

LIGGGHTS: An example of a real-world scientific code

ICTP Workshop, March 2014

Richard Berger

www.cfdem.com | www.jku.at/pfm | www.dcs-computing.com

Department of Particulate Flow Modelling, JKU Linz, Austria

LIGGGHTS+CFDEMcoupling The Importance of Bulk Solids

Macroscopic particle processes from an industrial perspective:

- Production, handling, storage, transport and processing of particles and granular materials is of paramount importance in all sectors of industry.
- 40% of the capacity of industrial plants is
 wasted due to granular solid problems (**)
- Between 1 and 10% of all the energy is used in comminution, i.e. the processes of crushing, grinding, milling, micronising (*)

photo from: Whiddon, P.: http://www.flickr.com/photos/pwhiddon/

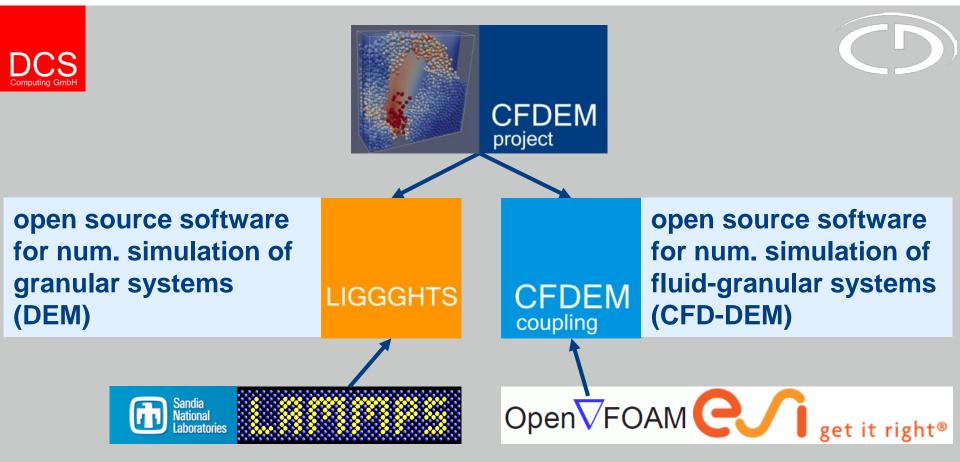
* Holdich, R. (2006): Fundamentals of Particle Technology; Midland Information & Publishing ** Ennis, B. J., Green, J., Davies, R.(1994): Particle technology. The legacy of neglect in the US", Chem. Eng. Prog, 90, 32-43.

LIGGGHTS+CFDEMcoupling The Importance of Bulk Solids

Macroscopic particle processes from an industrial perspective:

- More than 50% of all products sold are either granular in form or involve granular materials in their production*.
- 40% of the value added in chemical industry is linked to particle technology**.
- Many industrial solid particle systems display unpredictable behavior, leading to losses of resources, energy, money, time
- State-of-the-art simulation tools show
 lack of predictive capability

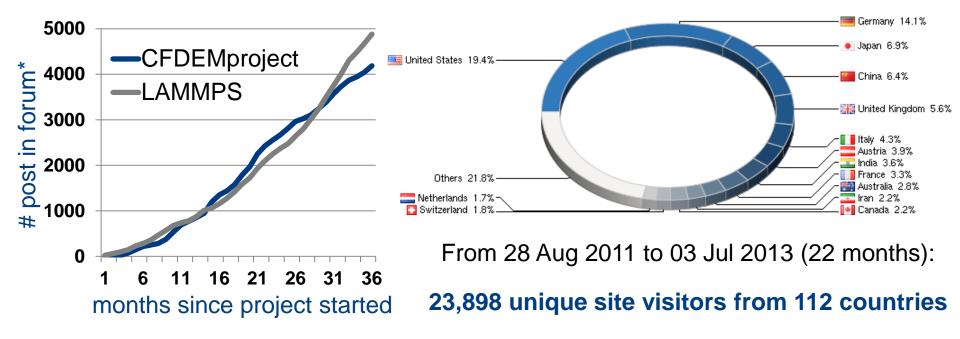
photo from: Whiddon, P.: http://www.flickr.com/photos/pwhiddon/


* Bates, L. (2006): The need for industrial education in bulk technology", Bulk Solids Handl., 26, 464-473. ** Ennis, B. J., Green, J., Davies, R.(1994): Particle technology. The legacy of neglect in the US", Chem. Eng. Prog, 90, 32-43.

The Framework

Professional Base:

Scientific Base:

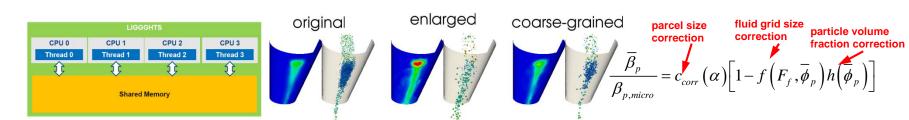

CFDEMproject is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM® software and owner of the OpenFOAM® and OpenCFD® trade marks. OpenFOAM® is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.

LIGGGHTS+CFDEMcoupling CFDEM Community after 3 yrs

Vibrant community has been established: CFDEMproject users comprise world-class companies and dozens of universities and research institutes.

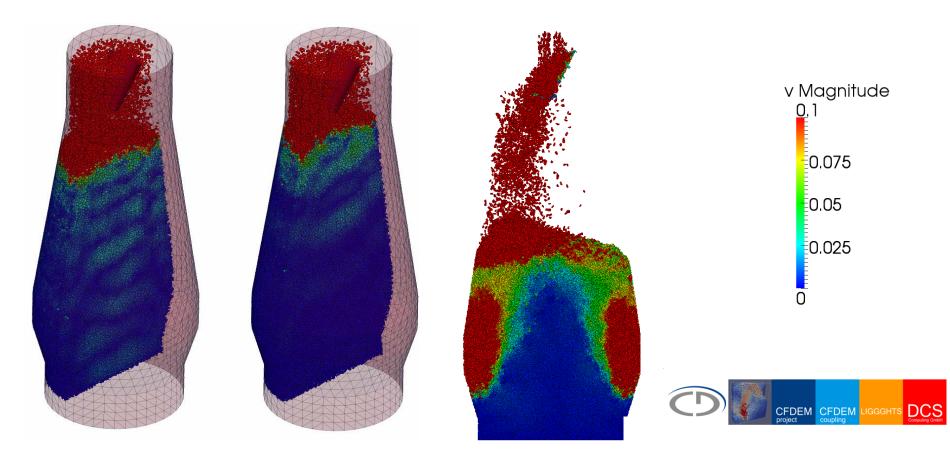
Shown below are number of post in forums (left) and regional distribution of visitors.

LAMMPS is one of the standard molecular dynamics (MD) codes


*from www.cfdem.com and http://sourceforge.net/mailarchive/forum.php?forum_name=lammps-users

Providing a state-of-the-art modelling platform needs modelling efforts and

efforts to provide a sophisticated framework (computer science)


Most applications are multi-phase flow

(2 phase Euler + DEM, VOF + DEM, scalar transport)

Applications range from iron/steel-making, consumer goods, process, powder metallurgy, refractories production, agricultural, chemical and plastics industries

LIGGGHTS+CFDEMcoupling Blast Furnace

Comparison of flow pattern for different values of non-sphericity modelled by rolling friction Non-sphericity resolved by multi-sphere method (lower fill-level)

LIGGGHTS+CFDEMcoupling Case Study: Chute Abrasion

1.2

1.5

Severe damage

v Magnitude 0.8

0

Chute Abrasion with deformation

Finnie wear model (Finnie 1972)
 was used to predict deformations

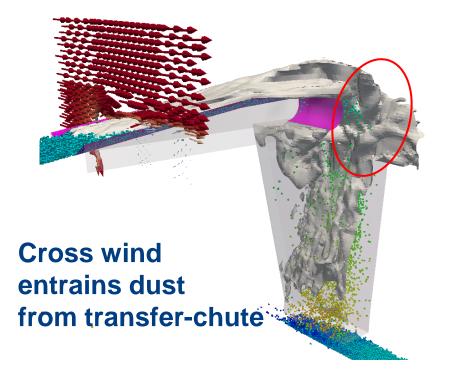
$$E = k_f \left| \mathbf{u}_{\mathbf{p}} \right|^2 f(\boldsymbol{\gamma}_i),$$

