
Modifying & Extending LAMMPS

Steve Plimpton
Sandia National Labs
sjplimp@sandia.gov

LAMMPS Users and Developers Workshop
International Centre for Theoretical Physics (ICTP)

March 2014 - Trieste, Italy

Presentation: SAND2014-2243C

Resources for modifying LAMMPS

Before you start writing code:
be familiar with what is already in LAMMPS

http://lammps.sandia.gov/doc/Section commands.html

search the mail list
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/threads/topics.html
google: lammps-users thermostat Lowe
1st hit: lammps.sandia.gov/threads/msg20748.html
2nd hit: SourceForge.net: LAMMPS: lammps-users
Ad hit: Thermostats at Lowe’s (www.lowes.com)

post a “how can I do this” message to the mail list
email to lammps-users@lists.sourceforge.net

Section in manual: Modifying & Extending LAMMPS
doc/Section modify.html

Developers manual (brief!)
doc/Developer.pdf
diagram of class hierarchy
pseudo-code & explanation of how a timestep works

Resources for modifying LAMMPS

Before you start writing code:
be familiar with what is already in LAMMPS

http://lammps.sandia.gov/doc/Section commands.html

search the mail list
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/threads/topics.html
google: lammps-users thermostat Lowe
1st hit: lammps.sandia.gov/threads/msg20748.html
2nd hit: SourceForge.net: LAMMPS: lammps-users
Ad hit: Thermostats at Lowe’s (www.lowes.com)

post a “how can I do this” message to the mail list
email to lammps-users@lists.sourceforge.net

Section in manual: Modifying & Extending LAMMPS
doc/Section modify.html

Developers manual (brief!)
doc/Developer.pdf
diagram of class hierarchy
pseudo-code & explanation of how a timestep works

Resources for modifying LAMMPS

Before you start writing code:
be familiar with what is already in LAMMPS

http://lammps.sandia.gov/doc/Section commands.html

search the mail list
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/threads/topics.html
google: lammps-users thermostat Lowe
1st hit: lammps.sandia.gov/threads/msg20748.html
2nd hit: SourceForge.net: LAMMPS: lammps-users
Ad hit: Thermostats at Lowe’s (www.lowes.com)

post a “how can I do this” message to the mail list
email to lammps-users@lists.sourceforge.net

Section in manual: Modifying & Extending LAMMPS
doc/Section modify.html

Developers manual (brief!)
doc/Developer.pdf
diagram of class hierarchy
pseudo-code & explanation of how a timestep works

Resources for modifying LAMMPS

Before you start writing code:
be familiar with what is already in LAMMPS

http://lammps.sandia.gov/doc/Section commands.html

search the mail list
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/threads/topics.html
google: lammps-users thermostat Lowe
1st hit: lammps.sandia.gov/threads/msg20748.html
2nd hit: SourceForge.net: LAMMPS: lammps-users
Ad hit: Thermostats at Lowe’s (www.lowes.com)

post a “how can I do this” message to the mail list
email to lammps-users@lists.sourceforge.net

Section in manual: Modifying & Extending LAMMPS
doc/Section modify.html

Developers manual (brief!)
doc/Developer.pdf
diagram of class hierarchy
pseudo-code & explanation of how a timestep works

Class structure of LAMMPS

Universe

Input

Atom

Update

Neighbor

Comm

Domain

Force

Modify

Group

Output

Timer

Variable

Command

Integrate

Min

Irregular

Region

Lattice

Fix

Compute

Pair

Angle
Dihedral
Improper
KSpace

Dump
WriteRestart

FFT3D

Remap

Finish

Special

AtomVec

Bond

Thermo

NeighList

NeighRequest

Memory

LAMMPS

Error

LAMMPS itself is a class

can be instantiated
multiple times

has library interface
callable via C++, C,

Fortran, Python

Blue are core classes

visible anywhere in LAMMPS

Red are style classes

one parent class
many child classes

Source files

Rule of thumb: every input script command has
corresponding class and corresponding file name

run command ⇒ Run class ⇒ run.cpp + run.h
pair style lj/cut command ⇒

PairLJCut class ⇒ pair lj cut.cpp/h

Src directory
core classes are all here
many style classes also here

Package sub-directories (type make package to see)
package = group of related style classes
src/KSPACE = long-range Coulombic solvers
src/USER-OMP = OpenMP versions of many classes (Axel)
two flavors: standard (26) and user (13)

Lib directory
some packages require auxiliary libraries
those included in LAMMPS are under lib
examples: lib/gpu, lib/meam, lib/colvars (Axel)

Core classes

See doc/Developer.pdf for more details

Memory = memory allocation of 1d, 2d, etc arrays
Error = error and warning messages
Universe = partition procs ⇒ multiple “worlds”, one per sim
Input = read input script, variables, added commands
Atom = per-particle data
Update = dynamics and minimization
Neighbor = build neighbor lists
Comm = inter-processor communication
Domain = simulation box and geometric regions
Force = potentials (pair, bond, angle, etc, KSpace)
Modify = fixes and computes
Group = collections of particles
Output = thermodynamics, dump files, restart files
Timer = timings statistics

