
Floating-Point Math and AccuracyFloating-Point Math and Accuracy

Dr. Axel Kohlmeyer

Senior Scientific Computing Expert
International Centre for Theoretical Physics

Trieste, Italy

Associate Dean for Scientific Computing,
College of Science and Technology

Temple University, Philadelphia, USA

http://sites.google.com/site/akohlmey/

http://sites.google.com/site/akohlmey/

2

Errors in Scientific Computing

● Before computations:
– Modeling: neglecting certain properties
– Empirical data: not every input is known perfectly
– Previous computations: data may be taken from other

(error-prone) numerical methods
– Sloppy programming (e.g. inconsistent conversions)

● During computations:
– Truncation: a numerical method approximates a

continuous solution
– Rounding: computers offer only finite precision in

representing real numbers

3

Example

● Computing the surface of the earth using

● This involves several approximations:
● Modeling: the earth is not exactly a sphere
● Measurement: earth's radius is an empirical number
● Truncation: the value of π is truncated
● Rounding: all numbers used are rounded due to

arithmetic operations in the computer

● Total error is the sum of all errors, but one of
them is often the dominant error

A=4 r2

4

Representing Numbers (1)

● Real numbers have unlimited accuracy
● Yet computers “think” digital, i.e. in integer math

=> only a fixed range of numbers can be
 represented by a fixed number of bits
=> distance between two integers is 1

● We can reduce the distance through fractions
(= fixed point), but that also reduces the range

16-bit 32-bit 64-bit 28-bit / 4-bit 22-bit / 10-bit

Min. -32768 -2147483648 ~ -9.2233 * 10-18 -16777216.0000 -2048.000000

Max. 32767 2147483647 ~ 9.2233 * 10-18 16777215.9375 ~ 2047.999023

Dist. 1 1 1 0.0635 0.0009765625

5

Representing Numbers (2)

● Need a way to represent a wider range of
numbers with a same number of bits

● Need a way to represent numbers with a
reasonable amount of precision (distance)

● Same relative precision often sufficient:

=> Scientific notation:
 +/-(mantissa) * (base) +/-(exponent)

Mantissa -> integer fraction
Base -> 2
Exponent -> a small integer

6

IEEE 754 Floating-point Numbers

● The IEEE 754 standard defines: storage format,
result of operations, special values (infinity,
overflow, invalid number), error handling
=> portability of compute kernels ensured

● Numbers are defined as bit patterns with a sign
bit, an exponential field, and a fraction field

– Single precision:
8-bit exponent
23-bit fraction

– Double precision:
11-bit exponent
52-bit fraction

7

Values of Floating-Point Numbers

● Value: (1 – (mantissa)/(2(fraction bits)) * 2(exponent-bias)

1.0 ≤ (mantissa) < 2.0, (exponent) ≥ 0
● Special case: 0.0 is all bits set to zero

Special case: -0.0 is like 0.0 but sign bit is set
More special cases: Inf, -Inf, NaN, -NaN

● Single precision: ~±1.2*10-38 < x < ~±3.4*1038

actual precision: ~7 decimal digits
● Double precision: ~±2.2*10-308 < x < ~±1.8*10308

actual precision: ~15 decimal digits

8

Density of Floating-point Numbers

● How can we represent so many more numbers
in floating point than in integer? We don't!

● The number of unique bit patterns has to be the
same as with integers of the same bitness

● There are 8,388,607 single precision numbers in
1.0< x <2.0, but only 8191 in 1023.0< x <1024.0

● => absolute precision depends on the magnitude
● => some numbers are not represented exactly

=> approximated using rounding mode (nearest)

9

Math with Floating Point Numbers

Addition:
– Right bitshift mantissa and increment exponent of smaller

number until both exponents are the same
– Add mantissa of both numbers and bitshift until mantissa is

between 1.0 and 2.0 again
– Only if both numbers have the same sign and the same

exponent precision is preserved

Multiplication:
– Add exponents and multiply mantissa of both numbers
– Bitshift mantissa until its value is between 1.0 and 2.0
– No loss of precision; error is larger error of either number

10

Floating-Point Math Pitfalls

● Floating point math is commutative,
but not associative! Example (single precision):
1.0 + (1.5*1038 + (- 1.5*1038)) = 1.0
(1.0 + 1.5*1038) + (- 1.5*1038) = 0.0

● => the result of a summation depends on the
order of how the numbers are summed up

● => results may change significantly, if a compiler
changes the order of operations for optimization

● => prefer adding numbers of same magnitude
=> avoid subtracting very similar numbers

11

How To Reduce Errors

● Use double precision unless you can be sure of
error cancellation or using an imprecise model
=> collides with vectorization and GPU/MIC

● When summing numbers of different magnitude
● Sort first and sum in ascending order
● Sum in blocks (pairs) and then sum the sums
● Use integer fraction, if range and precision allow it

● NOTE: summing numbers in parallel may give
different results depending on parallelization

12

Floating Point Comparison

● Floating-point results are usually inexact
=> comparing for equality is dangerous
Example: don't use a floating point number for
controlling a loop count. Integers are made for it

● It is OK to use exact comparison:
● When results have to be bitwise identical
● To prevent division by zero errors

● => compare against expected absolute error
● => don't expect higher accuracy than possible

13

Floating Point vs. Math Library

● libm is part of standard C, thus it is ubiquitous
● Provides a large variety of mathematical

functions / operations on floating-point numbers
but not many alternatives for x86/x86_64 exist

● Focus is typically put on standard compliance
● The x86 floating point unit contains most of the

functionality internally, but most as firmware;
SSE and AVX do not provide these

● The x86 FPU log() is slower than GNU libm

14

Test Examples (1)

● inverse: computes y=1/x and z=x*y and
checks if the result is exactly 1.0.
Compare compilation using gfortran -O2
and gfortran -O2 -ffast-math

● loop: advance x from 0.0 to 1.0 in increments
of 0.01. Compare looping over integer and real

● epsilon: determine the floating-point precision
through searching for the largest epsilon for
which 1.0 + ε == 1.0. Start with ε = 1.0 and
repeatedly dividing by 2.0

15

Test Examples (2)

● sum_number: compare summing accuracy
depending on ascending or descending order.
Find the smallest N where the sums differ

● paranoia: IEEE-754 compliance test
=> use make to compile with different compiler
flags for optimization and math accuracy

● mathopt: compute windowed average with a
two and three numbers wide window.
=> speed of division by 2 vs division by 3
=> impact of compiler flags vs. code rewrite

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

