

Agile Software Development

Dr. Manuel Bähr

Software engineering – From academia to industry

Dr. Manuel Bähr

I came the same way

- ► Ph.D. in physics
- Team Leader Technology Development at Blue Yonder

Blue Yonder – forward looking, forward thinking

Started as a spin-off from the University of Karlsruhe, Germany.

Now ab ~60 hay

Founded by Prof. Michael Feindt.

Initially: Prediction of particle properties.

Now about 100 employees of which ~60 have a PhD, mainly from physics.

3 Offices:

Karlsruhe, Hamburg (Germany) London (UK)

What do we need for perfect decisions?

Data Mining and conventional Business Intelligence

Predictive Analytics

Decisions at scale from blue yonder moving billions in value for our clients

Replenishment for a grocery chain (24/7 SaaS operations)

Automation increased from 61% to 95%

Supply chain predictions (24/7 SaaS operations)

> 620,000,000 predictions every day

Dynamic pricing for a major online shop

10% revenue increase after 4 weeks

Customer life cycle management

6% revenue increase within 3 months

What is necessary to be sucessful?

+ Build the right thing

+ Build the thing right

How to build the right thing?

Learn about TPS, Agile Manifesto, Lean Startup, Scrum

taken from http://www.bigvisible.com

Agile Manifesto

We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

- ► Individuals and interactions over processes and tools
- ► Working software over comprehensive documentation
- ► Customer collaboration over contract negotiation
- Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Lean Software Development

Application of the "Toyota Production System" (TPS 1948-1975) to software development. Key principles:

- ► In a process of constant improvement, eliminate
 - Waste (anything that is not adding value to the customer)
 - Variation & overload (workload of employees)
- Respect for people

Ways to eliminate waste

- ► Decide late
 - Requirements change
- Deliver fast
 - Feedback on implementation
- ▶ Build quality in
 - Defects are waste in the first place

Prevent overload and variation

- ► Pull instead of push process
- ► Minimize "work in progress"
- ➤ Never change scope of "work in progress"

Scrum

- Example of an agile software development method that also implements lean principles
- ➤ Based on Takeuchi & Nonaka (1986) "New New product development game". First publication of "Scrum" by Ken Schwaber and Jeff Sutherland in 1995.

Other agile methods include: Kanban, Extreme Programming, Crystal Clear etc.

That's a scrum!

Basic ideas

- Target system has a complexity which makes a detailed planning ineffective or impossible
- ► Foster self-organisation of a development team
- Use time boxed iterations to deliver small fully working increments of the final product

Basic ideas

COPYRIGHT © 2005, MOUNTAIN GOAT SOFTWARE

Scrum Roles

► Team

Turns user stories into shippable pieces of software

▶ Product Owner

Responsible for maximising Return on Investment

► Scrum Master

Supports the team in removing impediments and applying the Scrum methodology

User story

➤ As a <user>, I want <feature>, so that <reason>

- ➤ As an admin, I want to set internal parameters, so that I can adapt the software to our specific hardware setup.
- ➤ As a scientist, I want to do simulations, so that I can publish articles.

Scrum project in a nutshell

- Agree on Goal of the project
- Agree on Definition of Done for user stories (features)
- Collect user stories in a prioritized list (product backlog)
- Team estimates complexity in unit-less quantity (story points)
- ➤ Team selects N top user stories to be done in one Sprint
- > Team deduces tasks for selected stories
- ► Team designs, implements, tests and documents

Scrum project in a nutshell

- Team synchronizes at a daily stand-up meeting (the Scrum) - limited to 15min
- No scope change during sprint time
- Product Owner accepts fully done stories at sprint end
- ► Measure story points per Sprint
- estimated delivery date for a fixed scope can be calculated
- start next iteration, improve process if possible

Benefits

- ► Focus, rhythm, clear goals -> necessary for flow
- ➤ Strong team bonds team commitments, team estimates
- ➤ Clear separation of "What" and "How"
- Focus on customer value
- ► All benefits from lean principles

Extending lean ideas

Lean Startup movement: Reduce failure rate for startups

A startup is a human institution designed to deliver a new product or service under conditions of extreme uncertainty.

- Sole purpose of the startup:
 Learn how to build
 sustainable business
- Your product is your business model

- formulate hypothesis and run experiments
- Learn as fast as possible

How to build the thing right

Learn about TDD, CleanCode, Cl

Our unique selling point

Model Quality

Software Quality

machine learning

reliable and robust

data science

Enterprise Software

better predictions means real money saved

mission critical processes (24/7)

Skill check

Aspects of software engineering

We want to get things done fast

How software engineering can help us ship high quality fast.

What do you spent time on during development?

Planning Thinking Changing Documenting Reading Bugfixing **Testing** Coding Reviewing Discussing Learning

What do you spent time on during development?

Changing **Documenting Planning Thinking** Bugfixing **Testing** Coding Reading Reviewing Discussing Learning

cheap reads cheap writes no defects

Getting fast with

Continous Integration

Continuous Integration / Deployment

- Maintain a single source repository
- Automate building
- Automate running your tests (code coverage!)
- Each commit builds and tests on an integration machine
- Automate deployment, so that everyone can get the latest piece of software

- https://travis-ci.org
- http://jenkins-ci.org

And many more ...

If something hurts – do it more often!

- Verify correct interaction of all affected modules, subsystems ...
- ► Eliminate "It works on my machine"
- Never have the same defect twice
- ➤ Find defects as quickly as possible after introduction into the codebase
- Eliminate manual processes

helps with "no defects"

Getting fast with

Clean Code

Codebases are like databases read/write ratio 10:1

Recommended Reads

Getting started with Clean Code principles

- ► Keep it simple, stupid! (KISS) readability
- ► Avoid (premature) optimization readability
- ▶ Don't repeat yourself (DRY) one place to change
- ➤ Single responsibility principle one reason to change

- References:
 - <u>www.clean-code-developer.de</u> (sadly only in german)
 - www.clean-cpp.org (Clean Software Development with Modern C++)

Function length

6 lines ought to be enough for everybody

If a function does only one thing

Increased re-use

Better readability

Easier naming

Much easier exception safety

Better testability

Less side effects

Getting fast with

Test-Driven Development

Recommended read

TDD as fundamental programming skill

"I taught Bethany, my oldest daughter, Test-Driven Development as her first programming style when she was about age 12. She thinks you can't type in code unless there is a broken test. The rest of us have to muddle through reminding ourselves to write the tests."

> Kent Beck, Test-Driven Development by Example, Addison-Wesley Signature, 2002

Red - Green - Refactor

➤ Test code (TC) drives production code (PC):

Why TDD makes you fast

Reduce time between defect introduction and discovery to the absolute minimum

- ► Ensure 100% code coverage
- Get the courage to change existing code (tests would break if you destroy something)
- ➤ Tested functions, classes, methods are easier to understand (they even have an executable specification)

Conclusions

Conclusions

- The software community (industry and open source) creates a lot of interesting concepts and techniques
- If you develop software regularly, follow these developments to **learn**
- Use them when they are helpful for you

Thank you!

For your attention.