Look at header files (src/domain.h) to understand core classes
and LAMMPS generally

Core classes

See doc/Developer.pdf for more details

Memory = memory allocation of 1d, 2d, etc arrays
Error = error and warning messages
Universe = partition procs ⇒ multiple “worlds”, one per sim
Input = read input script, variables, added commands
Atom = per-particle data
Update = dynamics and minimization
Neighbor = build neighbor lists
Comm = inter-processor communication
Domain = simulation box and geometric regions
Force = potentials (pair, bond, angle, etc, KSpace)
Modify = fixes and computes
Group = collections of particles
Output = thermodynamics, dump files, restart files
Timer = timings statistics

Look at header files (src/domain.h) to understand core classes
and LAMMPS generally

Style classes

90% of source code is extensions via 14 styles
See src/style*.h or grep CLASS *.h

Easy for developers and users to add new features:

particle types = atom style

force fields = pair, bond, angle, dihedral, improper styles

long range = kspace style

fix = fix style = BC, constraint, time integration, ...

diagnostics = compute style

geometric region = region style

integrator = integrate style (Verlet, rRESPA)

minimizer = min style

snapshot output =

dump style

input command = command style = read data, velocity, run

Style classes

90% of source code is extensions via 14 styles
See src/style*.h or grep CLASS *.h

Easy for developers and users to add new features:

particle types = atom style

force fields = pair, bond, angle, dihedral, improper styles

long range = kspace style

fix = fix style = BC, constraint, time integration, ...

diagnostics = compute style

geometric region = region style

integrator = integrate style (Verlet, rRESPA)

minimizer = min style

snapshot output =

dump style

input command = command style = read data, velocity, run

Other code details

Pointers = ultimate base class
all classes (except LAMMPS) derive from it
holds pointers to all core classes
enables easy access anywhere in code

domain→xprd for x box-length

Everything inside LAMMPS NS namespace
no external (global) variables
allows multiple instantiations of LAMMPS

MPI communicators
pass in from main() or thru library interface as world

enables a LAMMPS instantiation to run on any set of procs
universe class partitions allocation into multiple worlds

enables multiple simulations to run simultaneously

C++ vs Fortran
pre-2004 LAMMPS was in Fortran
re-wrote in C++ for flexibility in adding new features
very little fancy C++ (templating, STL, etc)
core kernels are C-like, so coding style is really OO C

Other code details

Pointers = ultimate base class
all classes (except LAMMPS) derive from it
holds pointers to all core classes
enables easy access anywhere in code

domain→xprd for x box-length

Everything inside LAMMPS NS namespace
no external (global) variables
allows multiple instantiations of LAMMPS

MPI communicators
pass in from main() or thru library interface as world

enables a LAMMPS instantiation to run on any set of procs
universe class partitions allocation into multiple worlds

enables multiple simulations to run simultaneously

C++ vs Fortran
pre-2004 LAMMPS was in Fortran
re-wrote in C++ for flexibility in adding new features
very little fancy C++ (templating, STL, etc)
core kernels are C-like, so coding style is really OO C

4 ways to extend LAMMPS

1 Add new styles

sky is the limit!

2 Add code to existing files

3 Add new fields to data file as atom properties

4 Add methods to the library interface

really “extending” external to LAMMPS

Extending LAMMPS via styles

Again, 90% of source code is extensions via 14 styles

Enabled by C++

virtual parent class defines interface rest of LAMMPS uses
style = new child class implementing a few methods

In theory:

just add new *.cpp and *.h file to src and re-compile
your new class will work with all LAMMPS functionality
your new class won’t break anything else
in practice, theory and practice are not always the same

Now discuss nuts & bolts, then show 5 examples

Extending LAMMPS via styles

Again, 90% of source code is extensions via 14 styles

Enabled by C++

virtual parent class defines interface rest of LAMMPS uses
style = new child class implementing a few methods

In theory:

just add new *.cpp and *.h file to src and re-compile
your new class will work with all LAMMPS functionality
your new class won’t break anything else
in practice, theory and practice are not always the same

Now discuss nuts & bolts, then show 5 examples

Extending LAMMPS via styles

Again, 90% of source code is extensions via 14 styles

Enabled by C++

virtual parent class defines interface rest of LAMMPS uses
style = new child class implementing a few methods

In theory:

just add new *.cpp and *.h file to src and re-compile
your new class will work with all LAMMPS functionality
your new class won’t break anything else
in practice, theory and practice are not always the same

Now discuss nuts & bolts, then show 5 examples

How to write a new style

See doc/Section modify.html for overview and key methods

Find an existing style that does something similar
ask on mail list or send developers an email
especially important if you want to do something complex

does functionality you want already exist?
is it a good idea to do this in LAMMPS?
will it be parallel?
can advise you as to possible gotchas

Decide which style is most appropriate
computes calculate at one timestep
fixes can alter something during timestep
fixes can maintain info from timestep to timestep

