
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

or

What to do if there is no bigger hammer?

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

Hardware Specific Optimizations

http://sites.google.com/site/akohlmey/


2
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

A Bit of History or:
How Did We Get Where We Are Now?
● The need for doing (numerical) calculations 

faster is as old as the underlying math
● There are multiple approaches to address this:

● Use approximations, when possible
● Develop more efficient algorithms
● Get faster hardware
● Use/write optimized software for your hardware
● Parallelize

● The focus on each of these changes over time



3
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Improving Hardware Performance

Optimizations:

● Type faster, 
read faster
(Faster I/O)

● Turn handle 
faster, use 
faster motor
(Higher Clock)

● Build better 
mechanics, 
use better 
technology
(Better CPU)

Register 2

Register 1

Register 3

Controls

Arithmetic Unit



4
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

A Bit of History or:
How Did We Get Where We Are Now?
● The need for doing (numerical) calculations 

faster is as old as the underlying math
● There are multiple approaches to address this:

● Use approximations, when possible
● Develop more efficient algorithms
● Get faster hardware
● Use/write optimized software for your hardware
● Parallelize

● The focus on each of these changes over time



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Where Are The Problems?

● Increasing clock rates is technologically difficult
=> multi-core architectures => parallelization

● Compilers can optimize for vector units and 
superscalar, pipelined CPUs, but only if the 
original code (and its language) allows it
=> many codes underutilize current CPUs

● With multi-core and non-uniform memory 
access, performance is often limited by I/O
=> data structures and access patterns matter

● We are not used to “think like a CPU”



6
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

A Simple CPU

● The basic CPU design is not much different 
from the mechanical calculator.

● Data still needs to be fetched into registers 
for the CPU to be able to operate on it.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…



7
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

CPU Pipeline
● One CPU “operation” has multiple steps/stages:

fetch instr, decode instr, execute instr, memory 
lookup, write back => multiple functional units

● Using a pipeline allows for a faster CPU clock
=> like assembly line

● Dependencies and
branches may force
CPU to stall pipeline 

● Complex operations
usually not pipelined



8
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

How Would This Statement Be Executed?

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

Data load can start
while multiplying 

Start data load for
next command

Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Pipeline savings:
1 step out of 8, plus 3 more if next operation independent



9
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Superscalar CPU design
● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU core

=> multiple instructions executed at same time
=> typically combined with pipelined CPU design

● This is not SIMD!
● How to program for this:

- write simple code
- no data dependencies
- avoid branches
- compiler optimization



10
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Superscalar & Pipelined CPU Execution

1. Load a into register R0
and load b into R1

2. Multiply R2 = R0 * R1
and load c into R3
and load d into R4

3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;
Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Superscalar pipeline savings:
3 out of 8 steps, plus 3 if next operation independent

Start data load for
next command



11
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Superscalar & Pipelined Loop

for (i = 0; i < length; i++) {
  z[i] = a[i] * b[i] + c[i] * d[i];
}

Repeat steps 4. and 5. with increasing index until done

1. Load a[0] into R0
and load b[0] into R1

2. Multiply R2 = R0 * R1
and load c[0] into R3
and load d[0] into R4

3. Multiply R5 = R3 * R4
and load a[1] into R0
and load b[1] into R1

4. Add R6 = R2 + R5
and load c[1] into R3 and  
load d[1] into R4

5. Store R6 into z[0]
and multiply R2 = R0 * R1 
and multiply R5 = R3 * R4
and load a[2] into R0
and load b[2] into R1



12
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Vectorized Loop

for (i = 0; i < length; i++) {
  z[i] = a[i] * b[i] + c[i] * d[i];
}
Vector registers on a CPU can hold multiple numbers 
and load, store or process them in parallel (SIMD):
for (i = 0; i < length; i +=2) {
 z[i] = a[i]  *b[i]   + c[i]  *d[i];
 z[i+1]=a[i+1]*b[i+1] + c[i+1]*d[i+1];
}
This is in addition to superscalar pipelining and
with using special vector instructions (SSE,AVX,etc.)

E
xe

cu
te

d
 t

o
g
e
th

e
r



13
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Fast and Slow Operations

● Fast (0.5x-1x): add, subtract, multiply
● Medium (5-10x): divide, modulus, sqrt()
● Slow (20-50x): most transcendental functions
● Very slow (>100x): power (xy for real x and y)

Often only the fastest operations are pipelined, 
so code will be the fastest when using only add 
and multiply => linear algebra 
=> BLAS (= Basic Linear Algebra Subroutines)
     plus LAPACK (Linear Algebra Package)



14
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Simple Optimization Techniques
(so simple a cavemen compiler could do it)

● Scalar optimizations, for example
● Copy propagation
● Constant folding, 'dead code' removal
● Strength reduction
● Common subexpression elimination
● Variable renaming

● Loop Optimizations: loop unrolling, vectorization
● Inlining, Replacing code with a faster equivalent

=> prefer readability, let the compiler do it



15
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Copy Propagation

x = y
z = 1 + x

x = y
z = 1 + y

Has data dependency

No data dependency

Compile

Before

After



16
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Constant Folding

add = 100;
aug = 200;
sum = add + aug;

sum = 300;

Before After

sum is the sum of two constants. The compiler can precalculate
the result (once) at compile time and eliminate code that would
otherwise need to be executed at (every) run time. 