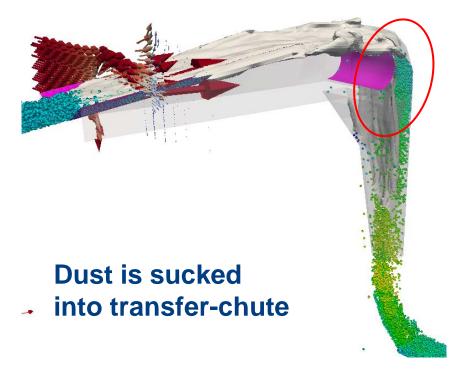
$$f(\gamma_i) = 1/3\cos^2(\gamma_i)$$
, $\tan(\gamma_i) \ge 1/3$,

$$f(\gamma_i) = \sin(2\gamma_i) - 3\sin^2(\gamma_i)$$
, $\tan(\gamma_i) < 1/3$,

$$EM = 2k_f \int_{tc,0}^{tc,1} hs(\mathbf{u_p C_n}) \sin(2\gamma_i) \mathbf{u_p f_{p-w}} f(\gamma_i) dt.$$

Deformations were mapped to the mesh nodes based on the point of impact.


F	erosion rate		
∟ k _f	material dependent model parameter	EM	Eroded Mass
u _p	particle velocity	hs	Heaviside function
γ	impact angle	f _{p-w}	particle-wall contact force
f	dependency on impact angle	c _n	particle-wall distance vector


Transfer Chute Dust Emission

Original Geometry

Optimized Geometry

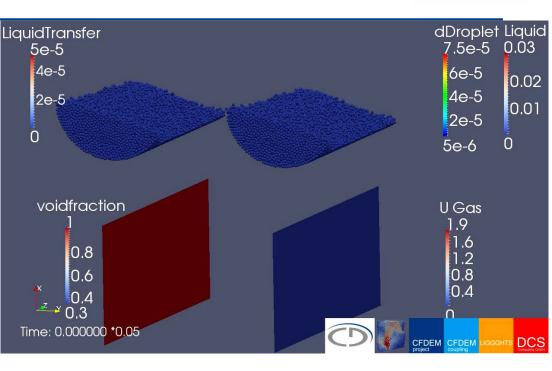
Publications:

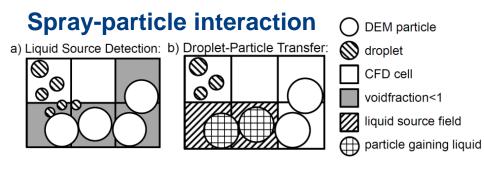
Kloss, C., Goniva, C., Katterfeld, A.: Simulation of wear and dust emission at a transfer chute; Cement International, 2012 (10), 2-9

measurem.data from: Chen, X.L., Wheeler, C.A., Donohue, T.J., McLean, R., Roberts, A.W.: Evaluation of dust emissions from conveyor transfer chutes using experimental and CFD simulation. International Journal of Mineral Processing 110–111 (2012) pp. 101–108

LIGGGHTS+CFDEMcoupling Spray Coating

Physics to be covered


- Spray modelling
- Spray-particle interaction
- Liquid bridge forces
- Liquid transport btw. particles

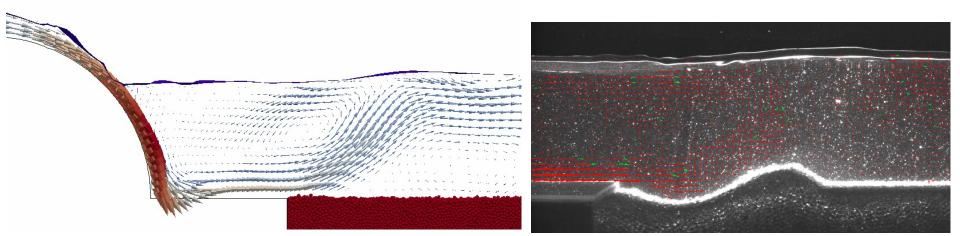

Spray modelling

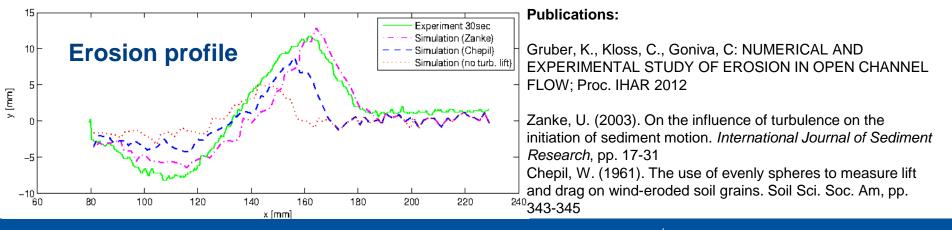
Equation of Motion

$$m_{D} \frac{dv_{D}}{dt} = g \left(\rho_{D} - \rho_{G}\right) V_{D} + C_{d,D} A_{D} \frac{\rho_{G} (v_{G} - v_{D}) |v_{G} - v_{D}|}{2}$$

- > **Drag Law** $C_{d,D} = C_{d,sphere} (1 + 2.632 y)$
- > Breakup Model (e.g. O'Rourke*) $\ddot{y} + \frac{5\mu_D}{\rho_D r^2} \dot{y} + \frac{8\sigma}{\rho_D r^3} y = \frac{2\rho_G v_{rel}^2}{3\rho_D r^2}$

C. Goniva, J. Kerbl, S. Pirker, C. Kloss: Modelling Spray Particle Interaction by a Coupled CFD-DEM Method, Proc. Computational Modelling Conference 2013

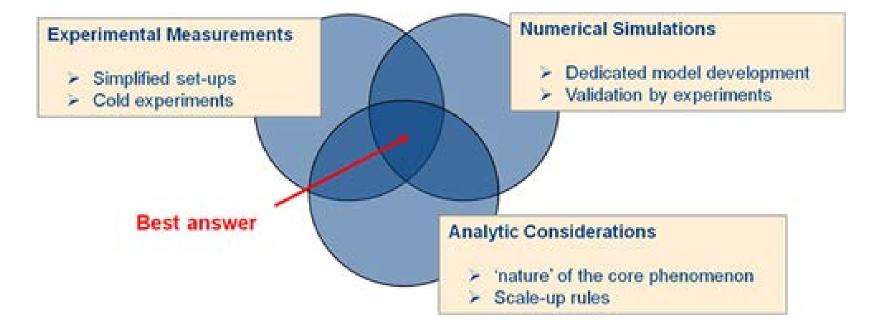

CFDEMproject: Department of Particulate Flow Modelling, JKU Linz and DCS Computing, Linz | www.cfdem.com


LIGGGHTS+CFDEMcoupling River Bed Erosion

VOF – DEM Modelling of River Bed Erosion

turbulent lift force is essential; best performance with Zanke (2003) model

CFDEMproject: Department of Particulate Flow Modelling, JKU Linz and DCS Computing, Linz | www.cfdem.com


12 processes were covered by the study:

- Batch processes: Bin flow, Forberg twin paddle mixer, Plow mixer, Fukae vertical shear mixer, V-blender, Ribbon blender, Rotating drum
- Continuous processes: APEC coater, CB mixer, Conditioning cylinder, KM mixer, Revtech process

Download at http://cfdem.dcs-computing.com/media/DEM/benchmarks/LIGGGHTS_Benchmarks.pdf