Understand how that style works and is structured
examine parent class header file (e.g. pair.h)
learn what methods it supports (doc/Section modify.html)
look at other *.cpp and *.h files of that style
if you get stuck, post to mail list

How to write a new style

See doc/Section modify.html for overview and key methods

Find an existing style that does something similar
ask on mail list or send developers an email
especially important if you want to do something complex

does functionality you want already exist?
is it a good idea to do this in LAMMPS?
will it be parallel?
can advise you as to possible gotchas

Decide which style is most appropriate
computes calculate at one timestep
fixes can alter something during timestep
fixes can maintain info from timestep to timestep

Understand how that style works and is structured
examine parent class header file (e.g. pair.h)
learn what methods it supports (doc/Section modify.html)
look at other *.cpp and *.h files of that style
if you get stuck, post to mail list

How to write a new style

See doc/Section modify.html for overview and key methods

Find an existing style that does something similar
ask on mail list or send developers an email
especially important if you want to do something complex

does functionality you want already exist?
is it a good idea to do this in LAMMPS?
will it be parallel?
can advise you as to possible gotchas

Decide which style is most appropriate
computes calculate at one timestep
fixes can alter something during timestep
fixes can maintain info from timestep to timestep

Understand how that style works and is structured
examine parent class header file (e.g. pair.h)
learn what methods it supports (doc/Section modify.html)
look at other *.cpp and *.h files of that style
if you get stuck, post to mail list

How to write a new style

See doc/Section modify.html for overview and key methods

Find an existing style that does something similar
ask on mail list or send developers an email
especially important if you want to do something complex

does functionality you want already exist?
is it a good idea to do this in LAMMPS?
will it be parallel?
can advise you as to possible gotchas

Decide which style is most appropriate
computes calculate at one timestep
fixes can alter something during timestep
fixes can maintain info from timestep to timestep

Understand how that style works and is structured
examine parent class header file (e.g. pair.h)
learn what methods it supports (doc/Section modify.html)
look at other *.cpp and *.h files of that style
if you get stuck, post to mail list

How to write a new pair style

Find a similar pair style ...

Flags in constructor: see pair.h
manybody flag, single enable, respa enable, comm forward, etc

compute() method
loop over atoms and neighbors
calculate energy and forces

settings() method
pair style lj/cut cutoff

coeff() method
pair coeff I J epsilon sigma

init one() method
pre-compute all needed factors, symmetrize I,J = J,I

write restart() and read restart() methods

single() method
energy/force for one I,J pair of particles

How to write a new pair style

Find a similar pair style ...

Flags in constructor: see pair.h
manybody flag, single enable, respa enable, comm forward, etc

compute() method
loop over atoms and neighbors
calculate energy and forces

settings() method
pair style lj/cut cutoff

coeff() method
pair coeff I J epsilon sigma

init one() method
pre-compute all needed factors, symmetrize I,J = J,I

write restart() and read restart() methods

single() method
energy/force for one I,J pair of particles

How to write a new pair style

Find a similar pair style ...

Flags in constructor: see pair.h
manybody flag, single enable, respa enable, comm forward, etc

compute() method
loop over atoms and neighbors
calculate energy and forces

settings() method
pair style lj/cut cutoff

coeff() method
pair coeff I J epsilon sigma

init one() method
pre-compute all needed factors, symmetrize I,J = J,I

write restart() and read restart() methods

single() method
energy/force for one I,J pair of particles

How to write a new compute style

Find a similar compute ...

What will the compute produce?
global or per-atom or local values
scalar or vector or array
see doc/Section howto 6.15
see compute.h for what flags to set

Corresponding methods to implement:
compute scalar() = single global value

compute temp

compute vector() = few values
compute group/group for force components

compute array() = array of few values like
compute rdf

compute peratom() = one or more values per atom
compute coord/atom, compute displace/atom

compute local() = one or more values per pair, bond, etc
compute pair/local, compute bond/local

How to write a new compute style

Find a similar compute ...

What will the compute produce?
global or per-atom or local values
scalar or vector or array
see doc/Section howto 6.15
see compute.h for what flags to set

Corresponding methods to implement:
compute scalar() = single global value

compute temp

compute vector() = few values
compute group/group for force components

compute array() = array of few values like
compute rdf

compute peratom() = one or more values per atom
compute coord/atom, compute displace/atom

compute local() = one or more values per pair, bond, etc
compute pair/local, compute bond/local

Fixes allow tailoring of timestep

In hindsight, best feature of LAMMPS for flexibility
Allows control of what happens when within each timestep

Loop over timesteps:

fix initial NVE, NVT, NPT, rigid-body integration

communicate ghost atoms

fix neighbor insert particles

build neighbor list (once in a while)
compute forces
communicate ghost forces

fix force SHAKE, langevin drag, wall, spring, gravity
fix final NVE, NVT, NPT, rigid-body integration
fix end volume & T rescaling, diagnostics

output to screen and files

Fixes allow tailoring of timestep

In hindsight, best feature of LAMMPS for flexibility
Allows control of what happens when within each timestep

