

Decay Data

decay data are very rich source of nuclear structure information & are of importance to many other areas

- nuclear structure often offer the best quantities, because the complexity of spectra is reduced
- astrophysics especially on the "r-process" side neutronrich nuclei
- \checkmark atomic masses proton-rich (Q α & Qp); neutron-rich (Q β –)
- ✓ applications of nuclear science

Plan

Today: α - and β -decays - isomers (IT decay) on Friday

Introduction

Decay Data

✓ experimental results obtained following α -, β --, β +, EC, IT, p, cluster, etc. decay processes

Evaluated Decay Data

 Recommended (best) values for nuclear levels and decay radiation properties, deduced by the evaluator using all available experimental data & theoretical calculations (conv. coefficients)

Myth: decay data evaluation deals only with decay data – many properties come from other decays and reactions (adopted level properties), e.g E γ , I γ , MR, ICC, ...

structure of the parent state (J^π, K^π, configuration)
 ✓ controls which states of the daughter will be populated

excitation energy

- quantum numbers and their projections
- lifetime

decay modes & branching ratios

- Q-value defines the energetics of the decay
 - ✓ controls the lifetime of the parent
 - ✓ the window of daughter states available

every decay dataset MUST have a Parent record

206TL	206HG B- DECAY	1970AS05,1968W008	08NDS 200805			
206TL H	'TYP=FUL\$AUT=F.G. KONDEV\$CIT=NI	S 109, 1527 (2008)\$CUT=31	-Jan-2008\$			
206TL c	1968Wo08: {+206}Hg produced by	<pre>{+208}Pb(p,3p) reaction</pre>	and isotope			
206TL2C 206TL2C	detectors, g singles and g d	coincidences in NaI and	Ge detector,			
206TL3c	and g b{+-} coincidences with	NaI and Si(Li) detectors	•			
206TL c	1970As05: {+206}Hg produced by	<pre>{+208}Pb(p,3p) reaction</pre>	with E(p)=600			
206TL2c 206TL3c	MeV. g singles measured with plastic scintillators.	Ge detector, lifetime mea	sured with			
206TL C	Other: 1969Ha03: survey measurement of level lifetimes using 600 MeV					
206TL2c 206TL3c	proton beam on Pb target with T{-1/2}(305 g).	isotope separation. Measu	red limit for			
206HG P	0 0+	8.32 M 7	1308 20			
	$\land \land \land$	\land				

T1/2

Ο

206HG CP T\$From 1111AAyy ...

Ex

Jπ

- usually the experiments provide relative emission probabilities absolute measurements are difficult & rare
 - convert relative to absolute emission probabilities using the properties of the decay scheme – NORMALIZATION

every decay dataset MUST have a Normalization record

Relative Intensity	Normalization factor	Absolute Intensity
Ιγ χ	NR x BR	= %Ιγ
lγ (tot) x	NT x BR	= %Iγ (tot)
Iβ (or α or ϵ) x	NB x BR	= %I β (or α or ϵ)
lβn (or εp) x	NP x BR	= %lβn (or εp)

177HF cN NR\$Using absolute |g ray intensity for the 208.3662|g of 10.36% {I7} 177HF2cN from 2001Sc23

α-decay – cont.

$$|I_i - I_f| \le l_\alpha \le |I_i + I_f|$$
$$\pi_i \pi_f = (-1)^{l_\alpha}$$

even-even nuclei: 0+ -> 0+; *l*_α=0 odd-A: 1/2+ -> 1/2+; /_a=0,1 1/2+ -> 3/2+; /_a=1,2 1/2+ -> 9/2-; /₀=4,5

Strong dependence on I_{α}

Configuration dependence

fastest decay for $I_{\alpha}=0$

 \checkmark

I. Ahmad et al., Phys. Rev. C68 (2003) 044306

8

Hindrance Factor in α-decay

Hindrance Factor in α-decay – cont.