17
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Strength Reduction

x = pow(y, 2.0);
a = c / 2.0;

x = y * y;
a = c * 0.5;

Before After

Raising one value to the power of another, or 
dividing, is more expensive than multiplying.

 If the compiler can tell that the power is a small 
integer, or that the denominator is a constant,
it will use multiplication instead.

Easier to do with intrinsic functions (cf. Fortran).



18
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Common Subexpression Elimination

d = c * (a / b);
e = (a / b) * 2.0;

adivb = a / b;
d = c * adivb;
e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both 
assignment statements, so there’s no point in 
calculating it twice.

This is typically only worth doing if the common 
subexpression is expensive to calculate, or the 
resulting code requires the use of less registers.



19
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Variable Renaming

x = y * z;
q = r + x * 2;
x = a + b;

x0 = y * z;
q = r + x0 * 2;
x = a + b;

Before After

The original code has an output dependency, while 
the new code doesn’t – but the final value of  x  is 
still correct.



20
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Hoisting Loop Invariant Code

DO i = 1, n
  a(i) = b(i) + c * d
  e = g(n)
END DO

Before

temp = c * d
DO i = 1, n
  a(i) = b(i) + temp
END DO
e = g(n)

After

Code that 
doesn’t change 
inside the loop is 
known as      
loop invariant. 
It doesn’t need 
to be calculated 
over and over.



21
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Loop Unrolling

DO i = 1, n
  a(i) = a(i)+b(i)
END DO

DO i = 1, n, 4
  a(i)   = a(i)  +b(i)
  a(i+1) = a(i+1)+b(i+1)
  a(i+2) = a(i+2)+b(i+2)
  a(i+3) = a(i+3)+b(i+3)
END DO

Before

After

You generally shouldn’t unroll by hand.
Compilers are much more reliable.



22
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Loop Interchange

DO i = 1, ni
  DO j = 1, nj
    a(i,j) = b(i,j)
  END DO
END DO

DO j = 1, nj
  DO i = 1, ni
    a(i,j) = b(i,j)
  END DO
END DO

Array elements  a(i,j) and  a(i+1,j) are near 
each other in memory, while a(i,j+1) may be 
far, so it makes sense to make the  i  loop be the 
inner loop. (This is reversed in C, C++)

Before After



23
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Loop Fusion / Fission
DO i = 1, n
  a(i) = b(i) + 1
END DO
DO i = 1, n
  c(i) = a(i) / 2
END DO
DO i = 1, n
  d(i) = 1 / c(i)
END DO

DO i = 1, n
  a(i) = b(i) + 1
  c(i) = a(i) / 2
  d(i) = 1 / c(i)
END DO

Fusion: fewer branches (combine with unrolling).
             fewer total memory references.
Fission: smaller cache footprint

Separate

Together

Fusion

Fission



24
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Inlining

DO i = 1, n
  a(i) = func(i)
END DO
…
REAL FUNCTION func (x)  …
  func = x * 3
END FUNCTION func

DO i = 1, n
  a(i) = i * 3
END DO

Before After

When a function or subroutine is inlined, its contents 
are transferred directly into the calling routine, and 
thus eliminating the overhead of making the call.
=> compilers use an inline library at high optimization
=> math is instrinsic in Fortran => better for compiler



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Post-Install Optimization or: How to Make
an Application Faster without Changing It?

● Importing well known compute kernels from 
libraries is quite common in HPC
Examples: BLAS/LAPACK, FFT(W)

● For BLAS multiple compatible implementations 
exist: MKL, ACML, Goto-BLAS, ATLAS, ESSL

● Usually link time choice; with shared libs 
alternative compilations of same library can be 
provided via $LD_LIBRARY_PATH; few offer a 
“dynamic dispatch”, i.e. a selection between 
alternatives at run time  (e.g. MKL)



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Replacing Math Functions
with LD_PRELOAD



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Can We Do Better?

● x86 FPU internal log() is slower than libm
● The log() in LibM is about 2.5x faster than libm
● Total execution time is reduced by ~30%
● Note: this is very usage and application specific
● Other commonly used “expensive” libm 

functions are exp() and pow() (= log() + exp());
fast pow(x,n) with integer n via multiplication

● exp() version in tested AMD's LibM was broken
=> try to optimize log()/exp() from cephes lib



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

How To Compute log() or exp()?