Loop over timesteps:
fix initial NVE, NVT, NPT, rigid-body integration
communicate ghost atoms
fix neighbor insert particles
build neighbor list (once in a while)
compute forces
communicate ghost forces
fix force SHAKE, langevin drag, wall, spring, gravity
fix final NVE, NVT, NPT, rigid-body integration
fix end volume & T rescaling, diagnostics
output to screen and files

How to write a new fix style

Find a similar fix ...

setmask() method, e.g. for fix nve:
int mask = 0;
mask |= INITIAL INTEGRATE;
mask |= FINAL INTEGRATE;
return mask;

Corresponding methods to implement:
initial integrate()

fix nvt, nvt, npt, rigid = first half of Verlet update

pre exchange()
fix deposit, evaporate = insert, remove particles

post force()
fix addforce, shake, fix wall = adjust or constrain forces

final integrate()
second half of Verlet update

end of step()
fix deform, fix ave/time = change system, diagnostics

How to write a new fix style

Find a similar fix ...

setmask() method, e.g. for fix nve:
int mask = 0;
mask |= INITIAL INTEGRATE;
mask |= FINAL INTEGRATE;
return mask;

Corresponding methods to implement:
initial integrate()

fix nvt, nvt, npt, rigid = first half of Verlet update

pre exchange()
fix deposit, evaporate = insert, remove particles

post force()
fix addforce, shake, fix wall = adjust or constrain forces

final integrate()
second half of Verlet update

end of step()
fix deform, fix ave/time = change system, diagnostics

How to write a new fix style (continued)

Fixes can ...

request a neighbor list (so can compute)
perform ghost-atom communication (so can compute)
store values that migrate with atoms

grow arrays(), copy arrays(), pack exchange(),
unpack exchange()

write/read info to/from restart file

fix nvt (global), fix store/state (per-atom)

Will the fix produce any output?
global or per-atom or local values

fix nvt stores thermostat energy contribution

scalar or vector or array
see doc/Section howto 6.15
same flags to set in fix.h

How to write a new fix style (continued)

Fixes can ...

request a neighbor list (so can compute)
perform ghost-atom communication (so can compute)
store values that migrate with atoms

grow arrays(), copy arrays(), pack exchange(),
unpack exchange()

write/read info to/from restart file

fix nvt (global), fix store/state (per-atom)

Will the fix produce any output?
global or per-atom or local values

fix nvt stores thermostat energy contribution

scalar or vector or array
see doc/Section howto 6.15
same flags to set in fix.h

How to write a new atom style

Don’t do it, if can avoid it ...

See new fix property/atom command
add a molecule ID to style without one

example: treat granular clusters as rigid bodies
instead of atom style hybrid sphere bond

add arbitrary i myflag, d sx d sy d sz
access the per-atom values in other classes

See new atom style body command

useful for “particles” with internal state
example: aspherical particle with sub-particles
example: aspherical particle with surface grid
end up writing a small body style, not a large atom style
see doc/body.html for details

How to write a new atom style

Don’t do it, if can avoid it ...

See new fix property/atom command
add a molecule ID to style without one

example: treat granular clusters as rigid bodies
instead of atom style hybrid sphere bond

add arbitrary i myflag, d sx d sy d sz
access the per-atom values in other classes

See new atom style body command

useful for “particles” with internal state
example: aspherical particle with sub-particles
example: aspherical particle with surface grid
end up writing a small body style, not a large atom style
see doc/body.html for details

If you really need to write a new atom style (advanced)

Study an existing atom style ...

Flags in constructor: see atom vec.h

molecular, mass type, size forward, size data atom, etc

grow() method - allocates all per-atom arrays

(un)pack comm() method - communicate every step

(un)pack border() method - communicate every re-neighbor

(un)pack exchange() method - migrate info with atom

create atom() method - create one atom

data atom() method - read atom from data file

And a dozen others ...

variants to work in atom style hybrid mode

If you really need to write a new atom style (advanced)

Study an existing atom style ...

Flags in constructor: see atom vec.h

molecular, mass type, size forward, size data atom, etc

grow() method - allocates all per-atom arrays

(un)pack comm() method - communicate every step

(un)pack border() method - communicate every re-neighbor

(un)pack exchange() method - migrate info with atom

create atom() method - create one atom

data atom() method - read atom from data file

And a dozen others ...

variants to work in atom style hybrid mode

If you really need to write a new atom style (advanced)

Study an existing atom style ...

Flags in constructor: see atom vec.h

molecular, mass type, size forward, size data atom, etc

grow() method - allocates all per-atom arrays

(un)pack comm() method - communicate every step

(un)pack border() method - communicate every re-neighbor

(un)pack exchange() method - migrate info with atom

create atom() method - create one atom

data atom() method - read atom from data file

And a dozen others ...

variants to work in atom style hybrid mode

Questions?

Take a break and stretch ...

