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) Introduction

(1-1) What is Entanglement Entropy ?

What is quantum entanglement ?

In quantum mechanics, a physical state is described by a
vector in Hilbert space.

If we consider a spin of an electron (= two dimensional
Hilbert space), for example, a state is generally described
by a linear combination:

W)= T)+bll), |af +|bf=1.



Consider two spin systems.
We can think of the following states:

(i) A direct product state (unentangled state)
1 :
¥)=; 0,9l )+, |
"

Independent

(ii)) An entangled state

w)=|[1) efl) 1) e[t | W2 Q

One determines the other! 3 Non-local correlation




Density matrix formalism

For a pure state, using the wave function\‘P> )
the density matrix is given by p =| ¥ )(¥| .

We can express physical expectation values as

<O> =Tr[O: py |- (Trlpe]=1)

In a generic quantum system such as the one at finite

temperature, it is not a pure state, but is a mixed state.

SH
e.g. p = © for the canonical ensemble.
tot

Trle ]




A measure of guantum entanglement is known as
entanglement entropy (EE), defined as follows:

Divide a quantum system into two parts A and B.
The total Hilbert space becomes factorized:

H,=H,®H; .
Example: Spin Chain ﬁ B
- A\ / \
o-o-e-o-o m) oeeoeoe -eoe

Define the reduced density matrix p, for A by
p,=Tr,p,, . (forpurestate: p,, =|¥)¥).

Finally, the entanglement entropy (EE) SA is defined by
SA — _TrA pA IOg/OA . | (von-Neumann entropy)




The Simplest Example: two spins (2 qubits)

0 7)== 1)

— Pa :TrBU

X

(i) |¥)=|

= po=Tr | P)¥[|= “ UK H] [1/2 1/2]
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B

w)wl= 1), 44, )

X

1.8, +), 8T, | w2

oo
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(1, +4=(s o)

Not Entangled

S, =0.

Entangled

SA

1, 1
=-2-—-log—=log2.
2 g2 )




Note: The standard thermal entropy is obtained as
a particular case of EE: i.e. A=total space.

e_ﬂH
p=—" Z=Tr[e"™].

__9 AH .
™ (Iog[Tr[e 11—-n IogZ)

= $ =~ log[Tr[p"]
on

n—l

:18<H>+|ng ZIB(E_ F) = Sthermal'



A Generalization of EE: Renyi entropy (REE)

Entanglement (n-th) Renyi entropy is defined by
g _ log Tr[(pA)n].
8 1—n
This is related to EE in the limit lim __, Sg’) =S, .

If we know S for all n, we can obtain all eigenvalues
A

of ©,. They are called the entanglement spectrum.



Entanglement entropy (EE)
= A measure how much a given quantum state is
guantum mechanically entangled (or complicated).
~ "active’ degrees of freedom (or its information)

Why interesting and useful ?

It seems still difficult to observe EE
in real experiments (= a developing subject).
But,
(i) recently it is very common to calculate EE in
‘'numerical experiments’ of cond-mat systems.

(i) It offers us a geometrical way to understand QFTs.
(cf. conventional approaches in QFT: local and algebraic)



Ex. EE in two interacting harmonic oscillators

A-\W\B
Consider the system with the Hamiltonian:

H=aa+bb+A(a’b” +ab).
The creation and annihilation operators satisfy

[a,a”]=[b,b"]=1.

We can diagonalize H by the Bogoliubov transformation

@ =coshd-a+sinhd-b", (/1 2sinh gcoshgj
S ~ = .
b =sinh-a* +coshd-b. 1+ 2sinh* 6
1 ~ T~ ~+~
= H a+bb).

= a
1+23Mh29(



The ground state of H:

-

¥)=0 < (cosh@-a+sinhd-b") ¥)=0,
¥)=0 < (sinh@-a"+coshd-h)¥)=0.

O A

\

1 —tanh@-a"b”*
| ¥)=[0), 8]0); = e

0),®/0),,

Now we define the subsystems A and B as follows:

e e —
Generatedby{a™" \O)a} Generatedby{b*" \O)b}



The reduced density matrix is computed as

1 Z::o (tanh 26) n(a*)”\O) <O\ .

2 | a\ la
cosh o, n! s o T

P =

Z_O(tanhze)zn\ n) (n|..

cosh2

(The numberstate: |n) = ﬁ(a+)”\0>aj
n!

Thus we find S, =cosh@-logcosh” & —sinh 8-logsinh? 6.
S,




From quantum many-body systems to QFTs
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EE in Quantum Many-body Systems and QFTs

The EE is defined geometrically
(sometime called geometric entropy).

Continuum o _
Limit a=>0 N : timeslice

\

B ®_@A

R’ Hy=H,®H; .

oB

Quantum Many-body Systems Quantum Field Theories (QFTs)



Historical origin: an analogy with black hole entropy

['t Hooft 85, Bombelli-Koul-Lee-Sorkin 86, Srednicki 93, ...]

