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(1-1)  What is Entanglement Entropy ?

What is quantum entanglement ?

In quantum mechanics, a physical state is described by a 
vector in Hilbert space.  

If we consider a spin of an electron (= two dimensional 
Hilbert space),  for example, a state is generally described 
by a linear combination:
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① Introduction



Consider two spin systems.  

We can think of the following states:

(i)   A direct product state (unentangled state)

(ii) An entangled state
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Density matrix formalism

For a pure state, using the wave function        , 

the density matrix is given by                       . 

We can express physical expectation values as 

In a generic quantum system such as the one at finite 

temperature, it is not a pure state, but is a mixed state.

e.g.                           for the canonical ensemble. 
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Divide a quantum system into two parts A and B.
The total Hilbert space becomes factorized:

Define the reduced density matrix       for A  by

Finally, the entanglement entropy (EE)        is defined by

(von-Neumann entropy)

A
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A BExample: Spin Chain

A measure of quantum entanglement is known as      
entanglement entropy (EE), defined as follows:
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Note:  The standard thermal entropy is obtained as 

a particular case of EE:   i.e. A=total space.
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A Generalization of EE:  Renyi entropy (REE)

Entanglement (n-th) Renyi entropy is defined by

This is related to EE in the limit                                  .

If we know          for all n,  we can obtain all eigenvalues

of        .  They are called the entanglement spectrum.



Entanglement entropy (EE) 

= A measure how much a given quantum state is

quantum mechanically entangled (or complicated). 

~ `active’ degrees of freedom (or its information)

Why interesting and useful ?

It seems still difficult to observe EE     

in real experiments (→ a developing subject).  

But, 

(i) recently it is very common to calculate EE in  

`numerical experiments’ of cond-mat systems.

(ii) It offers us a geometrical way to understand QFTs. 

(cf. conventional approaches in QFT: local and algebraic)



Ex. EE in two interacting harmonic oscillators

Consider the system with the Hamiltonian: 

The creation and annihilation operators satisfy  

We can diagonalize H by the Bogoliubov transformation 
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The ground state of H:

Now we define the subsystems A and B as follows:
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The reduced density matrix is computed as

Thus we find 





























a

n

a

aan

n

n

aa

n

n

n

A

a
n

n

nn

aa
n

0)(
!

1
    :statenumber  The

.)2(tanh
cosh

1
    

00)(
!

)2(tanh

cosh

1

0

2

2

0

2

2









.sinhlogsinhcoshlogcosh 22  AS

λ0 1

AS

Tne /



From quantum many-body systems to QFTs
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EE in Quantum Many-body Systems and QFTs

The EE is defined geometrically 

(sometime called geometric entropy). 

BA B A
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Quantum Many-body Systems Quantum Field Theories (QFTs)



Historical origin: an analogy with black hole entropy
[’t Hooft 85, Bombelli-Koul-Lee-Sorkin 86,  Srednicki 93, …] 

As  EE is defined by smearing out the Hilbert space for B,

E.E. ~ `Lost Information’ hidden in B

This origin of entropy looks similar to the BH entropy. 

The boundary region           ~  the event horizon ?

As we will explain,  a complete answer to this historical question 
is found by considering the AdS/CFT correspondence !              

? ?Horizon

observerAn 



The information hidden inside the horizon is measured by

Bekenstein-Hawking formula of black hole entropy:
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Quantum Many-Body Systems    
(QFTs, Condensed  matter, Stat. Mech.)
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(1-2) Basic Properties of EE

(i) If         is a pure state (i.e.                    ) and                       

then

[Proof]  

This follows from the Schmidt decomposition:
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⇒ EE is not extensive !



(ii) Strong Subadditivity (SSA)  [Lieb-Ruskai 73]

When                                 for any        ,

Actually, these two inequalities are equivalent . 

We can derive the following inequality from SSA:
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The strong subadditivity can also be regarded as 

the concavity of von-Neumann entropy. 

Indeed, if we assume A,B,C are real numbers, then 

 x)offunction  concave (i.e. 
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Mutual Information

This measures an entropic correlation between A and B

and is called the mutual information.

(i) The strong subadditivity leads to the relation:

(ii)  The mutual information gives a bound for two point 
functions: 
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(iii) Area law 

EE in QFTs includes UV divergences. 

The leading divergence of EE in a d+1 dim. QFT with a 

UV fixed pt.  (i.e. local QFT) is proportional to the area 

of the (d-1) dim. boundary         : 

Intuitively, this property is understood like:  

Most strongly entangled 
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Comments on Area Law

• The area law can be applied for ground states or 
finite temperature systems. It is violated for highly    
excited states.  (Note                                              .)    

• There are two exceptions:

(a)  1+1 dim.  CFT

(b)   QFT with Fermi surfaces (                )

A

B A B
[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04]

[Wolf 05, Gioev-Klich 05]



Ex. Volume law in Non-local QFTs  [Shiba-TT 13]

Consider a 1+1 dim. QFT defined by 

Volume law !
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• A rigorous proof of area law is available for free field    
theories.  [e.g. Plenio-Eisert-Dreissig-Cramer 04,05]

• The AdS/CFT predicts the area law for strongly interacting 
theories as long as the QFT has a UV fixed point.

• The UV divergence cancels out in the mutual information.

A B
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• The area law resembles the Bekenstein-Hawking formula 
of black hole entropy: 

Actually, the EE can be interpreted not as the total but as a 
partial (i.e.  quantum corrections) contribution to the black 
hole  entropy.   [Susskind-Uglm 94]

A more complete understanding awaits the AdS/CFT !



(1-3) Applications of EE to condensed matter physics

Log[``Effective rank’’ of density matrix for A] 

⇒ This measures how much we can compress 

the quantum information of         .

Thus, EE  estimates difficulties of computer simulations 

such as in DMRG etc.   [Osborne-Nielsen 01, …]

Especially, EE gets divergent at the quantum phase 

transition point (= quantum critical point).  

⇒ EE = a quantum order parameter !



Ex.  Quantum Ising spin chain 

Ｔhe Ising spin chain with a transverse magnetic field:

⇒ This offers a useful numerical method to calculate c. 
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Topological Entanglement Entropy

In a 2+1 dim. mass gapped theory,  EE behaves like

The finite part                         is invariant under smooth 

deformations of the subsystem A.  ⇒ Topological !

• Top. EE offers us an order parameter of topological 
systems.  (cf.  correlation functions )

• Recently,  Top. EE has been employed to show the 

existence of spin liquid phases.

[Kitaev-Preskill 06,  Levin-Wen 06]
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③ Holographic Entanglement Entropy (HEE) 

④ Properties of EE for Excited States

⑤ Holography and Entanglement Renormalization
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② Calculations of EE in QFTs 

A basic method of calculating EE in QFTs is so called 

the replica method.

(2-1) 2d CFT

By using this, we can analytically compute the EE in 

2d CFTs.     [ Holzhey-Larsen-Wilczek 94,…, Calabrese-Cardy 04]

The replica method is also an important method to 

(often numerically) evaluate EE in more general QFTs.  



In the path-integral formalism, the ground state wave 

function          can be expressed in the path-integral 

formalism as follows:
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Finally, we obtain a path integral expression of the trace

as follows:                 kaAbcAabA

n

A ][][][Tr  

  
n

ATr 
a

a
b

b

ly.successive boundarieseach  Glue

n   surfaceRiemann   sheeted-

over integralpath   a  





n

sheets n

cut



In this way, we obtain the following representation

where         is the partition function on the n-sheeted 

Riemann surface      . 

To evaluate          , let us first consider the case where 

the CFT is defined by a complex free scalar field     .

It is useful to introduce n replica fields  

on a complex plane                 .

c=2



Then we can obtain a CFT equivalent to the one on

by imposing the boundary condition 

By defining                                  , conditions are diagonalized
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Using the orbifold theoretic argument, these twisted 

boundary conditions are equivalent to the insertion of  

(ground state) twisted vertex operators at z=u and  z=v.

This leads to 
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For general 2d CFTs with the central charge c , we can 

apply a similar analysis. In the end, we obtain 

In the end, we obtain

Note: the UV cut off a is introduced such that 

at            . 

  .)(Tr 
)/1(

6
 nn
c

n

A vu




[Holzhey-Larsen-Wilczek 94]



General CFTs 

Consider the conformal map:

[Calabrese-Cardy 04]
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More general results in 2d CFT 
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Entropic C-theorem [Casini-Huerta 04]

Consider a relativistic QFT.  

We have

We set 
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(2-2) Higher dimensional CFT

We can still apply the replica method:

However, in general, there is no analytical way to 

calculate       .    (`Twist operators’ get non-local !)

Thus in many cases, numerical calculations are needed.

One motivation to explore the holographic analysis !



③ Holographic Entanglement Entropy

(3-1) What is ``Holography’’ ?

In the presence of gravity,

A lot of massive objects

in a small region                           

The information hidden inside BHs is measured by

the Bekenstein-Hawking black hole entropy:  
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This consideration leads to the idea of entropy bound:

(S(A) = the entropy in a region A)

The degrees of freedom in gravity are 
proportional  to the area instead of the volume !

cf.  In non-gravitational theories, the entropy is  

proportional to volume.
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Motivated by this, holographic principle has been 

proposed [‘t Hooft 93, Susskind 94, ….]:

Holographic Principle

(d+2) dim.                                 (d+1) dim. 
Quantum gravity Non-gravitational theory

(e.g. QM, QFT, CFT, etc.)

Equivalent

Often, lives on the boundary 
of (d+2) dim. spacetime
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Note:  Holography offers us    
a non-perturbative definition 
of quantum gravity ! 



(3-2)  AdS/CFT   (the best example of holography)

[Maldacena 97]



AdS/CFT

Classical limit Large N limit

Strong coupling limit 

Quantum Gravity (String theory) 
on d+2 dim.  AdS spacetime

(anti de-Sitter space)

Conformal Field Theory 
(CFT)  on d+1 dim. 
Minkowski spacetime

General relativity with Λ＜0
(Geometrical)

Strongly interacting 
quantum many-body systems



SYM  SU(N)  4N 4D    SAdSon    string IIB 5

5 

(i)  small quantum gravity corrections = large N CFT 
(ii)  small stringy corrections = strong coupled CFT

In this lecture, we mainly ignore both of these corrections. 
Therefore we concentrate on strongly coupled large N CFT.



The meaning of the extra dimension

The radial direction z corresponds to the length scale 

in CFT under the RG flow.  (1/z ~ Energy Scale)

2dAdS  :Bulk 

  1dCFT  :Boundary 

1z   IR  UV

2

222
22

z

xddtdz
Rds






m



Bulk to boundary relation

The basic principle in AdS/CFT to calculate physical 

quantities is the bulk to boundary relation [GKP-W 98]:
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Quantum Information in AdS ?

A Basic Question:  Which region in the AdS does 

encode the `information in a certain region’ of the CFT ? 

Region A in CFTd Region XA in AdSd+1    

Dual ?

B

A XA

AdSd+1

Consider the entanglement entropy  SA  which 
measures  the amount of information ! 



Holographic Entanglement Entropy Formula   
[Ryu-TT 06]
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Motivation of HEE

Here we employ the global coordinate of AdS space 

and take its time slice at t=t0. 

t
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The information in B 
is encoded here.



The HEE suggests that 

A spacetime in gravity 
=  Collections of bits of quantum entanglement

B

AA

Planck length

One Possiblity: Entanglement Renormalization (MERA) will be discussed later.



Comments

• If  backgrounds are time-dependent, we need to employ 

extremal surfaces in the Lorentzian spacetime instead of    

minimal surfaces.  If there are  several extremal surfaces we   

should choose the smallest one.        

[Hubeny-Rangamani-TT 07]

• In the presence of black hole horizons, the minimal surfaces 

wrap the horizon as the subsystem A grows enough large.  

⇒ Reduced to the Bekenstein-Hawking entropy, consistently.



(3-4)  Verifications of HEE

• Confirmations of basic properties:

Area law,  Strong subadditivity (SSA),  Conformal anomaly,….

• Direct Derivation of HEE from AdS/CFT:

(i) Pure AdS, A = a round sphere [Casini-Huerta-Myers 11]

(ii) Euclidean AdS/CFT [Lewkowycz-Maldacena 13, Faulkner 13, cf. Fursaev 06]

(iii) Disjoint Subsystems [Headrick 10, Faulkner 13, Hartman 13]

(iv) General time-dependent AdS/CFT → Not yet.
[But,  evidences of SSA: Allais-Tonni 11, Callan-He-Headrick 12, Wall 13] 

• Corrections to HEE beyond the supergravity limit:
[Higher derivatives: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,….. ]                                

[1/N effect: Barrella-Dong-Hartnoll-Martin 13,… ] 

[Higher spin gravity:  de Boer-Jottar 13,   Ammon-Castro-Iqbal 13] 



Leading divergence and Area law

For a generic choice of       ,  a basic property of AdS gives

where R is the AdS radius. 

Because                    ,  we find 

This agrees with the known area law relation in QFTs.
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Holographic Strong Subadditivity

The holographic proof of SSA inequality is very quick !

     BCBACBBA SSSS  

A
B
C

=
A
B
C



A

B
C

     CACBBA SSSS  

A

B

C
=

A

B

C


A

B

C

Note:  This proof can be applied if
for any functional F.  

⇒ higher derivative corrections

[Headrick-TT 07]
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HEE from AdS3/CFT2 

In AdS3/CFT2,  the HEE is given by the geodesic length 
in the AdS3:  

This is explicitly evaluated as follows:
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Finally, the HEE is found to be

where we employed the famous relation

In this way, HEE reproduces the 2 dim. CFT result.
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Finite temperature CFT

Consider a 2d CFT in the high temp. phase               .

⇒ The dual gravity background is the BTZ black hole:
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Geometric Interpretation

(i) Small A                            (ii) Large A

BH
A A B

A AB B

HorizonEvent 

entropy.nt entangleme  the     to )3/(
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Disconnected Subsystem and Phase Transition

[Headrick 10] 

phase transition

This is consistent with the CFT calculations done 

in [Furukawa-Pasquier-Shiraishi 08, Calabrese-Cardy-Tonni 09]  .



Derivation of HEE Formula

Let us try to derive the HEE from the bulk-boundary 

relation of AdS/CFT.  ⇒We employ the replica method.

In the CFT side, the (negative) deficit angle                   is 

localized on        :

Naïve Assumption : The AdS dual is given by extending 

the deficit angle into the bulk AdS. [Fursaev 06]
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⇒ The curvature is delta functionally localized on the 

deficit angle surface:
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However, this argument is not exactly correct ! [Headrick 10]

⇒ Indeed,             (Renyi entropy) does not agree with 

the known 2d CFT results for n=2,3,…

Recently, it was explained that this naïve argument gives 

correct results only in the n→1 limit [Lewkowycz-Maldacena 13]:

should be dual to a smooth geometry without 

any deficit angles. However, the difference becomes

owing to the Einstein eq.  ⇒ Correct results for EE !

But not for Renyi entropy !



Higher derivative corrections to  HEE 

Consider stringy corrections but ignore loop corrections in 

AdS.  (⇔deviations from strongly coupled limit, but still 

large N in CFT)
[Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,.. Dong, Camps 13]       

Ex. Gauss-Bonnet Gravity   
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Consider the HEE in the Poincare metric  dual to  a CFT 

on R1,d. We concentrate on the following two examples:

(a) Strip (b) Circular disk

l
l

1dL

(3-5) HEE in Higher dim.

A B A BA



Entanglement Entropy for (a) Infinite Strip from AdS

divergence law Area

 cutoff.  UVon the

 dependnot  does and finite is  termThis

d=1 (i.e. AdS3) case:                                               
Agrees with 2d CFT results 
[Holzhey-Larsen-Wilczek 94 ; 
Calabrese-Cardy 04]



Entanglement Entropy for (b) Circular Disk from AdS
[Ryu-TT 06]

divergence

 law Area

Conformal Anomaly (central charge)
2d CFT     c/3・log(l/a)
4d CFT     -4a・log(l/a)

A universal quantity which 
characterizes odd dim. CFT
⇒ Satisfy ‘C-theorem’ 
[Myers-Sinha 10;  closely related 

to F-theorem Jafferis-Klebanov-
Pufu-Safdi 11]  

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-
Schwimmer-Theisen 09,  Dowker 10, Casini-Huerta, 10,  
Myers-Sinha 10, Casini-Hueta-Myers 11] 



④ Properties of EE for Excited States

(4-1) One Simple Motivation

1st law of thermodynamics:    T ・ dS = dE

Temp.    Information       Energy

⇒ Can we find an analogous relation in any quantum systems 

which are far from the equilibrium ?

Something like:     Tent ・ dSA = dEA ??

Information in A        Energy in A

= EE        

Can we observe EE ??



(4-2) Holographic Calculation of EE for excited states

Consider an asymptotically AdSd+2 background

(= an excited state in CFTd+1):
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Assume the size     of  subsystem A is small such that 

then we can show

The `entanglement temperature’ is given by 

The constant c is  universal in that it only depends on the shape 

of the subsystem A:
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Holographic Prediction

Consider exited states in a CFT which has approximately 

translational and rotational invariance.

If the subsystem A is small enough such that

then the following `1st law’ like relation is satisfied:

Note: The constant c depends only on the geometry of A.
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More Recent Progresses

(1) The first law can be simply     [Blanco-Casini-Hung-Myers 13, 

expressed as follows:                   Wong-Klich-Pando Zayas-Vaman 13]

(2) The perturbative Einstein eq. is equivalent to a 
constraint of HEE: 

[Nozaki-Numasawa-Prudenziati-TT 13, Bhattacharaya-TT 13]  

(3)   Moreover,  the first law was shown to be 

equivalent to the perturbative Einstein eq.  
[Lashkari-McDermott-Raamsdonk 13,  Faulkner-Guica-Hartman-Myers-
Raamsdonk 13]
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(4-3) Large Subsystem Limit of EE  [Nozaki-Numasawa-TT 14]

If the size of subsystem A is large (or equally for largely 
excited states), then the details of the IR geometry are 
very important. 

⇒ We cannot expect any universal properties

like the first law.

⇒ We will study solvable explicit examples 

(i.e. massless free scalar field theory) 

by direct field theory calculations. 



We will focus on the following quantities:  
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Replica Method for Excited States

We want to calculate                   for  

Note: τ denotes the Euclidean time. We compute the 

time evolution via the Euclidean analytical continuation.

 operator. for theregulator   UV theis   where
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In this way, the (Renyi) EE can be expressed in terms of

correlation functions (2n-point function etc.) on Σn :
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[See also  
Berganza-Alcaraz-Sierra 11]



We focus on the free massless scalar field theory

and calculate 2n-pt functions using the Green function:
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Explicit Calculations of (Renyi) Entanglement Entropy



Time evolution in free massless scalar theory
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EPR state !

?