Five examples of LAMMPS style extensions

Triangular regions: region tri

Molecule size/shape: compute rg/molecule

Solvent evaporation: fix evaporate

Grain boundary migration: fix orient/fcc

Shock-induced explosive detonation: fix wall/reflect

#1 - Triangular regions

Derived class: RegionTri in region tri.cpp/h

Header file:
#ifdef REGION CLASS
RegionStyle(tri,RegTri)
#else

Input script syntax: (just for 2d problems)

region bump tri x1 y1 x2 y2 x3 y3

RegionTri(int narg, char **arg)

reads arguments: x1 y1 x2 y2 x3 y3
determines bounding box

inside(double x, double y, double z) method

determine if (x,y) is inside triangle
3 positive cross products ⇒ inside

∼35 lines of code

Friction example

Substitute (twice):
region lo-asperity sphere 32 7 0 8
region lo-asperity tri 26 7 32 14 38 7

#2 - Molecule size/shape

Stick-slip flow on corrugated surfaces

Nikolai Priezjev group at Michigan State U

Niavarani and Priezjev, J Chem Phys, 129, 144902 (2008)

Flow is function of corrugation wavelength and chain length

Monitor shape and motion of chains

Compute gyration/molecule for Rg of each polymer chain

Input script:
compute id all gyration/molecule {tensor}
compute vector() method (40 lines, one value/molecule):

for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {

imol = molecule[i];
domain->unmap(x[i],image[i],unwrap);
dx = unwrap[0] - comall[imol][0];
dy = unwrap[1] - comall[imol][1];
dz = unwrap[2] - comall[imol][2];
massone = mass[type[i]];
rg[imol] += (dx*dx + dy*dy + dz*dz) * massone;

}
MPI Allreduce(rg,vector,nmolecules,...);

For shape, compute inertia/molecule is similar logic

Compute gyration/molecule for Rg of each polymer chain

Input script:
compute id all gyration/molecule {tensor}
compute vector() method (40 lines, one value/molecule):

for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {

imol = molecule[i];
domain->unmap(x[i],image[i],unwrap);
dx = unwrap[0] - comall[imol][0];
dy = unwrap[1] - comall[imol][1];
dz = unwrap[2] - comall[imol][2];
massone = mass[type[i]];
rg[imol] += (dx*dx + dy*dy + dz*dz) * massone;

}
MPI Allreduce(rg,vector,nmolecules,...);

For shape, compute inertia/molecule is similar logic

#3 - Solvent evaporation

Nanoparticle ordering in polymers w/ solvent evaporation

S Cheng & G Grest, J Chem Phys, 138, 064701 (2013)

Spring MRS meeting, 2013

Evaporate solvent at controlled rate above L/V interface

Ordering is function of NP/polymer interaction strength

Fix evaporate removes solvent at specified rate

Input script:
fix id solvent evaporate

N M topbox 38277 {molecule yes}
pre exchange() method

identify atoms in region volume
pick random subset (consistent across procs)
delete from system
also remove molecules the deleted particles are in

∼200 lines of code (molecules add some complexity)

#4 - Grain boundary migration

K Janssens, et al, Nature Materials, 5, 124 (2006)

Add synthetic energy/force as function of mis-orientation
Drives atoms near boundary from orientation I to J

Mobility ∝ migration velocity / driving force
Extract accurate mobility from short simulation

#4 - Grain boundary migration

K Janssens, et al, Nature Materials, 5, 124 (2006)

Add synthetic energy/force as function of mis-orientation
Drives atoms near boundary from orientation I to J
Mobility ∝ migration velocity / driving force
Extract accurate mobility from short simulation

Build a bi-crystal

Input script commands:

region lower box EDGE EDGE EDGE EDGE EDGE 20.0
region upper box EDGE EDGE EDGE EDGE 20.0 EDGE

lattice fcc 4.04 origin 0 20 0 orient x -3 1 0 ...
create atoms 1 region lower

lattice fcc 4.04 origin 0 20 0 orient x 3 1 0 ...
create atoms 1 region upper

delete atoms overlap 0.5 all all

Fix orient/fcc to impose driving force

2 files: src/fix orient fcc.cpp and fix orient fcc.h

Request full neighbor list, every timestep:

int irequest = neighbor->request((void *) this);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->fix = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;

Post force() method for fix orient/fcc

double loop over atoms and neighbors:
compute Rij and add to list
sort list to find 12 nearest neighbors (fcc)

loop over atoms:
compute contributions from 12 neighbors
derivative of energy → forces on I and J atoms

communicate partial forces induced on ghost atoms

double loop over atoms and neighbors:
compute full orientation force on each I atom

LAMMPS provides method to perform communication

∼250 lines of code

Post force() method for fix orient/fcc

double loop over atoms and neighbors:
compute Rij and add to list
sort list to find 12 nearest neighbors (fcc)

loop over atoms:
compute contributions from 12 neighbors
derivative of energy → forces on I and J atoms

communicate partial forces induced on ghost atoms

double loop over atoms and neighbors:
compute full orientation force on each I atom

LAMMPS provides method to perform communication

∼250 lines of code

#5 - Shock-induced detonation of explosives

R Shan & A Thompson, March APS meeting (2013)

PETN is a powerful high explosive

Simulate “slow” shock wave passing thru PETN crystal

Use a reactive force field (ReaxFF)
detonation is triggered by onset of exothermic reactions

Quantify detonation sensitivity to
orientation, defects, impurities ... a safety issue

#5 - Shock-induced detonation of explosives

R Shan & A Thompson, March APS meeting (2013)

PETN is a powerful high explosive

Simulate “slow” shock wave passing thru PETN crystal

Use a reactive force field (ReaxFF)
detonation is triggered by onset of exothermic reactions

Quantify detonation sensitivity to
orientation, defects, impurities ... a safety issue

Create a void in PETN crystal

Input script commands:

read data data.petn.molecule
replicate 100 50 50

region void sphere 20.0 30.0 30.0 5.0
delete atoms all region void

Largest void size = 20 nm

8.9M atoms (60x40x40 nm)
10 psec (20K steps, 100 hours on 4096 cores)

Post integrate() method for fix wall/reflect command

for (int m = 0; m < nwall; m++)
coord = current wall position (fixed or variable)
dim = wallwhich[m] / 2; side = wallwhich[m] % 2;

for (i = 0; i < nlocal; i++)
if (side == 0)

if (x[i][dim] < coord)
x[i][dim] = coord + (coord - x[i][dim]);
v[i][dim] = -v[i][dim];

else
if (x[i][dim] > coord)
x[i][dim] = coord - (x[i][dim] - coord);
v[i][dim] = -v[i][dim];

Entire fix = ∼200 lines of code

Post integrate() method for fix wall/reflect command

for (int m = 0; m < nwall; m++)
coord = current wall position (fixed or variable)
dim = wallwhich[m] / 2; side = wallwhich[m] % 2;

for (i = 0; i < nlocal; i++)
if (side == 0)

if (x[i][dim] < coord)
x[i][dim] = coord + (coord - x[i][dim]);
v[i][dim] = -v[i][dim];

else
if (x[i][dim] > coord)
x[i][dim] = coord - (x[i][dim] - coord);
v[i][dim] = -v[i][dim];

Entire fix = ∼200 lines of code

Fix reaxc/species command for molecule statistics

Written by Ray Shan (Sandia)

Molecules in ReaxFF and a shock explosion are dynamic

not defined by permanent bonds, angles, etc
defined by instantaneous bond-order parameters

Useful to know numbers/locations/atoms of molecules
at any timestep, on-the-fly

Compute cluster/atom flags clusters based on cutoff

each atom starts as own cluster
walk outward, merging clusters with lower atom ID
parallel communication when clusters overlap proc domains

Use same logic to merge based on bond-order criterion

Compile molecule stats and write details to file

Entire fix = ∼1000 lines of code

Fix reaxc/species command for molecule statistics

Written by Ray Shan (Sandia)

Molecules in ReaxFF and a shock explosion are dynamic

not defined by permanent bonds, angles, etc
defined by instantaneous bond-order parameters

Useful to know numbers/locations/atoms of molecules
at any timestep, on-the-fly

Compute cluster/atom flags clusters based on cutoff

each atom starts as own cluster
walk outward, merging clusters with lower atom ID
parallel communication when clusters overlap proc domains

Use same logic to merge based on bond-order criterion

Compile molecule stats and write details to file

Entire fix = ∼1000 lines of code

Fix reaxc/species command for molecule statistics

Written by Ray Shan (Sandia)

Molecules in ReaxFF and a shock explosion are dynamic

not defined by permanent bonds, angles, etc
defined by instantaneous bond-order parameters

Useful to know numbers/locations/atoms of molecules
at any timestep, on-the-fly

Compute cluster/atom flags clusters based on cutoff

each atom starts as own cluster
walk outward, merging clusters with lower atom ID
parallel communication when clusters overlap proc domains

Use same logic to merge based on bond-order criterion

Compile molecule stats and write details to file

Entire fix = ∼1000 lines of code

Extending LAMMPS by adding to existing files

3 cases where this is straight-forward:

1 Adding keywords to thermo style output

see thermo.cpp
complicated calculation better done as new Compute

2 Adding new functions to equal-style and atom-style variables

see variable.cpp
math functions, special functions, math operators, etc
make sure you follow syntax rules for args of similar functions

3 Adding keywords for per-atom fields

only needed if write new atom style
see compute property atom.cpp
allows use of field in all other commands

dump, fix ave/spatial, atom-style variables, etc

In each case, look for customize comments in appropriate src file

Extending LAMMPS by adding to existing files

3 cases where this is straight-forward:

1 Adding keywords to thermo style output

see thermo.cpp
complicated calculation better done as new Compute

2 Adding new functions to equal-style and atom-style variables

see variable.cpp
math functions, special functions, math operators, etc
make sure you follow syntax rules for args of similar functions

3 Adding keywords for per-atom fields

only needed if write new atom style
see compute property atom.cpp
allows use of field in all other commands

dump, fix ave/spatial, atom-style variables, etc

In each case, look for customize comments in appropriate src file

Extending LAMMPS by adding to existing files

3 cases where this is straight-forward:

1 Adding keywords to thermo style output

see thermo.cpp
complicated calculation better done as new Compute

2 Adding new functions to equal-style and atom-style variables

see variable.cpp
math functions, special functions, math operators, etc
make sure you follow syntax rules for args of similar functions

3 Adding keywords for per-atom fields

only needed if write new atom style
see compute property atom.cpp
allows use of field in all other commands

dump, fix ave/spatial, atom-style variables, etc

In each case, look for customize comments in appropriate src file

Extending LAMMPS by adding to existing files

3 cases where this is straight-forward:

1 Adding keywords to thermo style output

see thermo.cpp
complicated calculation better done as new Compute

2 Adding new functions to equal-style and atom-style variables

see variable.cpp
math functions, special functions, math operators, etc
make sure you follow syntax rules for args of similar functions

3 Adding keywords for per-atom fields

only needed if write new atom style
see compute property atom.cpp
allows use of field in all other commands

dump, fix ave/spatial, atom-style variables, etc

In each case, look for customize comments in appropriate src file

Extending LAMMPS by adding to existing files

3 cases where this is straight-forward:

1 Adding keywords to thermo style output

see thermo.cpp
complicated calculation better done as new Compute

2 Adding new functions to equal-style and atom-style variables

see variable.cpp
math functions, special functions, math operators, etc
make sure you follow syntax rules for args of similar functions

3 Adding keywords for per-atom fields

only needed if write new atom style
see compute property atom.cpp
allows use of field in all other commands

dump, fix ave/spatial, atom-style variables, etc

In each case, look for customize comments in appropriate src file

Adding new fields to data file (advanced)

New header lines and/or new sections

1500 multistates
Multistates

1 27 ...
...
1500 13 ...

Previously required extensions to read data.cpp

Can now be done in a fix

read data data.poly fix ID multistates Multistates ...
can read from data file and store per-atom info
virtual void read data header(char *);
virtual void read data section(char *, int, char *);
virtual bigint read data skip lines(char *);

See fix property/atom for a working example

CMAP 5-body interactions are being implemented this way

Adding new fields to data file (advanced)

New header lines and/or new sections

1500 multistates
Multistates

1 27 ...
...
1500 13 ...

Previously required extensions to read data.cpp

Can now be done in a fix

read data data.poly fix ID multistates Multistates ...
can read from data file and store per-atom info
virtual void read data header(char *);
virtual void read data section(char *, int, char *);
virtual bigint read data skip lines(char *);

See fix property/atom for a working example

CMAP 5-body interactions are being implemented this way

Adding new fields to data file (advanced)

New header lines and/or new sections

1500 multistates
Multistates

1 27 ...
...
1500 13 ...

Previously required extensions to read data.cpp

Can now be done in a fix

read data data.poly fix ID multistates Multistates ...
can read from data file and store per-atom info
virtual void read data header(char *);
virtual void read data section(char *, int, char *);
virtual bigint read data skip lines(char *);

See fix property/atom for a working example

CMAP 5-body interactions are being implemented this way

Using LAMMPS thru its library interface

See Section howto.html 6.19 and Section python.html in manual
See src/library.cpp and src/library.h

void lammps open(int, char **, MPI Comm, void **)
void lammps close(void *)
void lammps file(void *, char *)
char *lammps command(void *, char *)

void *lammps extract global(void *, char *)
void *lammps extract atom(void *, char *)
void *lammps extract compute(void *, char *, int, int)
void *lammps extract fix(void *, char *,int,int,int,int)
void *lammps extract variable(void *, char *, char *)
int lammps get natoms(void *)
void lammps get coords(void *, double *)
void lammps put coords(void *, double *)

Example with GnuPlot

See examples/COUPLE/simple for C, C++, Fortran
See python/examples for Python, Pizza.py for GnuPlot wrapper

% python plot.py in.lammps Nfreq Nsteps compute-ID

from gnu import gnu
from lammps import lammps
lmp = lammps()
lmp.file(infile)
lmp.command("thermo %d" % Nfreq)

lmp.command("run 0 pre yes post no")
value = lmp.extract compute(computeID,0,0)
ntimestep = 0
xaxis = [ntimestep]
yaxis = [value]

Example with GnuPlot (continued)

if me == 0:
gn = gnu()
gn.plot(xaxis,yaxis)
gn.xrange(0,nsteps)
gn.title(computeID,"Timestep","Temperature")

while ntimestep < Nsteps:
lmp.command("run %d pre no post no" % Nfreq)
ntimestep += nfreq
value = lmp.extract compute(computeID,0,0)
xaxis.append(ntimestep)
yaxis.append(value)
if me == 0: gn.plot(xaxis,yaxis)

lmp.command("run 0 pre no post yes")

What it produces, in real time

This includes GUI slider & dump output to Pizza.py GL tool
(or AtomEye or Pymol or VMD) - see python/examples scripts

Extending the LAMMPS library interface

Again, see library.cpp and library.h

Accessor functions already exist for ...

system variables (box, timestep, etc)
per-atom pointers (x, v, etc)
compute and fix output
variable evaluation

Accessor functions in library.cpp or atom.h can be augmented

one-line addition
access a new system variable
access a new per-atom property

New functions in library.cpp can ...

access any public data within LAMMPS
invoke any public methods of any classes

New functions are limited only by your imagination!

Extending the LAMMPS library interface

Again, see library.cpp and library.h

Accessor functions already exist for ...

system variables (box, timestep, etc)
per-atom pointers (x, v, etc)
compute and fix output
variable evaluation

Accessor functions in library.cpp or atom.h can be augmented

one-line addition
access a new system variable
access a new per-atom property

New functions in library.cpp can ...

access any public data within LAMMPS
invoke any public methods of any classes

New functions are limited only by your imagination!

Extending the LAMMPS library interface

Again, see library.cpp and library.h

Accessor functions already exist for ...

system variables (box, timestep, etc)
per-atom pointers (x, v, etc)
compute and fix output
variable evaluation

Accessor functions in library.cpp or atom.h can be augmented

one-line addition
access a new system variable
access a new per-atom property

New functions in library.cpp can ...

access any public data within LAMMPS
invoke any public methods of any classes

New functions are limited only by your imagination!

How a timestep works - part 1

Most important class to understand: Verlet ⇒ src/verlet.cpp

Look at the run() method (in 3 parts)
See doc/Developer.pdf for more details

loop over N timesteps:
ev set()
fix->initial integrate()
fix->post integrate()
...

How a timestep works - part 1

Most important class to understand: Verlet ⇒ src/verlet.cpp

Look at the run() method (in 3 parts)
See doc/Developer.pdf for more details

loop over N timesteps:
ev set()
fix->initial integrate()
fix->post integrate()
...

How a timestep works - part 2

loop over N timesteps:
...
nflag = neighbor->decide()
if nflag:

fix->pre exchange()
domain->pbc()
domain->reset box()
comm->setup()
neighbor->setup bins()
comm->exchange()
comm->borders()
fix->pre neighbor()
neighbor->build()

else
comm->forward comm()

...

How a timestep works - part 3

loop over N timesteps:
...
force clear()
fix->pre force()
pair->compute()
bond->compute()
angle->compute()
dihedral->compute()
improper->compute()
kspace->compute()
comm->reverse comm()

fix->post force()
fix->final integrate()
fix->end of step()

if any output on this step: output->write()

How to get your code added to the LAMMPS distro

Mail it to us, but first ...

see doc/Section modify.html
sub-section: Submitting new features for inclusion in LAMMPS

Why release it as part of main LAMMPS?

open source philosophy
fame and fortune, name on author page and in source code
acquire users of your feature

find and fix bugs
extend its functionality
become collaborators

Must provide a doc page as a *.txt file

one for every command that appears in input script
see similar doc/*.txt file as starting point
if needed, equations for doc/Eqs as LaTeX files
we auto-convert to HTML (and JPG if needed)

How to get your code added to the LAMMPS distro

Mail it to us, but first ...

see doc/Section modify.html
sub-section: Submitting new features for inclusion in LAMMPS

Why release it as part of main LAMMPS?

open source philosophy
fame and fortune, name on author page and in source code
acquire users of your feature

find and fix bugs
extend its functionality
become collaborators

Must provide a doc page as a *.txt file

one for every command that appears in input script
see similar doc/*.txt file as starting point
if needed, equations for doc/Eqs as LaTeX files
we auto-convert to HTML (and JPG if needed)

How to get your code added to the LAMMPS distro

Mail it to us, but first ...

see doc/Section modify.html
sub-section: Submitting new features for inclusion in LAMMPS

Why release it as part of main LAMMPS?

open source philosophy
fame and fortune, name on author page and in source code
acquire users of your feature

find and fix bugs
extend its functionality
become collaborators

Must provide a doc page as a *.txt file

one for every command that appears in input script
see similar doc/*.txt file as starting point
if needed, equations for doc/Eqs as LaTeX files
we auto-convert to HTML (and JPG if needed)

How to get your code added (continued)

Rule: don’t make changes in core of LAMMPS
1 if you think you need to, talk to developers
2 the more I need to think, the longer it will take to release

Suggestion: write your code in the LAMMPS format
1 easier for everyone to read, maintain
2 required if you want it in src dir or standard packages

USER-MISC package
1 if it compiles, we’ll add it (within limits)
2 don’t really care if written in LAMMPS format
3 you own it, answer Qs, and update it
4 set of related commands can be an entire USER package

Commands that link to an external library
1 must become a package (standard or user)
2 type “make package” for list

How to get your code added (continued)

Rule: don’t make changes in core of LAMMPS
1 if you think you need to, talk to developers
2 the more I need to think, the longer it will take to release

Suggestion: write your code in the LAMMPS format
1 easier for everyone to read, maintain
2 required if you want it in src dir or standard packages

USER-MISC package
1 if it compiles, we’ll add it (within limits)
2 don’t really care if written in LAMMPS format
3 you own it, answer Qs, and update it
4 set of related commands can be an entire USER package

Commands that link to an external library
1 must become a package (standard or user)
2 type “make package” for list

What features do you need for your models?

Happy to brainstorm & discuss this week

