector {

double * data;

public:

MyVector(int dim){

data = new double[dim];

}

~MyVector() {

delete [] data;

}

};

Allocation

Initialization

Usage

Cleanup

Deletion

Deletion
Static / Stack Objects
void foo(int param1, int param2)

{

}

Allocation

Initialization

Usage

Cleanup

Deletion

Stack

v

x

y

double a = 30.0;
double b = 50.0;

Vector2D v;
v.x = 10.0;
v.y = 20.0;

…

a
b

param1
param2

objects on stack are automatically deleted
at end of scope

End of Scope

Deletion

void foo(int param1, int param2)

{

}

Stack

x

y

double a = 30.0;
double b = 50.0;

Vector2D * v = new Vector2D;
v->x = 10.0;
v->y = 20.0;

…

delete v;

a
b

param1
param2

v

Heap

Pointer

Dynamic / Heap Objects

objects on heap must be deleted explicitly

Allocation

Initialization

Usage

Cleanup

Deletion

Static class members
class Point2D
{
static int numPoints = 0;

public:
int identifier;
double x;
double y;

Point2D(double x1, double y1) {
identifier = numPoints++;
x = x1;
y = y1;

}

static void reset_count() {
numPoints = 0;

}
};

Static Method
• A method which is not applied on a class instance, but on

the class itself
• Much like a global function
• Can only access and modify static member variables

Static Member Variable
• Only a single instance of this variables exists
• Much like a global variable
• Can be accessed by all instances
• Access by class name using ::, not instance

// Definition in a single .cpp file
int Point2D::numPoints = 0;

// access without having an instance
cout << Point2D::numPoints << endl;

// call static method, no instance required
Point2D::reset_count();

II. Building objects
Composition, Encapsulation, Inheritance, Polymorphism

Abstractions Engine 1

Engine 2

Engine 3

Engine 4

Gear

Rudder

Elevator

Flaps

Aileron

Longitude

La
tit

ud
e

Heading, Speed, Height

High-Level Model of an Airplane

Low-Level Model of an Airplane

model domain concepts as classes

Composition

class Boeing747

{

Engine engine1;

Engine engine2;

Engine engine3;

Engine engine4;

Gear frontGear;

Gear backGear;

…

};

• natural way of creating new
objects is by building them out
of existing objects.

• Complex systems are composed
out of simpler sub-systems

Engine

Boing747

Engine Engine Engine Gear Gear …

Encapsulation

• View objects as black box
• Don’t operate directly on internal data

of an object
• Implementation details are hidden behind

interface
• make member variables private
• Use methods of the interface to perform

certain actions
• Some languages, e.g. C++ and Java, help

enforce this through specifiers: public,
private, protected

class Boeing747{

private:

Gear gear;

public:

void gearUp() {

// update physics

…

gear.up();

}

void gearDown() {

// update physics

…

gear.down();

}

};

gearDown
Boeing747

gearUp speed

altitude

hidden

visible

Problems without Encapsulation
class Boeing747{

public:

double totalAirFriction;

Gear gear;

void gearUp();

void gearDown();

double speed();

};

Boeing747 * a = new Boing747();

void Boeing747::gearDown() {

if(gear.isUp()) {

totalAirFriction += 20.0;

gear.down();

}

}

void Boeing747::gearUp() {

if(gear.isDown()) {

totalAirFriction -= 20.0;

gear.down();

}

}

void Boeing747::speed() {

// function of thrust & friction

return …

}

a->gear.down();a->gearDown(); ≠
Encapsulation ensures that side effects and domain knowledge
are kept inside the class which is responsible for them.

Type hierarchies and Inheritance

• Smalltalk first added the concept of inheritance
• Objects of a class can inherit state and behavior of

a base class and make adjustments.
• Usages:

• Extend classes with new functionality
• Make minor modifications
• Extract common functionality.

