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Collective nuclear models�
Rotational models�
Vibrational models�
Liquid-drop model of vibrations and rotations�
Interacting boson model�



Rotation of a symmetric top �
Energy spectrum: �
�
�
�
Large deformation ⇒ 
large ℑ ⇒ low Ex(2+).�
R42 energy ratio: �
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I I +1( )

≡ A I I +1( ), I = 0,2,4,…
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Evolution of Ex(2+)�

J.L. Wood, private communication �



The ratio R42 �



Rotation of an asymmetric top �
Energy spectrum: �
�
�
�
Reflection symmetry 
only allows even I with 
positive parity π.�
�

3

33

• At low spins 222Ra has an octupole vibrational spectrum; the I+3 negative parity  
   states are one ht higher in energy than the even parity states with spin I.

• At "high-spins" the spectrum 
 for 222Ra shows a 6I=1 sequence 

 with alternating parity; 
 consistent with a stable  
 octupole deformation, and 
 similar to the reflection- 
 asymmetric rotor, HCl.

Reflection Asymmetric
Shapes in Nuclei

3

33

• At low spins 222Ra has an octupole vibrational spectrum; the I+3 negative parity  
   states are one ht higher in energy than the even parity states with spin I.

• At "high-spins" the spectrum 
 for 222Ra shows a 6I=1 sequence 

 with alternating parity; 
 consistent with a stable  
 octupole deformation, and 
 similar to the reflection- 
 asymmetric rotor, HCl.

Reflection Asymmetric
Shapes in Nuclei

Erot I
π( ) = 

2

2ℑ
I I +1( )

I π = 0+,1−, 2+,3−, 4+,…



Nuclear shapes�
Shapes are characterized by the variables αλµ in 

the surface parameterization: �
�
�

λ=0: compression (high energy)�
λ=1: translation (not an intrinsic deformation)�
λ=2: quadrupole deformation �
λ=3: octupole deformation �
�
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Quadrupole shapes�
Since the surface R(θ,φ) is real: �
è Five independent quadrupole variables (λ=2).�
Equivalent to three Euler angles and two intrinsic 

variables β and γ: 

αλµ( )
*
= −1( )µαλ−µ

α2µ = a2νDµν
2 Ω( )

ν

∑ , a21 = a2−1 = 0, a22 = a2−2

a20 = β cosγ, a22 =
1
2
β sinγ



The (β,γ) plane�



Modes of nuclear vibration �
Nucleus is considered as a droplet of nuclear 

matter with an equilibrium shape. Vibrations are 
modes of excitation around that shape.�

Character of vibrations depends on symmetry of 
equilibrium shape. Two important cases in nuclei: �
Spherical equilibrium shape�
Spheroidal equilibrium shape�



Vibrations about a spherical shape�
Vibrations are characterized by λ in the surface 

parameterization: �
λ=0: compression (high energy)�
λ=1: translation (not an intrinsic excitation)�
λ=2: quadrupole vibration �
�
�
�
�
λ=3: octupole vibration �
�

⇔ ⇔



Spherical quadrupole vibrations�
Energy spectrum: �
�
R42 energy ratio: �
�
E2 transitions: �
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Evib n( ) = n + 5
2( )ω, n = 0,1…
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Example of 112Cd�



Possible vibrational nuclei from R42�



Spheroidal quadrupole vibrations �
The vibration of a shape 

with axial symmetry is 
characterized by aλν.�

Quadrupole oscillations: �
ν=0: along the axis of 

symmetry (β)�
ν=±1: spurious rotation �
ν=±2: perpendicular to axis 

of symmetry (γ)�

 β
γ
⇔

γ
⇔

 β



Spectrum of spheroidal vibrations�



Example of 166Er�



Quadrupole-octupole shapes�
It is difficult to define 
an intrinsic frame for a 
pure octupole shape.�
�
Quadrupole-octupole: 
use quadrupole frame 
è two quadrupole and 
seven octupole intrinsic 
variables α3µ.�
Most important case: 
β3=α30 (axial symmetry).�
�

formed) are discussed below in Sec. II.A (isoscalar mo-
ments) and Sec. II.B (isovector electric dipole moment).