Odd-N nucleus (Z, A)

Δ

Odd-Z nucleus (Z, A)

 $r_0(Z, N) = [r_0(Z, N-1) + r_0(Z, N+1)]/2$

 $r_0(Z, N) = [r_0(Z-1, N) + r_0(Z+1, N)]/2$

Odd-Odd nucleus (Z, A)

 $r_0(Z, N) = [r_0(Z-1, N+1)+r_0(Z-1, N-1)+r_0(Z+1, N+1) +r_0(Z+1, N-1)]/4$

 209 Rn(Z=86) \Rightarrow^{205} Po (Z=84, A=121) (Odd-N) \Rightarrow^{204} Po (84,120) and 206 Po (84,122) r₀ (84, 121) = [r₀(84, 120) + r₀(84, 122)] /2 From neighboring even-even nuclei (also 1998Ak04) – use r0 for even-even nuclei:

> $r_0(84,120) = 1.476 6$ $r_0(84,122) = 1.4571 33$ weighted average: $r_0(84, 121) = 1.462 8$

□ insert r0= ... in A (alpha) *comment* record (CA):

205PO CA HF\$r0=1.462 8, weighted average of 1.476 6 (204PO) and ...

205PO 209RN A DECAY	1971GO35	04NDS 200404
205PO H TYP=FUL\$AUT=F.G.	KONDEV\$CIT=NDS 101, 521 (2004)\$CUT=1-Feb-2004\$
205P0 cA HF\$Using r{-0}(+205}Po)=1.462 {I8}, weighted	average value deduced
205PO2cA from values for	neighboring even-even {+204}Po	$(r\{-0\}=1.476 \{I6\})$ and
205P03cA (+206)Po (r{-0}=	1.4571 (I33)) nuclei (1998AkO4).
205PO cA E,IA\$From 1971Go	35, unless otherwise specified	
205PO cL E\$From the measu	red E a.	
205PO cL J,T\$From adopted	levels, unless otherwise spec	ified.
205PO cL E(A)\$Configurat:	$on=((p h{-9/2}){++2}{-0+}) $	f{-5/2}){+-1})
205PO cL E(B)\$Configurat:	$on=((p h{-9/2}){++2}{-0+}) $	p(-1/2))(+-1))
205PO cL E(C)\$Configurat:	$on=((p h{-9/2}){++2}{-0+}) $	p(-3/2))(+-1))
209RN P 0.0 5/2	- 28.8 M 9	6155.5 20
209RN cP \$1971Go35: Mass	separated source was produced	in bombardment of a
209RN2cP metallic thorium	target with 660 MeV proton be	ams. Detectors: magnetic
209RN3cP spectrograph wit	h energy resolution of 4-6 keV	; Measured: E a, I a,
209RN4cP T $\{-1/2\}$, and $\$ $. Others: 1955Mo68, 1955Mo69 a	nd 1971Jo19.
209RN cP \$T{-1/2}: Weight	ed average of 28.5 min {I10} (1971Go35) and 30 min
209RN2cP {I2} (1955Mo68);	; % a from 1971Go17. Other %	a=17 (1955Mo68);
205PO N 1.0 1.0	0.17 2	
205PO PN		1
205PO L 0.0 5/2	- 1.74 H 8	A
205PO A 6039 3 99.	617 20 1.17 15	
205PO cA E\$Other: 6037 ke	V (I3) (1955Mo69).	
205PO L 144 4 1/2	- 310 NS 60	В
205PO cL T\$From a g(t)	1971Jo19).	
205PO A 5898 3 0.3	39 20 187 36	
205PO L 155 4 3/2	-	с
205PO A 5887 3 0.2	19 20 105 17	
20EDO I 206 4 /2.	2 \	
203FO L 300 4 (3/	2-)	

Parent 209 Rn: E=0.0; J π =5/2-; T $_{1/2}$ =28.8 min 9; Q(g.s.)=6155.5 20; % α decay=17 2.

²⁰⁹Rn: 1971Go35: Mass separated source was produced in bombardment of a metallic thorium target with 660 MeV proton beams. Detectors: magnetic spectrograph with energy resolution of 4-6 keV; Measured: Eα, Iα, T_{1/2}, and %α. Others: 1955Mo68, 1955Mo69 and 1971Jo19.

²⁰⁹Rn: T_{1/2}: Weighted average of 28.5 min 10 (1971Go35) and 30 min 2 (1955Mo68); ; %α from 1971Go17. Other %α=17 (1955Mo68).

				²⁰⁵ Po Levels			alphad.rpt		
$\rm E(level)^{\dagger}$	Jπ‡	T _{1/2} ‡		Z: 86. A:	209. ALPHAD V	/ersion 1.6 [7-FEB	3-2001]		
0.0 [§] 144 [#] 4 155 [@] 4 3864	5 / 2 – 1 / 2 – 3 / 2 – (3 / 2 –)	1.74 h <i>8</i> 310 ns <i>60</i>	T _{1/2} : From αγ(t)	Q ALPHA 6.1555 20 TOTAL H 28.8 M	E TOTAL 6.1884 20 ALF LIFE ALF 9 0.1	ALPHA HALF LIFE 0.118 D 15 PHA BRANCH .70 20	RADIUS (1E-13 cm) 8.62 5	RZERO 1.4620 80	
[†] From the measured E α . [‡] From adopted levels, unless otherwise specified. [§] Configuration= $((\pi h_{9/2})^{+2}_{0+}(\nu f_{5/2})^{-1})$. [#] Configuration= $((\pi h_{9/2})^{+2}_{0+}(\nu p_{1/2})^{-1})$. [@] Configuration= $((\pi h_{9/2})^{+2}_{0+}(\nu p_{3/2})^{-1})$.			K ENERGY LEVE K 0.000 144 4 155 4 386 4	L ALPHA ENERG 6039 3 5898 3 5887 3 5660 3	Y ABUNDANCE 0.99617 20 0.00139 20 0.00219 20 0.000239 20	CALC. HALF LIFE 0.101 3 0.452 16 0.508 18 6.39 23	HINDRANCE FACTOR 1.17 15 187 36 106 17 77 12		

α radiations

$E\alpha^{\ddagger}$	E(level)	Iαţê	HF^{\dagger}	Comments
5660 <i>3</i>	386	0.0239 20	77 12	
5887 <i>3</i>	155	0.219 20	105 17	
5898 <i>3</i>	144	0.139 20	187 36	
6039 <i>3</i>	0.0	99.617 <i>20</i>	1.17 15	Eα: Other: 6037 keV 3 (1955Mo69).

[†] Using $r_0^{(205Po)=1.462}$ 8, weighted average value deduced from values for neighboring even-even ²⁰⁴Po ($r_0^{=1.476}$ 6) and ²⁰⁶Po ($r_0^{=1.4571}$ 33) nuclei (1998Ak04).

[‡] From 1971Go35, unless otherwise specified.

 $\frac{8}{5}$ For α intensity per 100 decays, multiply by 0.17 2.

α decay - Experiments

- magnetic spectrometers
- ionization chambers
- semiconductor detectors mostly Si
 - ✓ Si(Au), PIPS, DSSD, ...

using radioactive sources (off-line)
 when lifetimes are sufficiently long

using nuclear reactions (on-line)

- ✓ implanting on a catcher foil
- ✓ implanting directly on the DSSD

absolute determinations of α energies using the BIPM magnetic spectrometer with a semi-circle focusing of alpha-particles. These measurements were performed in the 70's - 80's for the most intense alpha-transitions

- ²²⁸Th, ^{224,226}Ra, ^{220,222,219}Rn, ^{216,212,218,214,215}Po, ²¹²Bi, ²²⁷Th, ²²³Ra, ²¹¹Bi, ²⁵³Es, ^{242,244}Cm, ²⁴¹Am, ²³⁸Pu B. Grennberg, A. Rytz, Metrologia 7, 65 (1971)
- ²³²U, ²⁴⁰Pu D.J. Gorman, A. Rytz, H.V. Michel, C. R. Acad. Sci., Ser. B 275, 291 (1972)
- ✓ ²¹⁰Po D.J. Gorman, A. Rytz, C. R. Acad. Sci., Ser. B 277, 29 (1973)
- ²³⁹Pu A. Rytz, Proc. Intern. Conf. Atomic Masses and Fundamental Constants, 6th, East Lansing (1979)
- ✓ ²³⁶Pu A. Rytz, R.A.P. Wiltshire, Nucl. Instrum. Methods 223, 325 (1984)
- ²⁵²Cf, ²²⁷Ac A. Rytz, R.A.P. Wiltshire, M. King, Nucl. Instrum. Methods Phys. Res. A253, 47 (1986).

Two parameters - the radius of curvature ρ and the mean magnetic induction **B**.

 $E(\alpha) = a (B\rho)^2 + b (B\rho)^4 + d (B\rho)^6$ The factors a, b, d are derived from the latest adjustment of fundamental constants (m_e, e and N_A).

The components of systematic uncertainty are due to length measurements $(4.6 \cdot 10^{-5} \text{ E}(\alpha))$, measurement of mean magnetic induction $(1.3 \cdot 10^{-5} \text{ E}(\alpha))$ and combined effect of uncertainties of fundamental constants $(0.3 \cdot 10^{-5} \text{ E}(\alpha))$, i.e. the total systematic uncertainty is $\sim 5 \cdot 10^{-5}$ $\text{E}(\alpha)$ or $\sim 0.3 \text{ keV}$ (²³⁹Pu).

Magnetic $\pi\sqrt{2} \alpha$ -spectrometers with high luminosity

In 1960's three such big magnetic α spectrometers were built in the Soviet Union – in Moscow (Baranov et al.), St. Petersburg (Dzhelepov et al.) and Dubna (Golovkov et al.).

In respect of alpha-particle energies the measurements with $\pi\sqrt{2}$ magnetic spectrometers are relative – one needs to use alpha-energy "standards".

Argonne double-focusing magnetic spectrometer

 \checkmark energy resolution (FWHM) of 5 keV

✓ transmission efficiency of Ω =0.1 % for 6 MeV α -particles

HYSICAL REVIEW C

VOLUME 8, NUMBER 2

AUGUST 1973

Alpha Decay of ²⁵¹Fm[†]

I. Ahmad, J. Milsted, R. K. Sjoblom, J. Lerner, and P. R. Fields

Semiconductor detectors

semiconductor detectors: Passivated Implanted Planar Silicon (PIPS)

energy resolution (FWHM) of <u>12 keV</u>
 small geometrical efficiency of
 Ω=0.225% in order to minimize α-e coincidence summing effects

✓ sophisticated data analysis

²⁵¹Cf α-decay

PHYSICAL REVIEW C 68, 044306 (2003)

Energy levels of ²⁴⁷Cm populated in the α decay of ²⁵¹₉₈C

Δ

²⁵¹Cf α -decay – cont.

		Transitions
Energy (keV)	Intensity (%)	$Initial {\rightarrow} Final$
$38.48 {\pm} 0.05$	$0.038 {\pm} 0.006$	$265.86 \rightarrow 227.38$
52.45 ± 0.05	0.048 ± 0.005	$318.31 \rightarrow 265.86$
58.03 ± 0.05	0.024 ± 0.005	$285.41 \rightarrow 227.38$
60.5 ± 0.1	0.010 ± 0.003	$345.9 \rightarrow 285.41$
61.67 ± 0.05	0.40 ± 0.03	$61.67 \rightarrow 0$
73.00 ± 0.08	0.040 ± 0.005	$134.65 \rightarrow 61.67$
$84.35 {\pm} 0.08$	0.040 ± 0.005	$219.0 \rightarrow 134.65$
104.57 ± 0.02	12.6 ± 0.7	$Cm K\alpha_2$
109.26 ± 0.02	19.8 ± 1.0	$Cm K\alpha_1$
113.7 ± 0.1	0.024 ± 0.005	$518.58 \rightarrow 404.90$
$122.31 \pm 0.02 \pm$		Cm <i>Kβ</i> ₃
123.40 ± 0.02	7.7 ± 0.5	$Cm K\beta_1$
$127.01 \pm 0.04 \pm$		$\operatorname{Cm} K\beta_2 + K\beta_4$
128.00 ± 0.05	2.6 ± 0.2	Cm KO _{2.3}
134.65 ± 0.08	$0.014{\pm}0.003$	$134.65 \rightarrow 0$
$157.35 {\pm} 0.08$	0.020 ± 0.004	$219.0\!\rightarrow\!61.67$
$165.70 {\pm} 0.05$	0.12 ± 0.01	$227.38 \! ightarrow \! 61.67$
177.52 ± 0.02	17.3 ± 0.9	$404.90\!\rightarrow\!227.38$
$227.38 {\pm} 0.02$	$6.8 {\pm} 0.3$	$227.38 \rightarrow 0$
256.65 ± 0.08	0.13 ± 0.01	$318.31 \rightarrow 61.67$
$265.86{\pm}0.08$	0.43 ± 0.03	$265.86 \rightarrow 0$
284.2 ± 0.1	0.12 ± 0.01	$345.9 \rightarrow 61.67$
285.41 ± 0.08	1.13 ± 0.09	$285.41 \rightarrow 0$
289.3 ± 0.1	0.070 ± 0.007	$516.7 \rightarrow 227.38$
291.20 ± 0.08	0.30 ± 0.03	$518.58 \rightarrow 227.38$
315.8 ± 0.1	0.024 ± 0.003	$581.7 \rightarrow 265.86$
318.3 ± 0.1	0.050 ± 0.005	$318.31 \rightarrow 0$
345.9 ± 0.1	0.043 ± 0.004	$345.9 \rightarrow 0$
354.3 ± 0.1	$0.013 \!\pm\! 0.002$	$581.7\!\rightarrow\!227.38$

I. Ahmad et al., Phys. Rev. C68 (2003) 044306

²⁵¹Cf α-decay - normalization

Spectroscopy near the proton drip line

23

On-Line Alpha Spectroscopy of Neutron-Deficient Actinium Isotopes*

KALEVI VALLI, WILLIAM J. TREYTL, † AND EARL K. HYDE Lawrence Radiation Laboratory, University of California, Berkeley, California

✓ using HI fusion reactions to produce various nuclei

 \checkmark collect recoils on a catcher foil

✓ Si(Au) surface-barrier detector or PIPS

✓ using excitation function measurements for isotopic identification

No direct detector implantation

Windmill System (WM) at ISOLDE

A. Andreyev et al., PRL 105, 252502 (2010)

MINIBALL Ge cluster

The AME2012 atomic mass evaluation * M. Wang^{1,2,3}, G. Audi^{2,§}, A.H. Wapstra^{4,†}, F.G. Kondev⁵, M. MacCormick⁶, X. Xu^{1,7}, and B. Pfeiffer^{8,‡}

define the mass surface at the drip-line

Experiments & Techniques

The Heart of RDT: the DSSD

80 x 80 detector 300 µm strips, Each with high, low, and delay line amplifiers, for implant, decay, and fast-decay recognition.