Base Class

Derived Class

Type hierarchies and Inheritance

Boeing747

Airplane

Cessna206h

Type hierarchies and Inheritance
class Boeing747 {

float longitude, latitude;

float heading, speed;

float altitude;

...

public:

void fullThrottle() {

engine1.maxThrottle();

engine2.maxThrottle();

engine3.maxThrottle();

engine4.maxThrottle();

speed = …;

}

}

class Cessna206h {

float longitude, latitude;

float heading, speed;

float altitude;

...

public:

void fullThrottle() {

engine1.maxThrottle();

speed = …;

}

}

Inheritance

class Boeing747 : Airplane {

...

public:

void fullThrottle() {

engine1.maxThrottle();

engine2.maxThrottle();

engine3.maxThrottle();

engine4.maxThrottle();

speed = …;

}

}

class Cessna206h : Airplane {

...

public:

void fullThrottle() {

engine1.maxThrottle();

speed = …;

}

}

class Airplane {
public:

float longitude, latitude;
float heading, speed;
float altitude;

};

Common structure

Derived classes
inherit structure
of Airplane

Inheritance

class Boeing747 : Airplane {

...

public:

void fullThrottle() {

engine1.maxThrottle();

engine2.maxThrottle();

engine3.maxThrottle();

engine4.maxThrottle();

speed = …;

}

}

class Cessna206h : Airplane {

...

public:

void fullThrottle() {

engine1.maxThrottle();

speed = …;

}

}

class Airplane {
public:

float longitude, latitude;
float heading, speed;
float altitude;

};
Common interface

Derived classes
implement or
extend interface
of Airplane

virtual void fullThrottle();

Polymorphism

• Objects of derived classes can
be used as base class objects.

• Polymorphism allows us to
modify the behavior of base
classes and replacing the
implementation of methods.

• Polymorphic methods must be
declared virtual (in C++)

Boeing747 * a = new Boeing747();

Airplane * b = new Boeing747();

Airplane * c = new Cessna206h();

// as expected: will call Boeing747::fullThrottle

a->fullThrottle();

// NEW! will call Boeing747::fullThrottle

b->fullThrottle();

// NEW! will call Cessna206h::fullThrottle

c->fullThrottle();

Polymorphism

• Use base class to implement
general algorithms and data
structures which work with
any derived type

• Dynamic dispatch determines
the type of an object at
runtime and executes the
correct method

// store objects of different types in a
// datastructure using its base class
Airplane ** airplanes = new Airplane*[10];
...
for(int i = 0; i < 10; i++) {

// will choose correct implementation
// dynamically at runtime
airplanes[i]->fullThrottle();

}

void foo(Airplane & a) {
// this function will work with
// any class derived from Airplane

}

Abstract classes

• Virtual functions without
implementation are called
pure-virtual functions.

• Classes containing pure-
virtual functions can not be
instantiated and are called
abstract classes

• Their behavior must be
defined in derived classes

class Airplane {

public:

float longitude, latitude;

float heading, speed;

float altitude;

virtual void fullThrottle() = 0;

};

Is-A vs. Has-A Relationship

• Use composition to manage complexity
• Use inheritance to extract common functionality
• Use polymorphism to implement general algorithms

which are independent of specific types
• Composition = Has-A Relationship

E.g. A Boeing 747 has four jet engines.
• Inheritance = Is-A Relationship:

E.g. A Cessna is an airplane. So is a Boeing 747.

III. Best Practices
Recommendations, Design Patterns

Keep your interfaces simple, clean and
consistent
• Methods in a class should be as orthogonal as possible
 avoid method that do almost the same

• Methods with the same name should do similar things
• Use encapsulation

• This reduces coupling
• Changing your implementation internals becomes easier
• Access data with getter / setter methods

• Use const to limit what methods can do with your data
• This lets the compiler help you enforce who can manipulate data
• Compiler Optimization hint

• Consider using lazy-initialization for costly object properties

Getters & Setters
class SomeClass {

int propertyA;
public:

int getPropertyA() const {
return propertyA;