A. Reflection-asymmetric shapes

In many applications, the nuclear shape is param-
etrized in terms of a spherical harmonic (multipole) ex-
pansion. The spheroidal nuclear surface is defined by
means of standard deformation parameters a

lm

describ-
ing the length of the radius vector pointing from the
origin to the surface (Bohr, 1952; Hill and Wheeler,
1953):
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The three dipole deformations, a161 and a10 , are
given by the constraint that fixes the center of mass
(c.m.) at the origin of the body-fixed frame:

E
V

rd3r50, (3)

where V is the total volume enclosed by the surface de-
fined in Eq. (1). For shapes axially symmetric with re-
spect to the z axis, all deformation parameters with m

fi 0 vanish. The remaining deformation parameters a

l0
are usually called b
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For a well-defined axial octupole minimum in the to-
tal energy, the intrinsic charge octupole moment is

Q 30,c[E 2r3P30rc~r
!

d3r, (5)

where rc(r) is the charge density. Assuming rc=const
inside the sharp surface of Eq. (1), Q 30,c can be related
to the deformations b

l

by (Leander and Chen, 1988)
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The mass octupole moment and corresponding defor-
mations are defined in a similar way.

There exist several parametrizations of reflection-
asymmetric shapes other than the a and b parametriza-
tions discussed above. A compilation of other param-
etrizations is contained in the Appendix.

The number of deformation parameters that appear in
the multipole expansion Eq. (1) grows rapidly with l .
For instance, the general quadrupole-plus-octupole
shape is described by two quadrupole deformations
(a20 and a22 , or b2 and g) and seven independent de-
formations a3m

. Figure 2 displays four shapes resulting
from the superposition of axial quadrupole and octupole
deformations with m=0, 1, 2, and 3.

A general parametrization of the combined
quadrupole-octupole field, covering all possible shapes
without double counting, was proposed by Rohoziński
(1990). The basic requirements are that the parametri-
zation obeys simple transformation rules under O h (a
group of 48 transformations changing the names and ar-
rows of the axes), and have simple ranges for the param-
eters. After introducing the seven real Cartesian compo-
nents a3m

and b3m

(Rohoziński et al., 1982; Rohoziński,
1988),
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FIG. 2. Quadrupole-octupole shapes represented by multipole
expansion, Eq. (1). In all cases, the same axial quadrupole de-
formation a20=b2=0.6 is assumed. The four shapes correspond
to octupole deformations with m=0, 1, 2, and 3
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(1990). The basic requirements are that the parametri-
zation obeys simple transformation rules under O h (a
group of 48 transformations changing the names and ar-
rows of the axes), and have simple ranges for the param-
eters. After introducing the seven real Cartesian compo-
nents a3m

and b3m
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Quadrupole-octupole vibrations�



Octupole rotation-vibrations�
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• At low spins 222Ra has an octupole vibrational spectrum; the I+3 negative parity  
   states are one ht higher in energy than the even parity states with spin I.

• At "high-spins" the spectrum 
 for 222Ra shows a 6I=1 sequence 

 with alternating parity; 
 consistent with a stable  
 octupole deformation, and 
 similar to the reflection- 
 asymmetric rotor, HCl.
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Example: 222Ra �
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Example: 220Rn and 224Ra �

experimental features: shell-corrected liquid-drop models10,11, mean-field
approaches using various interactions12–16, models that assume a-
particle clustering in the nucleus17,18, algebraic models19 and other semi-
phenomenological approaches20. A broad overview of the experimental
and theoretical evidence for octupole correlations is given in ref. 21.