● Evaluating log(x) or exp(x) according to its 
definitions is too time consuming; floating point 
math requires only approximation of same error

=> Four step process in cephes:

1.Handle special cases, over-/underflow (-> skip it)

2.Perform a “range reduction” (-> use IEEE754 tricks)

3.Approximate log(x)/exp(x) in reduced x interval from 
polynomial or rational function or spline table

4.Combine results of steps 2 & 3

● Optimizer friendly C code with compiler “hints”



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Fast Implementation of exp2()
● Range reduction:

 
● Get 2n from setting IEEE-754 exponent:

zero mantissa bits (=1), exponent is n + 1023
● Approximation:

● Unroll & interleave P
3
(f2) and Q

3
(f2) evaluation

● Store coefficients for P/Q at aligned address 

● exp(x) = exp2(log
2
(e)*x)

x=f +n; n∈ℤ ,−0.5≤f <0.5
2x=2f +n=2f⋅2n

2f
=1.0+(

2 f⋅P3(f
2)

P3( f
2
)+Q3( f

2
)
)



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Fast Implementation of log2(x)
● Range reduction:

 

● Get n from reading IEEE-754 exponent – 1023
set exponent to 1023 (i.e. 0) and read/store f

● Truncate integer representation of f via bitshift to get 
spline table lookup index (12 bits)

● Approximation: evaluate cubic spline for log(f)

● log2(x)= n+log
2
(e)*log(f); log(x)= log(2)*n+log(f)

● Precomputed spline table at aligned address 

x=f⋅2n ; n∈ℤ ,1.0≤f <2.0
log2(x)=log2(f⋅2n

)=log2(f )+ log2(2
n
)=log2(f )+n



31
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Quick 'n' Dirty Optimization or: How Much Can 
You Optimize a Code Over the Weekend?

● Example from the “HPC Helpdesk” @ TempleU
● User requests access to HPC resource 

because his self-written program needs to 
much memory and runs too slow

● Next the users asks for parallel programming 
courses to handle large matrices

● Application is one file with ~1000 lines C code
=> could be perfect showcase for a “minimum 
effort” optimization and parallelization study



32
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Structure of the Application
● Input data: a network, a list of nodes (names) 

and a list of connections between those nodes
(e.g. “friends” in a social network)

● Objective: find a subset where the ratio of 
internal vs. external connections is maximal

1) Clustering: pick a sample of connected nodes 
around a seed, pick the most connected nodes as 
new seed, repeat until converged

2) Pruning: Take connection matrix from 1), remove 
most unfavorable entry, record target function value 
and subset, repeat until empty



33
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Optimization 1: Reduce Memory

● The by far most time consuming step is the 
calculation of a “connection matrix” of the 
selected nodes

● The matrix elements are either 1 if two nodes 
are connected or 0, if not. 

● Storage element was unsigned long int

=> use char instead

=> 4x (32-bit) to 8x (64-bit) memory savings

=> 1.5-2x performance increase



34
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Optimization 2: Compiler

● The reference executable was compiled with 
gcc using default settings, i.e. no optimization

● Using compiler optimizations leads to 
significant performance increase

● Compiler optimization can be improved through 
using const qualifiers in the code wherever 
possible and local code changes 

● Hide complex data types with typedef

=> 2.5 – 3.5x speedup



35
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Optimization 3: Parallelization

● The construction of the connection matrix has 
no data dependencies => multi-threading

● Using OpenMP requires only adding one 
directive and a little bit of code reorganization

● Speedup going from serial to 2 threads: 1.5x
● Speedup levels out at 6-8 threads: 2.5x total

=> very little computation, mostly data access
=> performance limited by memory contention

● Total improvement: 8x-12x with 8 threads



36
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages



37
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Proper Optimization or:
 The Power of the Rewrite

● Quick'n'dirty optimizations of T-CLAP resulted 
in significant improvements in a short time

● More optimization potential with a full rewrite:
● Connection matrix information requires only 1 bit

=> reduce storage need by factor of 8 (vs. char) 
● Network represented by structs and lists of pointers

=> multiple pointers refer to the same data
=> pointers require more storage in 64-bit mode

● Pruning implementation uses memmove() to 
compact matrix rows 
=> performance bottleneck for large data (O(N2))



38
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

The Rewrite
● Rewrite in C++ (more optimization hints than C)
● Use STL container classes
● std::vector<bool> uses single bit per entry
● Single list of structs for all network nodes,

all references via index lists (std::vector<int>)
● Leave data in place during pruning, maintain 

lists of valid rows and columns instead
● Avoid some redundant operations
● Rewrite piece-by-piece to reproduce original



39
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Memory Usage After Rewrite



40
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Performance After Rewrite



41
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

Parallel Performance After Rewrite



42
Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

6) Conclusions
● “The free lunch is over”: CPU speed levels out
● Moore's law continues, but leads to multi-core, 

larger caches and higher integration

=> Performance increase now mostly through 
better algorithms, optimization, vectorization, 
and parallelization

● Bottleneck has transitioned from CPU speed to 
memory access and efficient data structures

● Optimization potential may be found in unusual 
places and small changes can go far



Advanced Techniques for Scientific Programming and 
Management of Open Source Software Packages

or

What to do if there is no bigger hammer?

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

Hardware Specific Optimizations

http://sites.google.com/site/akohlmey/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