}

void setPropertyA(int value) {
// setters allow you to validate data
// before accepting it
if (value > 0 && value < 100) {

propertyA = value;
}

}
}

const method does not modify data

Getter function

Setter function

Lazy Initialization
class SomeClass {

LargeDataSet * dataSet;
public:

SomeClass() : dataSet(nullptr)
{
}

~SomeClass() {
delete dataSet;

}

int getDataSet() {
if (!dataSet) {

dataSet = new LargeDataSet();
}
return dataSet;

}
}

Don’t create data set during construction

Won’t do anything if data set is never created

Create data set set on-demand

Base class destructors should be virtual

• If you want to allow deletion of objects by using their base class,
make sure their destructor is virtual

class Base {
public:

~Base();
}

class Derived : public Base {
public:

~Derived();
}

Base * object = new Derived();
delete object; // undefined behavior!!!
// best case: only ~Base() is called
// potential memory leak

class Base2 {
public:

virtual ~Base2(){}
}

class Derived2 : public Base2 {
public:

virtual ~Derived2(){}
}

Base * object = new Derived();
delete object;
// first ~Derived() is called,
// then ~Base()

Don’t use virtual functions during
construction and destruction
• It’s a bad idea. Even if you think you could use it, you will not get what

you want.

class Base {
public:

Base() {
callVirtual();

}
virtual ~Base() {

cout << “~Base()” << endl;
callVirtual();

}
virtual void callVirtual() {

cout << “Base::callVirtual” << endl;
}

}

class Derived : public Base {
public:

Derived() : Base() {}
virtual ~Derived() {

cout << “~Derived()” << endl;
}
virtual void callVirtual() {

cout << “Derived ::callVirtual” << endl;
}

}

dynamic dispatch
is disabled during

construction &
destruction. These
will always call the
base class version!

Don’t reinvent the wheel

• Learn about available libraries
• C++

• STL we‘ll have a look at it later this week
• Boost
• GUI toolkits if you need them (e.g. Qt)

• Python
• Modules
• pip, setuptools

• OOP is all about writing reusable code, so use code that‘s already
there and has been tested by other people

• Learn about design patterns

Design Patterns

• Term was made popular by the book “Design Patterns: Elements of
Reusable Object-Oriented Software”, aka. The Gang of Four book
(1994)

• Collection of generic solutions of common problems in OOP software
• Often used in libraries
• Part of the vocabulary computer scientists use to simplify

communication

Design Patterns: Main categories

Creational Patterns Structural Patterns Behavioral Patterns

• Abstract Factory
• Builder
• Factory Method
• Prototype
• Singleton

• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

• Chain of Responsibility
• Command
• Interpreter
• Iterator
• Mediator
• Memento
• Observer
• State
• Strategy
• Template
• Visitor

Factory Methods

• Create objects without having to know specific language type
• Circumvent limitations of constructors

• No return result
only exceptions

• Constrained naming
e.g. can’t have two constructors with same parameter types

• Statically bound creation
there is no dynamic binding for constructors, you have to know which type you want
to instantiate

• No virtual constructors
• Factory methods can range from very simple implementations to complex

selection schemes

Creational Patterns

Factory Methods – Simple Example
class IShape {
public:

virtual void draw();
};

class Rectangle : IShape;
class Circle : IShape;
class Triangle : IShape;

class ShapeFactory {
public:

IShape * createShape(const std::string & name);
}

IShape * createShape(const std::string & name)
{

if (name == "rectangle") {
return new Rectangle();

}

if (name == "circle") {
return new Circle();

}

if (name == "triangle") {
return new Triangle();

}

return nullptr;
}

// parse user input
ShapeFactory factory;
string selectedShape = getUserInput();

// create object at runtime
IShape * new_object = factory.createShape(selectedShape);

Creational Patterns

This factory
implementation is hard
coded. But you can easily
write an extensible
factory.

Adapter

• Used to make an object of one type compatible to another
• Typical use case:

• You defined your own types of objects with a certain interface
• You want to use an external library to manipulate your objects
• However the interface expected by library is different to the one you used

• Instead of rewriting you code, you can create an Adapter class, which
maps one interface to another.

