
Documentation

David Grellscheid	

2014-03-19

Workshop on Advanced Techniques for Scientific Programming and 	

Management of Open Source Software Packages 10–21 March 2014

Documentation is communication

Need to consider all levels, they have different
audiences:

Code annotations: formatting, comments	

Structure-level documentation (funcs, classes)	

End-user reference material	

Introduction for new users...	

... and new developers (often left out!)

Code will be read much more often than written.	

clarity wins over cleverness	

choose_a_style and stickWithIt: 
block structure, indentation, line length,  
variable naming, ...	

know the conventions of the language community
(in Python, look for PEP 8)

Code formatting

Be consistent with others!

Code comments
Explain the intention, not the work:

def tripleTuple(x):
 y = z = x
 # apply foo scaling, see [34] eq (2.3)
 y *= 2
 z *= 3
 return (x, y, z)

def tripleTuple(x):
 # assign x to y
 y = x
 # assign x to z
 z = x
 # double y
 y *= 2
 # triple z
 z *= 3
 # create tuple
 t = (x, y, z)
 # return the tuple
 return t

deviations from standard	

unexpected choices of implementation

Function-level docs
Dual audience: developers and end users	

describe role of function	

intended input / output	

mention side effects!	

use templates for blank header files

def tripleTuple(x):
 ”””Apply foo’s tripling to x.”””
 y = z = x
 # apply the scaling, see [34] eq (2.3)
 y *= 2
 z *= 3
 return (x, y, z)

!
 /**
 *
 * Choose a pair of hadrons.
 *
 * Given the mass of a cluster and the particle pointers of its
 * two (or three) constituents, return the pair of particle pointers of
 * the two hadrons with proper flavour numbers.
 * Furthermore, the first of the two hadrons must have the
 * constituent with par1, and the second must have the constituent with par2.
 *
 * At the moment it does *nothing* in the case that par3 is also present.
 *
 * Kupco's method is used, rather than one used in FORTRAN HERWIG
 * The idea is to build on the fly a table of all possible pairs
 * of hadrons (Had1,Had2) (that we can call "cluster decay channels")
 * which are kinematically above threshold and have flavour
 * Had1=(par1,quarktopick->CC()), Had2=(quarktopick,par2), where quarktopick
 * is the pointer of:
 * --- d, u, s, c, b
 * if either par1 or par2 is a diquark;
 * --- d, u, s, c, b, dd, ud, uu, sd, su, ss,
 * cd, cu, cs, cc, bd, bu, bs, bc, bb
 * if both par1 and par2 are quarks.
 * The weight associated with each channel is given by the product
 * of: the phase space available including the spin factor 2*J+1,
 * the constant weight factor for chosen idQ,
 * the octet-singlet isoscalar mixing factor, and finally
 * the singlet-decuplet weight factor.
 */
 pair<tcPDPtr,tcPDPtr> chooseHadronPair(const Energy cluMass,
 tcPDPtr par1,
 tcPDPtr par2,
 tcPDPtr par3 = PDPtr());

Module-level docs
Same audience: developers and end users	

zoomed-out view

namespace Herwig {
!
using namespace ThePEG;
!
/** \ingroup hadronization
 * The HwppSelector class selects the hadrons produced in cluster decay using
 * the Herwig++ variant of the cluster model.
 *
 * @see \ref HwppSelectorInterfaces "The interfaces"
 * defined for HwppSelector.
 */
class HwppSelector: public HadronSelector {
 ...
};
}

API / program behaviour
No surprises!	

!

Users expect behaviour from other tools, stick to it:	

API argument order	

Command-line behaviour  
-f / --foo, --help, --version	

!

!

Provide manpages to describe these	

import argparse

Documentation tools

Extract documentation from code

pydoc	

Doxygen	

Sphinx

Pydoc extracts docstrings defined in 
http://www.python.org/dev/peps/pep-0257/

!
A docstring is a string literal that occurs as the first statement in a module,
function, class, or method definition. Such a docstring becomes the __doc__
special attribute of that object.

Pydoc

Every Python installation has pydoc,	

no extra work required.

http://www.python.org/dev/peps/pep-0257/

"""
Collection of first-order ODE steppers. !
First-order differential equations can be solved numerically by
stepping through the solution in discrete increments of the
independent variable (here referred to as time 't'). Several methods
with varying convergence behaviours are implemented.
""" !
def euler(state, d_dt, dt, boundary=None):
 """
 Euler stepper. !
 Evolve the system 'state' by the time derivative function 'd_dt'
 over the timestep dt, using the Euler method. Optionally use a
 boundary condition, which can modify both the state and the result
 of d_dt(state).
 """
 f = d_dt(state)
 # boundary effects
 if boundary:
 boundary(state,f)
 state += f * dt

def rk4(state, d_dt, dt, boundary=None):
 """
 4th-order Runge-Kutta stepper. !
 Evolve the system 'state' by the time derivative function 'd_dt'
 over the timestep dt, using Runge-Kutta 4th-order. Optionally use
 a boundary condition, which can modify both the state and the
 result of d_dt(state).
 """
 x0 = state
 f1 = d_dt(x0)
 x1 = x0 + f1 * dt/2.
 f2 = d_dt(x1)
 x2 = x0 + f2 * dt/2.
 f3 = d_dt(x2)
 x3 = x0 + f3 * dt
 f4 = d_dt(x3)
 f = (f1 + 2*f2 + 2*f3 + f4)/6.
 # boundary effects
 if boundary:
 boundary(x0,f)
 state += f * dt

$ pydoc steppers
Help on module steppers:
!
NAME
 steppers - Collection of first-order ODE steppers.
!
FILE
 /Users/dg/bikegenes/steppers.py
!
DESCRIPTION
 First-order differential equations can be solved numerically by
 stepping through the solution in discrete increments of the
 independent variable (here referred to as time 't'). Several methods
 with varying convergence behaviours are implemented.
!
FUNCTIONS
 euler(state, d_dt, dt, boundary=None)
 Euler stepper.