In order to determine the shape of nuclei, the rotational model can
be used to connect the intrinsic deformation, which is not directly

observable, to the electric charge moments that arise from the non-
spherical charge distribution. For quadrupole deformed nuclei, the
typical experimental observables are the electric-quadrupole (E2)
transition moments that are related to the matrix elements connecting
differing members of rotational bands in these nuclei, and E2 static
moments that are related to diagonal matrix elements for a single state.
If the nucleus does not change its shape under rotation, both types
of moments will vary with angular momentum but can be related to a
constant ‘intrinsic’ moment that characterizes the shape of the nucleus.
For pear-shaped nuclei, there will be additionally E1 and electric-
octupole (E3) transition moments that connect rotational states having
opposite parity. The E1 transitions can be enhanced because of the sepa-
ration of the centre-of-mass and centre-of-charge. The absolute values
of the E1 moments are, however, small (,1022 single particle units)
and are dominated by single-particle and cancellation effects9. In con-
trast, the E3 transition moment is collective in behaviour (.10 single
particle units) and is insensitive to single-particle effects, as it is gene-
rated by coherent contributions arising from the quadrupole-octupole
shape. The E3 moment is therefore an observable that should provide
direct evidence for enhanced octupole correlations and, for deformed
nuclei, can be related to the intrinsic octupole deformation parameters22.
Until the present measurements, E3 transition moments have been
determined for only one nucleus in the Z < 88, N < 134 region, 226Ra
(ref. 23), so that theoretical calculations of E3 moments in reflection-
asymmetric nuclei have not yet been subject to detailed scrutiny.

Experiments and discussion
Coulomb excitation is an important tool for exploring the collective
behaviour of deformed nuclei that gives rise to strong enhancement
of the probability of transitions between states. Traditionally, this
technique has been employed by exciting targets of stable nuclei with
accelerated ion beams of stable nuclei at energies below the Coulomb
barrier, ensuring that the interaction is purely electromagnetic in
character. Whereas E2, E1 and magnetic dipole (M1) transition pro-
babilities dominate in the electromagnetic decay of nuclear states, and
hence can be determined from measurements of the lifetimes of the
states, E2 and E3 transition moments dominate the Coulomb excita-
tion process allowing these moments to be determined from measure-
ment of the cross-sections of the states, often inferred from the c-rays
that de-excite these levels. In exceptional cases, the Coulomb excita-
tion technique has been applied to radioactive targets like 226Ra,
which is sufficiently long-lived (half-life 1,600 yr) to produce a mac-
roscopic sample. It is only comparatively recently that the technique
has been extended to the use of accelerated beams of radioactive nuclei
such as those from the Radioactive beam EXperimental facility at
ISOLDE, CERN (REX-ISOLDE24). In the experiments described here,
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Figure 1 | Representative c-ray spectra following the bombardment of
2 mg cm22 60Ni and 120Sn targets by 220Rn and 224Ra. a, 60Ni (blue) and 120Sn
(red) bombarded by 220Rn; b, targets as a but with bombardment by 224Ra. The
differences in excitation cross-section for the targets with different Z are
apparent for the higher spin states. The c-rays are corrected for Doppler shift
assuming that they are emitted from the scattered projectile. The asterisk in
a marks an unassigned, 836(2) keV transition. A state at 937.8(8) keV is
assigned Ip 5 21 on the basis of its excitation and decay properties; it is
assumed to be the bandhead of the c-band in 220Rn.
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experimental features: shell-corrected liquid-drop models10,11, mean-field
approaches using various interactions12–16, models that assume a-
particle clustering in the nucleus17,18, algebraic models19 and other semi-
phenomenological approaches20. A broad overview of the experimental
and theoretical evidence for octupole correlations is given in ref. 21.
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differences in excitation cross-section for the targets with different Z are
apparent for the higher spin states. The c-rays are corrected for Doppler shift
assuming that they are emitted from the scattered projectile. The asterisk in
a marks an unassigned, 836(2) keV transition. A state at 937.8(8) keV is
assigned Ip 5 21 on the basis of its excitation and decay properties; it is
assumed to be the bandhead of the c-band in 220Rn.
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Figure 2 | Partial level-schemes for 220Rn and 224Ra, showing the excited
states of interest for this work. a, 220Rn; b, 224Ra. Arrows indicate knownc-ray
transitions. All energies are in keV (upright font refers to transition energies,