Data from DSSD showing implant pattern 40 cm beyond the focal plane

α 1- α 2 (parent-daughter) correlations

Odd-Z Au (*Z*=79) *isotopes –sample spectra*

31

Neutron-deficient Au nuclei (Z=79)

low-J ground state/high-J isomer
 only 11/2- state known in ¹⁷⁵Au

^{πi}13/2

¹⁷⁹Tl: α-decay properties

$$HF_{i} = \frac{T_{1/2}^{Ep}(\alpha_{i})}{T_{1/2}^{Theory}} = \frac{T_{1/2}^{Ep} / BR_{i}}{T_{1/2}^{Theory}} \qquad T_{1/2}^{Theory} \qquad \text{M.A. Preston, Phys. Rev. 71 (1947) 865}$$

$$(5/2^{+}) \quad \frac{679}{1/2} - - - - \frac{11/2}{1.36 \text{ ms}} \qquad 1/2 + 11/2 - 1/2 + 11/2 - 1/2 + 11/2 - 1/2 + 1/2 + 11/2 - 1/2 + 1$$

¹⁷⁹Tl: lifetimes

¹⁷⁵Au: lifetimes

Guidelines for evaluators

Start with a collection of all references – NSR is very useful!

Complete the ID record – provide information about the key references

✓ how the parent nuclide was produced, which techniques and equipment were used; what was the energy resolution of the spectrometer and what was actually measured

✓ mention other relevant references only by the NSR key number (for the benefit of the reader)

Complete the Parent record

 \checkmark Ex, J^{π} and T1/2 from "Adopted Levels" of the parent nuclide, BUT check for new data and reevaluate, if needed

√ Qα from AME12 (2012Wa38)

Deduce r0 (if not an even-even nuclide) and include it in the HF record

Guidelines for evaluators – cont.

NO GAMMA RAYS WERE MEASURED

\Box Include measured E α and I α with the corresponding level

- ✓ if there is more than one reference you may use averages, BUT be careful need to compare oranges with oranges, e.g. magnetic spectrometer ($\Delta E \sim 4 \text{ keV}$) vs Si ($\Delta E \sim 20 \text{ keV}$)
- \checkmark most measurements are relative to E α from a standard radionuclide. If available, include this information in a comment.
- v use Ritz's (At. Data and Nucl. Data Tables 47, 205 (1991)) evaluated Eα and Iα
 when no new values are available.

 \checkmark renormalize Ia, so that SUM Ia_i = 100 % - have a simple spreadsheet handy

 \checkmark provide comments on Ea and Ia , where appropriate

Complete the Normalization record – BR

✓ BR from Adopted levels of the parent, BUT check for new data are reevaluate, if needed

Guidelines for evaluators – cont.

GAMMA RAYS WERE MEASURED

Include measured Eα and Iα (as in the earlier slide) Include measured Eγ and Iγ

✓ if there is more than one reference you may use averages, BUT be careful – need to compare oranges with oranges

✓ include Mult. & MR – use "Adopted gammas" or J^{π} differences if not available

✓ include measured ICC and/or sub-shell ratios to support Mult. assignment or to deduce MR as a comment record to a corresponding G record

 \checkmark include T1/2 available for a particular level – usually $\alpha\gamma(t)$ coincidence data

Run BrICC to deduce conversion electron coefficients

Run GTOL – determine level energies and intensity balances

Complete the Normalization record – NR and BR

✓ NR - need to convert to %Iγ

✓ BR from Adopted levels of the parent, BUT check for new data are reevaluate, if needed

Guideline for evaluators-cont.

- **Run FMTCHK check that everything is OK**
- **Run ALPHAD calculate HF**
- **Run RADLIST check the decay scheme for consistency**

$$Qeff = \sum_{i=1}^{allBF} Q_i BF_i; Qcalc = \sum_{j=1}^{all\gamma} E_{\gamma} P_{\gamma} + \sum_{k=1}^{all\beta} E_{\beta k} P_{\beta k} + \sum_{l=1}^{all\alpha} E_{\alpha l} P_{\alpha l} + etc. \quad Consistency = \left[\frac{Qeff - Qcalc}{Qeff}\right] \times 100\%$$