 Evolve the system 'state' by the time derivative function 'd_dt'
 over the timestep dt, using the Euler method. Optionally use a
 boundary condition, which can modify both the state and the result
 of d_dt(state).

 rk4(state, d_dt, dt, boundary=None)
 4th-order Runge-Kutta stepper.

 Evolve the system 'state' by the time derivative function 'd_dt'
 over the timestep dt, using Runge-Kutta 4th-order. Optionally use
 a boundary condition, which can modify both the state and the
 result of d_dt(state).

$ pydoc steppers.euler
Help on function euler in steppers:
!
steppers.euler = euler(state, d_dt, dt, boundary=None)
 Euler stepper.

 Evolve the system 'state' by the time derivative function 'd_dt'
 over the timestep dt, using the Euler method. Optionally use a
 boundary condition, which can modify both the state and the result
 of d_dt(state).

$ pydoc steppers.euler
Help on function euler in steppers:
!
steppers.euler = euler(state, d_dt, dt, boundary=None)
 Euler stepper.

 Evolve the system 'state' by the time derivative function 'd_dt'
 over the timestep dt, using the Euler method. Optionally use a
 boundary condition, which can modify both the state and the result
 of d_dt(state).

$ pydoc numpy.dot
Help on built-in function dot in numpy:
!
numpy.dot = dot(...)
 dot(a, b, out=None)

 Dot product of two arrays.

 For 2-D arrays it is equivalent to matrix multiplication, and for 1-D
 arrays to inner product of vectors (without complex conjugation). For
 N dimensions it is a sum product over the last axis of `a` and
 the second-to-last of `b`::

 dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

 Parameters

 a : array_like
 First argument.
 b : array_like
 Second argument.
 out : ndarray, optional
 Output argument. This must have the exact kind that would be returned
 if it was not used. In particular, it must have the right type, must be
 C-contiguous, and its dtype must be the dtype that would be returned
 for `dot(a,b)`. This is a performance feature. Therefore, if these
 conditions are not met, an exception is raised, instead of attempting
 to be flexible.

Doxygen

supports C++, C, Obj-C, C#, PHP, Java, Python,
IDL, Fortran, VHDL, Tcl	

can extract structure from undocumented files	

graphical visualization of dependencies	

can write general pages, too	

Doxygen
parses special annotations in comments:

 /**
 * Matrix element for \f$\gamma\gamma\to q\bar{q}\f$
 * @param p1 The wavefunctions for the first incoming photon
 * @param p2 The wavefunctions for the second incoming photon
 * @param w1 The wavefunctions for the first outgoing W
 * @param w2 The wavefunctions for the second outgoing W
 * @param calc Whether or not to calculate the matrix element
 */
 double helicityME(vector<VectorWaveFunction> & p1,
 vector<VectorWaveFunction> & p2,
 vector<VectorWaveFunction> & w1,
 vector<VectorWaveFunction> & w2, bool calc) const;

Doxygen
parses special annotations in comments:

 /**
 * Matrix element for \f$\gamma\gamma\to q\bar{q}\f$
 * @param p1 The wavefunctions for the first incoming photon
 * @param p2 The wavefunctions for the second incoming photon
 * @param w1 The wavefunctions for the first outgoing W
 * @param w2 The wavefunctions for the second outgoing W
 * @param calc Whether or not to calculate the matrix element
 */
 double helicityME(vector<VectorWaveFunction> & p1,
 vector<VectorWaveFunction> & p2,
 vector<VectorWaveFunction> & w1,
 vector<VectorWaveFunction> & w2, bool calc) const;

Doxygen

demo

Automatic extraction of Python docstrings	

conversion from Doxygen available via “Breathe” project

Great support for additional structure

Python www docs almost all use Sphinx  
standard library, matplotlib, scipy, numpy, ...

reStructuredText markup format

like most Python projects, 	

excellent support for beginners:

$ sphinx-quickstart

creates fully functional scaffolding,

can start adding content right away

.. Foobar documentation master file, created by
 sphinx-quickstart on Fri Mar 15 09:46:49 2013.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.
!
Welcome to Foobar's documentation!
==================================
!
Contents:
!
.. toctree::
 :maxdepth: 2
!
!
!
Indices and tables
==================
!
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

.. Foobar documentation master file, created by
 sphinx-quickstart on Fri Mar 15 09:46:49 2013.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.
!
Welcome to Foobar's documentation!
==================================
!
Contents:
!
.. toctree::
 :maxdepth: 2
!
!
!
Indices and tables
==================
!
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

$ make html

.. Foobar documentation master file, created by
 sphinx-quickstart on Fri Mar 15 09:46:49 2013.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.
!
Welcome to Foobar's documentation!
==================================
!
Contents:
!
.. toctree::
 :maxdepth: 2
!
!
!
Indices and tables
==================
!
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

$ make html

demo

End user documentation

Do you read manuals?

End user documentation

Do you read manuals?

Why not?

End user documentation

Do you read manuals?

Why not?

I find “jump right in” tutorials much more useful

Pick up the user where they are

Go slowly, with lots of detail

Make sure your tutorial works!

Rarely considered:

New developers need an intro, too!

Very different requirements than users

Doxygen alone is not enough

At minimum, prepare some paths to follow 
through the code docs. 

Open discussion

Experiences of good / bad practice  

What would you like as an experienced
developer?	

What would you like as a new developer?	

What would you like as an experienced user?	

What would you like as a new user?	