As EE is defined by smearing out the Hilbert space for B,
E.E. ~ "Lost Information’ hidden in B

This origin of entropy looks similar to the BH entropy.

Horizon 27

@ —
An observer

The boundary region gA =~ the event horizon ?

As we will explain, a complete answer to this historical question
is found by considering the AdS/CFT correspondence !



The information hidden inside the horizon is measured by
Bekenstein-Hawking formula of black hole entropy:

Statistical Mechanics (Information Theory)

ﬁ Area(Horlzon)

Gravity (General Relativity) Quantum Mechanics
Qauntum Many-body systems







(1-2) Basic Properties of EE

(i) If P is a pure state (i.e. 2. :"PX‘P\ )JandH_ =H,®H,,

then S, =5, - = EEis not extensive !

[Proof]
This follows from the Schmidt decomposition:

¥)=3 Aa), @

= Tr[(p,)"1=Tr[(p5)"],

0
= S, =——Til(p,)"] =S;.
on

b) . N<min{|H, || H,l}.

n—1



(ii) Strong Subadditivity (SSA) [Lieb-Ruskai 73]
WhenH_=H,®H,®H., foranyp,,,

SA+B + SB+C > SA+B+C + SB’

c(s (A
SA+B +SB+C ZSA_l_SC' -

Actually, these two inequalities are equivalent .

We can derive the following inequality from SSA:

‘SA—SB < Sp g $S,+S;. (Note:AnB =g ingeneral)

r 1

Araki-Lieb Subadditivity
inequality



The strong subadditivity can also be regarded as
the concavity of von-Neumann entropy.

Indeed, if we assume A,B,C are real numbers, then

S(A+B)+S(B+C)>S(A+B+C)+S(B),

X+
= 2. S( Zyj>5(x)+3(y), st
A

2

d
— —S(x) <0.
o (X)

(1.e. concave function of x)

-> X



Mutual Information
I(AB)=S,+S,-S, , >0.

This measures an entropic correlation between A and B

and is called the mutual information.

(i) The strong subadditivity leads to the relation:
1(A,B+C)> (A, B).

(ii)) The mutual information gives a bound for two point

functions:
| ‘<OA'OB>_<OA>'<OB>‘2
(A B)> : 2
2||OA|| '”OB ”




(iii) Area law [Bombelli-Koul-Lee-Sorkin 86, Srednicki 93]

EE in QFTs includes UV divergences.
Area Law

The leading divergence of EE in a d+1 dim. QFT with a
UV fixed pt. (i.e. local QFT) is proportional to the area
of the (d-1) dim. boundary A :

Area(cA)

d-1

Sp~

+ (subleading terms),
[a: UV cut off (latticespacing)]

Intuitively, this property is understood like: s A
Most strongly entangled —————




Comments on Area Law

* The area law can be applied for ground states or
finite temperature systems. It is violated for highly
excited states. (Note §, <log(dim H ,) = Vol(4) .)

* There are two exceptions:

[ > [

C >
(a) 1+1dim. CFT §,=—log—. B A 5
3 a

[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04]

1

(b) QFT with Fermi surfaces (k, ~a )

S !

[Wolf 05, Gioev-Klich 05]



Ex. Volume law in Non-local QFTs [Shiba-TT 13]
Consider a 1+1 dim. QFT defined by

H = [dX[4(0)* + p(x)e™ 7 g(x)].

S A 30z(L) A=80 S Asoo(s)m A=1000
| | A=800
A=60 ) A=600
_ A=400
A=40 ;
—uf I I
. (AL/2  (L<< A)
= 9 : Volume law |
A
cA® (L>>A)

.

Note: Ground states for generic (non-local) Hamiltonian follow the volume law.



* A rigorous proof of area law is available for free field
theories. [e.g. Plenio-Eisert-Dreissig-Cramer 04,05]

* The AdS/CFT predicts the area law for strongly interacting
theories as long as the QFT has a UV fixed point.

* The UV divergence cancels out in the mutual information.

— I(4,B)=S,+S,—S, , =finite>0, if AUB=4¢.

®é




* The area law resembles the Bekenstein-Hawking formula
of black hole entropy:

Area(horizon)
Sgy = :
4G,

Actually, the EE can be interpreted not as the total but as a
partial (i.e. quantum corrections) contribution to the black
hole entropy. [Susskind-Uglm 94]

® A more complete understanding awaits the AdS/CFT !



(1-3) Applications of EE to condensed matter physics

SA ~ Log[ Effective rank” of density matrix for A]
= This measures how much we can compress
the quantum information of O, .

Thus, EE estimates difficulties of computer simulations
such as in DMRG etc. [0sborne-Nielsen 01, ...]

Especially, EE gets divergent at the quantum phase
transition point (= quantum critical point).
= EE = a quantum order parameter !



Ex. Quantum Ising spin chain

The Ising spin chain with a transverse magnetic field:

H = —Z o —/IZ oo,

SA n nC 5

“ \ «— S, ~—-log=
Pargmagnetism | 6 a

Ferromagnetism
<GZ > ~0 [Vidal-Latorre-Rico-Kitaev 02,
M . Z Calabrese-Cardy 04]

= This offers a useful numerical method to calculate c.



Topological Entanglement Entropv [Kitaev-Preskill 06, Levin-Wen 06]
In a 2+1 dim. mass gapped theory, EE behaves like

|
SA:7/°5+Stop ' ’IZ

The finite part S;; (< 0) isinvariant under smooth
deformations of the subsystem A. = Topological !

* Top. EE offers us an order parameter of topological

systems. (cf. corretatienfemctions )

 Recently, Top. EE has been employed to show the
existence of spin liquid phases. [jiang-wang-Balents 12]
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2 Calculations of EE in QFTs

A basic method of calculating EE in QFTs is so called
the replica method.

O . O "
S,=——1r, (pA) o =—— logTr, (pA) -

on on
(2-1) 2d CFT
By using this, we can analytically compute the EE in
2d CFTs.  [Holzhey-Larsen-Wilczek 94,..., Calabrese-Cardy 04]
The replica method is also an important method to
(often numerically) evaluate EE in more general QFTs.



In the path-integral formalism, the ground state wave
function |¥) can be expressed in the path-integral

formalism as follows:

1=,

t

) ,
)= | hanmasaad - (¥1= .
 pah inegrt § ;
t=n |




Next we express p, = Tr| ¥ )(¥|.

[pA]ab -




Finally, we obtain a path integral expression of the trace
Tr(p4)" =[Palwlpal[Ps] as follows:

Glue each boundaries successively.

Tr (pA)n = BT s

= a path integral over
n-sheeted Riemannsurface X

n sheets {



In this way, we obtain the following representation

/

Tr(pA)n = (Zn)n :

where Zn is the partition function on the n-sheeted
Riemann surface Zn.

To evaluate Z , let us first consider the case where

the CFT is defined by a complex free scalar field ¢
c=2

It is useful to introduce n replica fields @,@,, @,

on a complex plane 2 _ =C.



Then we can obtain a CFT equivalent to the one on Zn
by imposing the boundary condition

?, (e (z-u)) = d.a(Z-U), ?, (e (z-V)) = &1 (Z2—V),

z plane

¢k +1

C— Z)

~ 1
By defining @, = - >ie”™ "¢ conditions are diagonalized

b (e (z-u) =e*™"g (z-u), 4 (" (z-V)=e """ (z-V),




Using the orbifold theoretic argument, these twisted
boundary conditions are equivalent to the insertion of
(ground state) twisted vertex operators at z=u and z=v.

This leads to
B L “Linzam)
Tr (pA) = H<O-k/n (U)G—k/n (V)> oC (U _V) }
k=0

. . 27ik/n
o,,, . Twist operator st. ¢ > e @

2
Conformaldim. : A(Gk/n)z—%(ﬁj +lﬁ :



For general 2d CFTs with the central charge ¢, we can
apply a similar analysis. In the end, we obtain

Tr(p,)' oc (u-v) ¢

In the end, we obtain

SAzglogl

; Z (l=v—u).

[Holzhey-Larsen-Wilczek 94]

Note: the UV cut off a is introduced such that
S,=0 at/=aq.



General CFTs [calabrese-Cardy 04]

w—Uu

Consider the conformal map: z" =

-0

_c(l—-n" ) (v—u)’
Tw) = dw T(Z)+I_{Z Wi = 24 (w—u)*(w—v)>

=0 Schwarzian
derivative
—2
c(l—n c(n—1/n
— Aeach:-;hee‘[ — ( 24 )9 A‘[0‘[ — nAeachsheet = ( 24 )'



More general results in 2d CFT [calabrese-Cardy 04]

S —Clogx
== b

— C ool
X Massga\p‘ S 4 :glogg

Finite Term S, = —log[ﬁ mnh[ﬂ. x]]
it

3 T

| |
B A ! —> SA :glog[;j +10g g,

Boundary Boundary Entropy

[Affleck-Ludwig 91]

O = sl ()



. t Light cone
Entropic C-theorem [Casini-Huerta 04] 0

Consider a relativistic QFT. AU RB
We have SA +SB > SAUB +SA(\B )

> X

ZA 'ZB = lAuB 'lAmB




(2-2) Higher dimensional CFT

We can still apply the replica method:

0 n
S, :_8 log|Tr (pA) |
n

n=l1

_i log

on

(Z))

n=I1

However, in general, there is no analytical way to

calculate Z . (Twist operators’ get non-local !)