italic font refers to state energies) and spins in units of B. Note that the level at
938 keV in 220Rn is observed for the first time in this work.
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Discrete nuclear symmetries�
Tetrahedral symmetry: �
�
�
�
Octahedral symmetry: �
�
�
�
Experimental evidence?�

6 TetraOcta08 printed on 6th October 2006

Above, α̂ ≡ {αλ,µ; λ = 2, 3, . . . λmax; µ = −λ, −λ + 1, . . . + λ}, R0 is the
nuclear radius parameter,, and c(α̂), a function whose role is to insure that
the nuclear volume remains constant, independent of the deformation.

3.1. Octahedral Deformations

We can demonstrate that there exist special combinations of spherical
harmonics that can be used as a basis for surfaces with octahedral symme-
try. The lowest order of the octahedral deformation, called by convention
the first, is characterized by the fourth rang spherical harmonics. By intro-
ducing a single parameter o1 we must have in this case

α40 ≡ +o1; α4,±4 ≡ +

√

5

14
· o1 , (8)

i.e. three hexadecapole deformation parameters must contribute simulta-
neously and with proportions

√

5/14 fixed by the octahedral symmetry

Figure 1. Comparison of two octahedrally deformed nuclei. Left: octahedral de-
formation of the first order, o1=0.10; right: octahedral deformation of the second
order, o2=0.04 .

requirement. No deformation with λ = 5 is allowed and the next possible
are deformations with spherical harmonics of λ = 6. Similarly, we introduce
one single parameter, o2, with the help of which the next allowed octahe-
dral deformation, called of the second order, and depending on the 6th rang
spherical harmonics can be defined. We must have:

α60 ≡ +o2; α6,±4 ≡ −

√

7

2
· o2 . (9)

The third order octahedral deformation is characterized by the 8th rang
spherical harmonics and we can demonstrate that it can be defined with
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the help of a single parameter, o3, where:

α80 ≡ +o3; α8,±4 ≡

√

28

198
· o3; α8,±8 ≡

√

65

198
· o3 . (10)

Of course the basis of the octahedrally deformed surfaces is infinite, but
the increasing order of the octahedral deformations implies immediately a
twice as fast increase in the rang of the underlying multipole deformations;
the possibility of having such a situation in real nuclei is unlikely and the
expansion series can be cut off quickly.

3.2. Tetrahedral Deformations

In a similar fashion, the tetrahedral deformation basis can be introduced
in terms of the standard spherical harmonics. The first order tetrahedral
deformation, t1, is characterized by a single octupole deformation with λ = 3
and µ = 2 and we have

α3,±2 ≡ t1 (11)

The second order tetrahedral deformation, t2, is characterized by multipo-

Figure 2. Comparison of two tetrahedrally deformed nuclei. Left: tetrahedral
deformation of the first order, t1=0.15; right: tetrahedral deformation of the second
order, t2=0.05 .

larity λ = 7 (observe that the multipoles with λ = 4, 5 and 6 are not allowed
at all by the symmetry studied) and we have

α7,±2 ≡ t2 ; α7,±6 ≡ −

√

11

13
· t2 . (12)

The third order tetrahedral deformation, t3, is characterized by λ = 9 and
by definition we must have:

α9,±2 ≡ t3; α9,±6 ≡ +

√

13

3
· t3 . (13)

α3±2 ≠ 0

α40 =
14
5
α4±2 ≠ 0

J. Dudek et al., Phys. Rev. Lett. 88 (2002) 252502 �



Rigid rotor model�
Hamiltonian of quantum-mechanical rotor in terms 

of ‘rotational’ angular momentum R: �
�
�
Nuclei have an additional intrinsic part Hintr with 