What do these mean ?
(Log[rational number] ?)
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General interpretation

First , notice that in free CFTs, there are definite 
(quasi) particles moving at the speed of light.
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By tracing out the subsystem B(=R),  we find that 

the matrix ρA is the k+1 times k+1 diagonal matrix:

This agrees with explicit results from the replica method.

It suggests that               is `topological invariant’ w.r.t. A. 
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(4-4) Free Scalar CFT in 2d

In two dimension (d=1), the left and right decomposition 
is exact !

In the massless scalar field theory, there is one subtlety:

the conformal dimension of φ is vanishing.

Thus is not a good local operator !

⇒ Instead, we can consider 
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In the case                        we find the result is trivial:

This is simply because

is a direct product state. 

On the other hand, 

is the EPR state  and indeed we find 
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(4-5) Interacting Rational CFTs

We can show that the late time EE in 2d rational CFTs

is given by 

Here dO is so called the quantum dimension:

which measures degrees of freedom of an operator  O.  
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Example: Ising model

3 conformal blocks:   ].[  ],[  ],[ I
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⑤ Holography and Entanglement Renormalization

(5-1) Outline

We may obtain a metric from a CFT as follows:

a CFT state  ⇒ EE  =   Minimal Areas ⇒ metric

One candidate of such frameworks is so called the 

entanglement renormalization (MERA) [Vidal 05]  

as pointed out by [Swingle 09].   


AS )Area( A g

[cf.  Other approach to emergent gravity: Raamsdonk 09, Lee 09]



Basic Idea

Classify the entanglement  between spins by their ranges. 

Extra dimension (z=y-x)

1 qubit
= an unit area in QG
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(5-2) Tensor Network (TN)  

[See e.g. the review Cirac-Verstraete 09]

Recently, there have been remarkable progresses in 

numerical algorithms for quantum lattice models, based 

on so called tensor product states.

This leads to various nice variational ansatzs for  the 

ground state wave functions in various quantum many-

body systems. 

⇒ An ansatz is good if it respects quantum entanglement 
of the true ground state.



Ex. Matrix Product State (MPS) [DMRG: White 92,…, 

Rommer-Ostlund 95,..]
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MPS and TTN are not good near quantum critical points 

(CFTs)  because EE in CFTs are too large to describe:

In general,   
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(5-3)  AdS/CFT and (c)MERA 

MERA (Multiscale Entanglement Renormalization Ansatz):

An efficient variational ansatz for CFT ground states 

[Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT, 

we add (dis)entanglers.
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Calculations of EE in 1+1 dim. MERA

A= an interval (length L)
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A conjectued relation to AdS/CFT [Swingle 09]
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Now, to make the connection to AdS/CFT clearer,  we 

want to consider the MERA for QFTs. 

Continuous MERA (cMERA)
[Haegeman-Osborne-Verschelde-Verstraete 11]
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(5-4) Emergent Metric from cMERA

We focus on gravity duals of translational invariant  

static states, which are not conformal in general. 

We conjecture that the metric in the extra direction is 

given by using the Bures metric (or Fisher information 

metric):

[Nozaki-Ryu-TT 12]
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Bures Metric

The Bures distance between two states is defined by

More generally, for two mixed states ρ1 and ρ2,

When the state depends on the parameters {ξi},  

the Bures metric (Fisher information metric) is defined as   

⇒ Reparameterization invariant 

(in our case: coordinate u) 
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Explicit metric in toy example: free scalar

(i) Massless scalar  (E=k)

(ii) Massive scalar  
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Time dependent metric  from the 2d Quantum Quench
Looks like gravitational waves.

[Mollabashi-Nozaki-Ryu-TT 13]

We can also analytically confirm the linear growth:  SA∝t 
because g(u)∝t at late time in any dim.
This is consistent with the 2d CFT result  [Calabrese-Cardy 05].

and with the holographic result (any d). [Hartman-Maldacena 13]
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