Thus in many cases, numerical calculations are needed.

=) One motivation to explore the holographic analysis !



3 Holographic Entanglement Entropy

(3-1) What is "Holography” ?
In the presence of gravity,

A lot of massive objects - Black Holes (BHs)

ina small region  °.°/. :
®ee Horizon

The information hidden inside BHs is measured by
the Bekenstein-Hawking black hole entropy:
S _ Area(Horizon)
BH 4GN




This consideration leads to the idea of entropy bound:

Area(cA)

OA
S(A) < G, @

(S(A) = the entropy in a region A)

m) The degrees of freedom in gravity are
proportional to the area instead of the volume !

cf. In non-gravitational theories, the entropy is
proportional to volume.



Motivated by this, holographic principle has been
proposed [t Hooft 93, Susskind 94, ....]:

Often, lives on the boundary
of (d+2) dim. spacetime

Holographic Principle /

(d+2) dim.  Equivalent (d+1) dim.
Quantum gravity Non-gravitational theory
(e.g. QM, QFT, CFT, etc.)

Q)
<

Boundary ;-

Note: Holography offers us
M d+2 a non-perturbative definition

ity |
Bulk of quantum gravity !




(3-2) AdS/CFT (the best example of holography)

Quantum Gravity (String theory)
on d+2 dim. AdS spacetime

(anti de-Sitter space)

‘ Classical limit

General relativity with A<0
(Geometrical)

AdS/CFT

[Maldacena 97]

Conformal Field Theory
— (CFT) on d+1 dim.
Minkowski spacetime

4

Strongly interacting
quantum many-body systems

Large N limit
Strong coupling limit




lIBstring on AdS,xS° < 4D N =4 SU(N) SYM |

>

SO(2,4) = 4D conformal symmetry
SO(6) = R-symmetryof N=4SYM

RAdS oC N1/4
lPlanck

R —_ (NgI%M)I/4 E/Il/4,
lString

(i) small guantum gravity corrections = large N CFT
(ii)) small stringy corrections = strong coupled CFT

In this lecture, we mainly ignore both of these corrections.
Therefore we concentrate on strongly coupled large N CFT.



The meaning of the extra dimension

m
E =M\ — g, *—.
Z

particle

um/\m 2>>1
-

z ~ length scale

Boundary: CFT,,,

+ Bulk: AdS,,
2 _R? dz® —dt* +dx*

| ds® =

z=a (UV cut off) | 77

The radial direction z corresponds to the length scale
in CFT under the RG flow. (1/z ~ Energy Scale)



Bulk to boundary relation

The basic principle in AdS/CFT to calculate physical
guantities is the bulk to boundary relation [Gkp-w 93]:

(M) = Zcer (M),

GraV|ty




Quantum Information in AdS ?

A Basic Question: Which region in the AdS does
encode the ‘information in a certain region’ of the CFT ?

AdSe ¢l (,

Region A in CFT, R:egion X,in AdS,,,

» Consider the entanglement entropy SA which
measures the amount of information !




(3-3) Holographic Entanglement Entropy (HEE)

Holographic Entanglement Entropy Formula

[Ryu-TT 06]
CF/le (We omit the time direction.)
g _ Area(y »)
B Ade+2
Ya is the minimal area surface /A
(codim.=2) such that =

0A=0y, and A~y, . z>a (UV cut off)
—dt’ +Z:dxf +dz?

Z2

homologous

2 2
dSAdS — RAdS



Motivation of HEE

Here we employ the global coordinate of AdS space
and take its time slice at t=t,,.

The informationin B
is encoded here.

Ade+2
In global Coordinate



The HEE suggests that

A spacetime in gravity
= Collections of bits of quantum entanglement

Area(y,) Area(y,)
S, = ~ > .
4G [

pl
Y A

<7 Planck length

One Possiblity: Entanglement Renormalization (MERA) will be discussed later.



Comments

* If backgrounds are time-dependent, we need to employ
extremal surfaces in the Lorentzian spacetime instead of
minimal surfaces. If there are several extremal surfaces we
should choose the smallest one.

[Hubeny-Rangamani-TT 07]

* In the presence of black hole horizons, the minimal surfaces
wrap the horizon as the subsystem A grows enough large.
= Reduced to the Bekenstein-Hawking entropy, consistently.



(3-4) Verifications of HEE

* Confirmations of basic properties:

Area law, Strong subadditivity (SSA), Conformal anomaly,....

e Direct Derivation of HEE from AdS/CFT:

(i) Pure AdS, A = a round sphere [Casini-Huerta-Myers 11]

(ii) Euclidean AdS/CFT [Lewkowycz-Maldacena 13, Faulkner 13, cf. Fursaev 06]
(iii) Disjoint Subsystems [Headrick 10, Faulkner 13, Hartman 13]

(iv) General time-dependent AdS/CFT - Not yet.
[But, evidences of SSA: Allais-Tonni 11, Callan-He-Headrick 12, Wall 13]

e Corrections to HEE beyond the supergravity limit:

[Higher derivatives: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,..... ]
[1/N effect: Barrella-Dong-Hartnoll-Martin 13,... ]
[Higher spin gravity: de Boer-Jottar 13, Ammon-Castro-lIgbal 13]



Leading divergence and Area law

For a generic choice of 7a, a basic property of AdS gives

Area(y,) ~ R® Areaiy,) + (subleading terms),

a.d—l

where R is the AdS radius.

Because 0y, =0A , we find

_ Area(0A)

901
This agrees with the known area law relation in QFTs.

S, + (subleading terms).



Holographic Strong Subadditivity

The holographic proof of SSA inequality is very quick !

A
B
C

o

A

B
C

o

3

>

vV
O ™ >

A

B
C

[Headrick-TT 07]

> — SA+B + SB+C 2 SA+B+C + SB

>
>

= S +95.c 29, +5¢

Note: This proof can be appliedif §, = Mm[F(;/A)]

for any functional F.

= higher derivative corrections



HEE from AdS3/CFT2
In AdS3/CFT2, the HEE is given by the geodesic length

in the AdS3:
dz® —dt® +dx°
ds® =R*- 2 .
V4
This is explicitly evaluated as follows: ¥

2 |52
X=+I°-2° = ds’ . = az_
2’17 -17° |I
| :2Rlogz—|.
|2 2 a

! ) 4

L(7,) = 2R[ dz :



Finally, the HEE is found to be

L(y) 2R 2|j c (le
S, = = logl — [=—=log| — |,
*4GH 460 g(a 39 a

where we employed the famous relation

3R
C =

B 26&3) . [Brown-Henneaux 86]

In this way, HEE reproduces the 2 dim. CFT result.



Finite temperature CFT

|
Consider a 2d CFT in the high temp. phase E >>1

= The dual gravity background is the BTZ black hole:

2

ds® =—(r* —r;)dt* +— - dr’ +r°d¢’,
H
L r,
where ¢ ~ ¢+ 2, _:E>>1'

— S, =Elog[ﬁsinh(ﬁjj .
3 a £

agreeswith the 2d CFT result.



Geometric Interpretation
(i) Small A (ii) Large A

vent Horizon

:

When Ais large (i.e. high temperature), y, wraps
a part of horizon. This leads to the thermal contribution
S,=(x/3)cIT totheentanglement entropy.

Note: §,#S, duetothe BH.

E
A



Disconnected Subsystem and Phase Transition

A = Al U A2 [Headrick 10]

A, A4, 4, A,

V. - |V \V

phase transition

This is consistent with the CFT calculations done

N [Furukawa-Pasquier-Shiraishi 08, Calabrese-Cardy-Tonni 09] .



Derivation of HEE Formula

Let us try to derive the HEE from the bulk-boundary
relation of AdS/CFT. = We employ the replica method.

In the CFT side, the (negative) deficit angle 27(1—n) is
localized on OA:

Trlod © //m)//

nsheets < &

Naive Assumption : The AdS dual is given by extending
the deficit angle into the bulk AdS. [Fursaev 06]



= The curvature is delta functionally localized on the

deficit angle surface: / A
sy LF
v
V4

!

1 Area(y,)
S ity = dx“?JgR+... = AZ.(n-1).
S =—i10gtrApZ =—ilog Zy :Area(yA).
on on (Z,)" 4G,
A iy =0 — y, = minimal surface!



However, this argument is not exactly correct | [Headrick 10]
= Indeed, tr,p’, (Renyi entropy) does not agree with
the known 2d CFT results for n=2,3,...

Recently, it was explained that this naive argument gives
correct results only in the n—>1 limit [Lewkowycz-Maldacena 13]:

tl‘ApZ should be dual to a smooth geometry without
any deficit angles. However, the difference becomes

[trApZ ]Smooth o [trApZ ]Singular — O((n o 1)2 ) (ﬂ — 1)

owing to the Einstein eq. = Correct results for EE !
But not for Renyi entropy !



Higher derivative corrections to HEE

Consider stringy corrections but ignore loop corrections in
AdS. (©deviations from strongly coupled limit, but still

large N in CFT)
[Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,.. Dong, Camps 13]

Ex. Gauss-Bonnet Gravity

Seas = _16%3N jdXd+2ﬁ[R—2A+lR§ds Les]
L.s=R R”Vpa—4RWR”V+R2.

HVpOo

winl L d 2
D S, =Min ﬁjmclx Jh(1+2AR%,R) |




(3-5) HEE in Higher dim.
Consider the HEE in the Poincare metric dual to a CFT
on R4, We concentrate on the following two examples:

(a) Strip (b) Circular disk




Entanglement Entropy for (a) Infinite Strip from AdS

Rd L d—1 L ad—-1
s (8]
2(d -Gy a [

\ d
where C =277 F[M) (1 .
2d 2d )

Area law divergence

This term is finite and does not depend

on the UV cutoff.
d=1 (i.e. AdS3) case:
R I ] Agrees with 2d CFT results
SA = 3 log— = —log—. [Holzhey-Larsen-Wilczek 94 ;
2Gy a 3 a Calabrese-Cardy 04]



Entanglement Entropy for (b) Circular Disk from AdS

792 pd i
S4 =S
2G,T(d/2)

[Ryu-TT 06]

l d—1 l d-3
() of) -
a a

DPa (i] + Py (1f d = even \Area law
. divergence
"t l 5 , ,
Pa-s [_ q log(—] (if d = odd)
. a a )
where p, #(d-1)7", p\ =—(d -2)/[2(d -3)].....

q=(D"

)/ -1

A universal quantity which
characterizes odd dim. CFT

= Satisfy ‘C-theorem’

[Myers-Sinha 10; closely related

to F-theorem Jafferis-Klebanov-
Pufu-Safdi 11]

Conformal Anomaly (central charge)
2d CFT  c¢/3-log(l/a)
4d CFT -4a-log(l/a)

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-
Schwimmer-Theisen 09, Dowker 10, Casini-Huerta, 10,
Myers-Sinha 10, Casini-Hueta-Myers 11]



@ Properties of EE for Excited States
(4-1) One Simple Motivation

1%t [aw of thermodynamics: T = dS = dE
Temp. Information Energy
= Can we find an analogous relation in any quantum systems
which are far from the equilibrium ?

Something like: Tent = dSA = dEA ??
Information in A Energy in A
= EE

Can we observe EE ??



(4-2) Holographic Calculation of EE for excited states

Consider an asymptotically AdSd+2 background
(= an excited state in CFTd+1):

R? d
ds” = 2_2(— F@)t? + g()dz” + 3 ax?)
f(z)=1-mz®*+., g(@)=1+mz®" +...
dR%m We do not care
=e=T, = 167G, the details of IR.
Energy density

N
AdS bdy \
Z

IR__
UV 4,;?-?) >

oo




Assume the size | of subsystem A is small such that

mlo <<1

then we canshow T_ -AS, =AE,, ‘I /

where AE, = L\dXdTu-

The ‘entanglement temperature’ is given by Tent = —,

The constant c is universal in that it only depends on the shape

of the subsystem A: eg. C= % whenA = a roundsphere.
7T



Holographic Prediction

Consider exited states in a CFT which has approximately

translational and rotational invariance.

If the subsystem A is small enough such that
d+1 d 2
T, "7 <<R" /G, =O(N"),
then the following 1%t [aw’ like relation is satisfied:

s Tt

ent ASA — AEA’ ent

Info. Energy

Note: The constant c depends only on the geometry of A.




More Recent Progresses

(1) The first law can be simply [Blanco-Casini-Hung-Myers 13,

expressed as follows: Wong-Klich-Pando Zayas-Vaman 13]
— —HA
AS,=AH,, (pa=e").

(2) The perturbative Einstein eq. is equivalent to a
constraint of HEE:
-0, -t 3 ]5,%)=(0)(0)

[Nozaki-Numasawa-Prudenziati-TT 13, Bhattacharaya-TT 13]
(3) Moreover, the first law was shown to be

equivalent to the perturbative Einstein eq.

[Lashkari-McDermott-Raamsdonk 13, Faulkner-Guica-Hartman-Myers-
Raamsdonk 13]



(4-3) Large Subsystem Limit of EE [Nozaki-Numasawa-TT 14]

If the size of subsystem A is large (or equally for largely
excited states), then the details of the IR geometry are
very important.

= We cannot expect any universal properties
like the first law.

= We will study solvable explicit examples
(i.e. massless free scalar field theory)
by direct field theory calculations.



We will focus on the following quantities:
as{’[o)]=s[0)]-s{vac)],

Excited state : |O) = O(x)| vac).

Sﬁ\”)ﬂ‘ﬂ]: Entanglement n - th Renyi Entropy
for thestate| V')




Replica Method for Excited States

We want to calculate Tt (,OA )n for

Pt (1, X) =™ O(x)| vac)(vac|O(x)e *'e™
= O(z,, x)|vac)(vac|O(z,, x),
(r,=—c—1t, 1, =—c+It),
where ¢ Is the UV regulator for the operator.

Note: T denotes the Euclidean time. We compute the
time evolution via the Euclidean analytical continuation.



Considerad +1dim. CFT.

(7,%,%,, -, X;) € R = Weset x, +ir=re".

(vac|O(z,, x)

O(z,, x)| vac)




In this way, the (Renyi) EE can be expressed in terms of

correlation functions (2n-point function etc.) on 2n :

——|10g(0(5,.60(1,.07) 05, 6)0(1,.01),

ASYY =

n

—n-log(O(r;,6,)O(r,. 6, )>Z }

|/ == 2Zn
n-sheets

T/ \\\_\ // ,__L / [See also
K <27 A [ __J Berganza-Alcaraz-Sierra 11]




Explicit Calculations of (Renyi) Entanglement Entropy

We focus on the free massless scalar field theory
d+1
s = [d**x[o,40"g)
and calculate 2n-pt functions using the Green function:

1 a.1/n . a—l/n

dnzrs(a—1/a) a’"+a " — 2cos((@—¢)/n)’

G,[(r,0,X);(s,9,¥)] =

a s |
where =, O(r,0,z") 4T
1+a° | X—-y| +r<+s o 0

The operator O Is chosen as
O, =4




Time evolution in free massless scalar theory

ASP?) for O=¢: (i.e.k=1) (

and X, =---=Xx,; =0.
2 dim.
0.6: Operator
[ n) f -
AS& ) g
Interested e
0.2- quantities ! Entangéedpalr
"0 IIO 20 30 40 50 60 70 t t <
2t?
2
E.9.  AS{gim = Iog(t2 NE j
[
O~ @710
Our conjecture: | d
’ —AS™M > 0. B

(Monotonicity) |dt

Wechose x, =—I| with | =10

J




AS(V' for O=¢" in d+1>2dim.

TABLE L AS(/ and ASY, (: ASDY ) for free massless

scalar field theories in dimensions higher than two (d > 1).

nlk=1 k=2 k=1

2 Vlog /103;% \

ASTY | 3f[ 1og2 | \Llog32 ) [---|:

m\| log 2
ASY [ 1 Nog | )

EE \

What do these mean ?
EPR state ! (Log[rational number] ?)



AS(V' for O=¢" in d+1>2dim.

TABLE 1. AS( and ASY, (: ASDT ) for free massless

scalar field theories in dimensions higher than two (d > 1).

1k =1 k=2 k=1
2 [ log 2 log 3 —log (gér > =0 (zC‘j)Q)
&Siﬂ]f 3| log2 % log 3_52 _Tl log (2—1! Z;:D (16'3)3)
2m—1 ™
m | log 2 ﬁlogh ﬁlﬂg(g—iﬂ Z;:D(IOJ) )
AST 1 ]10g2 3 1og 2 |llog2— - 30 1C; log i Cy

|Cj = ———
(=t




General interpretation

First , notice that in free CFTs, there are definite
(quasi) particles moving at the speed of light.

= o= ¢ + ¢ - [L=

left-moving right-moving

A

R=

B

#"|vac) =Y C- () (4:)"|vac)

2|</2Z“J o\/7‘ ‘k—j
|

Normalizedas ( j|j') =




By tracing out the subsystem B(=R), we find that
the matrix pa is the k+1 times k+1 diagonal matrix:

/kco A

pa=2""

\ ka/
1 [_ k ]
(n)f nk n
= AS{ —ﬁlogz 2.0 &C)
AS;=k|0g2—2_kZ?ZOij-Iog[ij].

This agrees with explicit results from the replica method.
It suggests that AS{™" is “topological invariant’ w.r.t. A.



(4-4) Free Scalar CFT in 2d

In two dimension (d=1), the left and right decomposition
is exact !

In the massless scalar field theory, there is one subtlety:
the conformal dimension of ¢ is vanishing.

Thus O = ¢" : is not a good local operator !

= Instead, we can consider
O,=¢e: or 0O,=e%:+:e7:



In the case O, =: el?? - e find the result is trivial:

AS™T =0,

This is simply because O, = gl VaCL> ® '

vacy )
is a direct product state.

On the other hand,

O, =e'**|vac, )®e'“*|vac, ) +e"**
| Te 014,

is the EPR state and indeed we find AS{"' =log2.

vac, ) ®e ™

vacy )



(4-5) Interacting Rational CFTs

We can show that the late time EE in 2d rational CFTs
s givenby AS("" =log d,

[He-Numasawa-Watanabe-TT 14]

Here do is so called the quantum dimension:

S
d — | ,.O |
7 SI,I

which measures degrees of freedom of an operator O.



Example: Ising model

3 conformal blocks: [1], [o], [£].
[H®[1]=[1]. [e]® [e]=][l]. =d, =d, =1
[c]®[c]=[11®[]. =d_ =4/2.