‘intrinsic’ angular momentum J.�
The total angular momentum is I=R+J.�
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ˆ H rot =
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Rigid axially symmetric rotor�
For ℑ1=ℑ2=ℑ ≠ ℑ3 the rotor hamiltonian is�
�
�
Eigenvalues of Hrot: �
�
�
Eigenvectors ⎟KIM〉 of Hrot satisfy: �
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ˆ H rot =
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I2 KIM = I I +1( )KIM ,
Iz KIM = M KIM , I3 KIM = K KIM



Ground-state band of axial rotor�
The ground-state spin 
of even-even nuclei is 
I=0. Hence K=0 for 
ground-state band: �

  

€ 

EI =
2

2ℑ
I I +1( )



E2 properties of rotational nuclei�
Intra-band E2 transitions: �
�
�
E2 moments: �
�
�
Q0(K) is the ‘intrinsic’ quadrupole moment: �

€ 

B E2;KIi →KIf( ) =
5
16π

IiK 20 IfK
2e2Q0 K( )2

€ 

Q KI( ) =
3K 2 − I I +1( )
I +1( ) 2I + 3( )

Q0 K( )

€ 

e ˆ Q 0 ≡ ρ $ r ( )∫ r2 3cos2 $ θ −1( )d $ r , Q0 K( ) = K ˆ Q 0 K



E2 properties of gs bands �
For the ground state (K=I):�
�
�
For the gsb in even-even nuclei (K=0): �

€ 

Q K = I( ) =
I 2I −1( )

I +1( ) 2I + 3( )
Q0 K( )

€ 

B E2;I→ I − 2( ) =
15
32π

I I −1( )
2I −1( ) 2I +1( )

e2Q0
2

Q I( ) = −
I

2I + 3
Q0

⇒ eQ 21
+( ) =

2
7
16π ⋅ B E2;21

+ → 01
+( )



Generalized intensity relations�
Mixing of K arises from�

Dependence of Q0 on I (stretching)�
Coriolis interaction �
Triaxiality�

Generalized intra- and inter-band matrix elements 
(eg E2): �

  

€ 

B E2;K iIi →K fIf( )
IiK i 2K f −K i IfK f

= M0 + M1Δ + M2Δ
2 +

with Δ = If If +1( ) − Ii Ii +1( )



Inter-band E2 transitions�
Example of γ→g 
transitions in 166Er: �

  

€ 

B E2;Iγ →Ig( )
Iγ2 2 − 2 Ig0

= M0 + M1Δ + M2Δ
2 +

Δ = Ig Ig +1( ) − Iγ Iγ +1( )

W.D. Kulp et al., Phys. Rev. C 73 (2006) 014308 �



Rigid triaxial rotor�
Triaxial rotor hamiltonian ℑ1 ≠ ℑ2 ≠ ℑ3 : �
�
�
�
�
�
H'mix non-diagonal in axial basis ⏐KIM〉 ⇒ K is not 

a conserved quantum number�
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Rigid triaxial rotor spectra�
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γ = 30   

€ 

γ =15



Tri-partite classification of nuclei�
Empirical evidence for seniority-type, vibrational- 

and rotational-like nuclei. �

N.V. Zamfir et al., Phys. Rev. Lett. 72 (1994) 3480 �



Interacting boson model�
Describe the nucleus as a system of N interacting 

s and d bosons. Hamiltonian: �
�
�
Justification from�

Shell model: s and d bosons are associated with S and D 
fermion (Cooper) pairs.�

Geometric model: for large boson number the IBM 
reduces to a liquid-drop hamiltonian.�

€ 

ˆ H IBM = εi
ˆ b i

+ ˆ b i
i=1

6

∑ + υ i1i2i3i4
ˆ b i1

+ ˆ b i2
+ ˆ b i3

ˆ b i4
i1i2i3i4 =1

6

∑



Dimensions�
Assume Ω available 1-fermion states. Number of 

n-fermion states is�
�
Assume Ω available 1-boson states. Number of n-

boson states is�
�
Example: 162Dy96 with 14 neutrons (Ω=44) and 16 

protons (Ω=32) (132Sn82 inert core).�
SM dimension: 7·1019 �
IBM dimension: 15504�
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Dynamical symmetries�
Boson hamiltonian is of the form�
�
�
In general not solvable analytically.�
Three solvable cases with SO(3) symmetry: �

€ 

ˆ H IBM = εi
ˆ b i

+ ˆ b i
i=1

6

∑ + υ i1i2i3i4
ˆ b i1

+ ˆ b i2
+ ˆ b i3

ˆ b i4
i1i2i3i4 =1

6

∑

€ 

U 6( )⊃ U 5( )⊃ SO 5( )⊃ SO 3( )
U 6( )⊃ SU 3( )⊃ SO 3( )
U 6( )⊃ SO 6( )⊃ SO 5( )⊃ SO 3( )



U(5) vibrational limit: 110Cd62�



SU(3) rotational limit: 156Gd92�



SO(6) γ-unstable limit: 196Pt118�



Applications of IBM�



Classical limit of IBM�
For large boson number N, a coherent (or intrinsic) 

state is an approximate eigenstate, �
�
�
The real parameters αµ are related to the three 

Euler angles and shape variables β and γ. �
Any IBM hamiltonian yields energy surface: �
�
�
�

€ 

ˆ H IBM N;αµ ≈ E N;αµ , N;αµ ∝ s+ + αµdµ
+

µ
∑( )

N

o

€ 

N;αµ
ˆ H IBM N;αµ = N;βγ ˆ H IBM N;βγ ≡V β,γ( )



Phase diagram of IBM�

J. Jolie et al. , Phys. Rev. Lett. 87 (2001) 162501 �



The ratio R42 �
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Electric (quadrupole) properties�
Partial γ-ray half-life: �
�
�
Electric quadrupole transitions: �
�
�
Electric quadrupole moments: �
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Magnetic (dipole) properties�
Partial γ-ray half-life: �
�
�
Magnetic dipole transitions: �
�
�
Magnetic dipole moments: �
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Extensions of IBM�
Neutron and proton degrees freedom (IBM-2): �

F-spin multiplets (Nν+Nπ=constant) �
Scissors excitations�

Fermion degrees of freedom (IBFM): �
Odd-mass nuclei�
Supersymmetry (doublets & quartets)�

Other boson degrees of freedom: �
Isospin T=0 & T=1 pairs (IBM-3 & IBM-4)�
Higher multipole (g,…) pairs�



Scissors mode �
Collective displacement 
modes between neutrons 
and protons:�

Linear displacement  
(giant dipole resonance):         
Rν-Rπ ⇒ E1 excitation.�
Angular displacement 
(scissors resonance):      
Lν-Lπ ⇒ M1 excitation.�



Supersymmetry�
A simultaneous description of even- and odd-
mass nuclei (doublets) or of even-even, even-odd, 
odd-even and odd-odd nuclei (quartets).�
Example of 194Pt, 195Pt, 195Au & 196Au: �



Bosons + fermions�
Odd-mass nuclei are fermions.�
Describe an odd-mass nucleus as N bosons + 1 

fermion mutually interacting. Hamiltonian: �
�
�
Algebra: �
�
Many-body problem is solved analytically for 

certain energies ε and interactions υ. �
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ˆ H IBFM = ˆ H IBM + ε j ˆ a j
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Example: 195Pt117�



Example: 195Pt117 (new data)�



Nuclear supersymmetry�
Up to now: separate description of even-even and 

odd-mass nuclei with the algebra�
�
�
Simultaneous description of even-even and odd-

mass nuclei with the superalgebra�
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U(6/12) supermultiplet �



Example: 194Pt116 &195Pt117�



Example: 196Au117�


