

Introduction to OpenCL

Ivan Girotto – igirotto@ictp.it

Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)

OUTLINE

- I little bit of GPU computing
- Introduction to OpenCL
- A practical Example

Parallel Processing on GPUs

CPU

GPU

The GPU Idea

OpenCL

- Open Compute Language
- Open, royalty-free standard for cross-platform,
- For heterogeneous parallel-computing systems
- Cross-platform. Implementations for
 - ATI GPUs
 - NVIDIA GPUs
 - x86 CPUs

Apple

SONY

Over 100 members – any company worldwide is welcome to join

Source from http://www.khronos.org/

The OpenCL Specification

- Platform Model
 - One Processor coordinates the execution (host), one or more processors execute OpenCL code (devices)
- Execution Model
 - Defines how the OpenCL environment is configured (host) and how kernels are executed (devices)
- Memory Model
 - Define an abstraction of the memory model
- Programming Model
 - Defines how the concurrency model is mapped to physical HW

Kernels and the Execution Model

- The unit of concurrent execution is a work-item
- each work-item executes the kernel
- The programmer specifies the number of work-items that should be created as an n-dimensional range
- Work-items are distributed among equally sized workgroups. Work-items within a work-groups have a special relation (shared memory, synchronization)

Host-Device Interaction /1

- In the platform model there is a single host that coordinates execution on one or more devices.
- Platforms can be thought of as vendor-specific implementations of the OpenCL API
- It is also a runtime driver-like

Host-Device Interaction /2

THE OPENCL ENVIRONMENT

The Execution Environment /1

- Context
 - handles the host-device interaction, manages the memory objects on the devices and tracks program and kernels created for each device
- Command Queues
 - Any API that specifies host-device interaction will always begin with clEnqueue, requiring to specify a queue

The Execution Environment /2

- Events
 - Dependences (for asynch execution) & Profiling
- Memory Objects
 - It encapsulates data to be transferred on a device
 - It is valid for a single context
- Barriers (Flush & Finish)

The Execution Environment /3

- Creating an OpenCL Program Object
 - Collection of one or more kernels (dynamic lib like)
 - The program is stored in a C string
 - The source is turned into a program object
 - The program object is completed
- The OpenCL Kernel
 - Extract the kernel from the program, set the parameters, run the kernel
 - The clEnqueueNDRRangeKernel() call is asynchronous and it returns immediately once the kernel is queued

The Memory Model /1

- Global Memory
 - visible to all compute units on the device
 - hosts data transferred from host to device
- Constant Memory
 - read-data only, specifically for simultaneous access
- Local Memory
 - shared within a work group (NVIDIA GPU shared_mem)
- Private Memory
 - individual to work-item (registers)

Memory Model /2

Basic Program structure

- Get platform & devices info
- Create contexts
- Load and compile the program
- Create queue
- Set data on the device
- Load and run kernels
- Store results

Example Overview: Vector Add

- OpenMP:
 - https://computing.llnl.gov/tutorials/openMP/
- OpenCL:
 - http://www.heterogeneouscompute.org/ wordpress/wp-content/uploads/2011/06/ Chapter2.txt

References

- http://www.khronos.org/
- http://www.heterogeneouscompute.org/