Thus we find: ASY[1]1=4SY[£]=0,
ASP[o] = log+/2.



(5 Holography and Entanglement Renormalization

(5-1) Outline
We may obtain a metric from a CFT as follows:

a CFT state = EE = Minimal Areas = metric

V) S, Area(y,) 9.

One candidate of such frameworks is so called the
entanglement renormalization (MERA) [vidal 05]

as pointed out by [swingle 09].
[cf. Other approach to emergent gravity: Raamsdonk 09, Lee 09]



Basic Idea

Classify the entanglement between spins by their ranges.

1 qubit
= an unit area in QG
e

Dynamics of LP>
=Waves of Entanglemet
—@Gravitational waves

S,=5(x,y,1)
<0, ((x+y)/2,2=y-xt)

Extra dimension (z=y-x)




(5-2) Tensor Network (TN)

[See e.g. the review Cirac-Verstraete 09]
Recently, there have been remarkable progresses in
numerical algorithms for quantum lattice models, based
on so called tensor product states.

This leads to various nice variational ansatzs for the
ground state wave functions in various quantum many-
body systems.

= An ansatz is good if it respects quantum entanglement
of the true ground state.



T - M,

Ex. Matrix Product State (MPS) [DMRG: white 92,...,

Rommer-Ostlund 95,..]

a. =12,.., 7,
[0-102 dn] o =Tor+<.

Spin chain ‘

W)= Y TM(0)M(0,)M(o,)] 01,0, .0,

01,09, 0 n Spins




MPS and TTN are not good near quantum critical points
(CFTs) because EE in CFTs are too large to describe:

S,<2logy (<<logL~S;™").

SA - |\Iint °|OgZ’
N.. = min[# Intersections of y,].

In general,




(5-3) AdS/CFT and (c)MERA

MERA (Multiscale Entanglement Renormalization Ansatz):

An efficient variational ansatz for CFT ground states
[Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT,
we add (dis)entanglers.

Unitary transf.
between 2 spins

—

0y 0 03 0, 05 05 0; Oy 0, 0, 03 0, 05 05 0; Oy



Calculations of EE in 1+1 dim. MERA

A= an interval (length L)

S, o Min[#Bond

—> agrees with 20



A conjectued relation to AdS/CFT [swingle 09]

/ Min[#Bonds] Min[Area]

/
uﬂ:_g(zji I VA

Equivalent ?
Ade+2
C/Fkl
2u 2 A+2 | w2
Metric = ds” +e—2(—dt2 +dx?*) = 0z dt2 +OX ,
g Z

where z=a-e™" .



Now, to make the connection to AdS/CFT clearer, we
want to consider the MERA for QFTs.
Continuous MERA (cMERA)

[Haegeman-Osborne-Verschelde-Verstraete 11]

P (u)) :P-exp(—ijuwds[K(s)JrL])- Q)

True ground state IR state
(highly entangled) (no entanglement)

—> Real space renormalization flow : lengthscale~a-e™.
K(u) : disentangler, L: scale transformation

Conjecture
d+1 dim. cMERA = gravityon AdS,,, z=a-e".




(5-4) Emergent Metric from cMERA [nozaki-Ryu-TT 12]

We focus on gravity duals of translational invariant
static states, which are not conformal in general.

We conjecture that the metric in the extra direction is
given by using the Bures metric (or Fisher information
metric):

g,,du® =N -(1—‘<\P(u) |e™ | ¥ (u +du)>m .

N = J‘dxd ’IAEU dk? — The total volume of phase space
- 0 at energy scale u.



Bures Metric

The Bures distance between two states is defined by

D(y,,v,) :1_‘<l//1 |l//2>‘2'

More generally, for two mixed states p1 and p2,

D(p1, p,) =1—Tr\/\ﬁp2\/,071.

When the state depends on the parameters {¢i},
the Bures metric (Fisher information metric) is defined as

Dy (&), w (& +d&)|=g,d&'d& ]

= Reparameterization invariant
(in our case: coordinate u)




Explicit metric in toy example: free scalar

2U

:guudu2 +e d)_(Z _gttdt2

E

2
dSGraVity 2

(i) Massless scalar (E=k)

Juu =% —> thepure AdS

(ii) Massive scalar

e4u

2U 2 2\ 2
4" +m°/A%) Capped off in the IR z<1/m
2

2
— ds? = 92 +( 1 _m j(d)?z—dtz).

guu —

72 A°z°% A?



Time dependent metric from the 2d Quantum Quench

Looks like gravitational waves.
[Mollabashi-Nozaki-Ryu-TT 13]

We can also analytically confirm the linear growth: SAcct
because g(u)oct at late time in any dim.

This is consistent with the 2d CFT result [calabrese-Cardy 05].
and with the holographic result (any d). [Hartman-Maldacena 13]