Structural Patterns

Adapter – Example
Structural Patterns

class ForceComputation {
public:

virtual void compute_force(Vector3D & force);
};

class LegacyClass {
public:

virtual void compute_force(double * force);
};

class ForceComputationAdapter : public ForceComputation {
LegacyClass * legacy;

public:
ForceComputationAdapter(LegacyClass * src) : legacy(src) {
}

virtual void compute_force(Vector3D & force) {
double f[3];
legacy->compute_force(&f[0]);
force.x = f[0];
force.y = f[1];
force.z = f[2];

}
};

Strategy

• Used to keep parts of a larger implementations replacable
• You define a common interface to do a certain task
• Any class which implements that interface can be used in larger

implementation
• Allows you to exchange object of that interface during runtime
• Typical use case:

• Define a common interface to get data
• Interface can be implemented by classes which use files, databases, web

services, etc.

Behavioral Patterns

Strategy - Example
Behavioral Patterns

class IRandomNumberGenerator {
public:

double getNextDouble() = 0;
}

class MyUncrackableEncryption {
IRandomNumberGenerator * random;

void setRandomNumberGenerator(IRandomNumberGenerator * r) {
random = r;

}

void encrypt(char * data, size_t length) {
double r = random->getNextDouble();
...

}

void decrypt(char * data, size_t length) {
...

}
}

class DiceRoll : public IRandomNumberGenerator {
public:

double getNextDouble() {
// guaranteed to be random,
// determined with a fair dice roll
return 4;

}
}

MyUncrackableEncryption e;
DiceRoll d;

e.setRandomNumberGenerator(d);
e.encrypt(…)

IV. Conclusion
Pro and Cons of Object-Orientated Programming

Benefits of OOP

• OOP encourages modularity and consistency
• Side effects from changing data are controlled
• Separate interface and implementation
• Control visibility and read/write access to data, violations can be

found be the compiler
• Top level code becomes terse (-> less errors)
• Natural semantics for stateful items
• More compile time checking of correct use

Problems of OOP

• Designing good class hierarchies is hard and takes experience
• Bad design is easy

• Objects get bloated by unneeded members
• Inconsistent implementations (methods that have the same name don't do the

same thing)
• Overhead of dynamic dispatch
• Inefficient data access for caching, vectorization
• Flow of control scattered across classes, especially with very deep class

hierarchies
• Implicit actions (copy constructor, assignment operator) can become very

expensive

Final Recommendations
• Use OOP in moderation

• use OOP where it helps modularity
• but not everything that can be an object needs to be

• At the upper level(s) imperative programming (using collections of
objects) is often cleaner

• Use abstraction where details need not to be known, but do not hide
what is important

• Object oriented programming is not bound to a specific programming
language; some require less code to be written; the important part is
sticking to the established conventions

	Concepts of Object-Oriented Programming
	What this talk is about
	What is Object-Oriented Programming?
	I. Objects & Classes
	Where are these “objects”?
	Object
	Classes
	Lifetime of an Object
	Allocation
	Allocation
	Initialization
	Usage
	Cleanup
	Deletion
	Deletion
	Static class members
	II. Building objects
	Abstractions
	Composition
	Encapsulation
	Problems without Encapsulation
	Type hierarchies and Inheritance
	Type hierarchies and Inheritance
	Type hierarchies and Inheritance
	Inheritance
	Inheritance
	Polymorphism
	Polymorphism
	Abstract classes
	Is-A vs. Has-A Relationship
	III. Best Practices
	Keep your interfaces simple, clean and consistent
	Getters & Setters
	Lazy Initialization
	Base class destructors should be virtual
	Don’t use virtual functions during construction and destruction
	Don’t reinvent the wheel
	Design Patterns
	Design Patterns: Main categories
	Factory Methods
	Factory Methods – Simple Example
	Adapter
	Adapter – Example
	Strategy
	Strategy - Example
	IV. Conclusion
	Benefits of OOP
	Problems of OOP
	Final Recommendations

