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Starting Point: A series of diffraction images, each recorded on a 2D 
area detector while rotating the crystal through a small angle (typically 
0.2-1.0 degrees per image) about a fixed axis (the Rotation/Oscillation 
Method).

Outcome: A dataset consisting of the indices (h,k,l) of all reflections 
recorded on the images with an estimate of their intensities and the 
standard uncertainties of the intensities: h, k, l, I(hkl), σ(I)

Integration of Diffraction Images

I(hkl), σ(I)

Acta Cryst. (2006) D62, 48-57 
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This requires the prediction of which image(s) each reflection will 
occur on and also the precise position of the reflection in the images. 
(Typically each reflection will be spread out over several images, and 
therefore only partially recorded on any single image).

In practice, defects in the crystals (or detectors) make this operation 
far from trivial. eg weak diffraction, crystal splitting, anisotropic 
diffraction, diffuse scattering, ice rings/spots, high mosaicity, 
unresolved spots, overloaded spots, zingers/cosmic rays.

Integration of Diffraction Images ….

Integration procedure in iMosflm

1.   Read Images
read all images with a common template

2. Find spots and Index
find lattice which fits spots

3. Check prediction
is the indexing correct?

4. Estimate mosaicity
improve estimate later

5. Refine cell
use two wedges at 90°, or more in low symmetry

6. Mask backstop shadow
not (yet) done automatically by program

7. Integrate one (or few) image
to check resolution etc

8. Integrate all images
optionally run in background for speed

 
Strategy option, for use before data collection
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Autoindexing
Objective: To determine the unit cell, probable Laue group symmetry and 
orientation. (Note that intensities are required to find the true symmetry).

The spot positions in a diffraction image are a distorted projection of the reciprocal 
lattice. Using the Ewald sphere construction, the observed reflections (Xd, Yd, Φ) 
can be mapped back into reciprocal space giving a set of scattering vectors si. 

r   = sqrt( Xd
2 + Yd

2 + D2)

                D/r - 1

s   =    Xd/r

             Yd/r

D is crystal to detector distance.  Uncertainty in Φ leads to errors in s

Lattice: a Triclinic; m monoclinic; o orthorhombic; t tetragonal; h hexagonal; c cubic                                   
P primitive; C C-face centred; I body-centred; F face-centred; R rhombohedral

A “penalty” is associated with each solution, which reflects how well the determined cell obeys the 
constraints for that lattice type. 

The solution with the highest symmetry from the group of solutions with low penalties (highlighted in blue) 
is usually chosen as the correct solution, but in cases of pseudosymmetry (eg monoclinic with β ~ 90o) the 
rms error in spot positions (σ(x,y)) is also important.

Auto-indexing procedures generate a list of possible solutions
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An example of pseudo-symmetry

Based on the penalties, the lattice would be assigned as cubic, but the rms error in spot 
positions is 0.34mm for the cubic solution, but only 0.18mm for the (correct) 
orthorhombic solution.

Autoindexing….Refining the cell parameters

The cell obtained from the autoindexing is refined to get the best fit to 
the observed spot positions. 

During this refinement, the cell parameters are forced to obey the 
restrictions imposed by the symmetry of the chosen solution 

(eg α=β=γ=90 for an orthorhombic solution, a=b for trigonal, 
tetragonal, hexagonal).

The direct beam coordinates and optionally the detector distance are 
refined at the same time.

The rms error in spot positions after refinement can sometimes be used 
to distinguish between the real symmetry and higher pseudo-
symmetry.
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Autoindexing….Criteria for success 

•   Having a sufficient number of spots (preferably a few hundred 
although 50 may be enough).

•   Correct wavelength, direct beam position, detector distance.

•   Only a single lattice present (2 lattices OK if one is weaker).

•   Reasonable mosaic spread (no overlap of adjacent lunes).

•   Resolved spots.

Absence of a clear separation between solutions with low penalties 
and solutions with high penalties can indicate errors in direct beam 
position, wavelength, distance etc (or a triclinic solution).

Results from a single image can be misleading for low symmetries.

Judging the success of the auto-indexing

•  Does the predicted pattern match the image ?

Unless mosaic spread has been estimated, not all spots will be 
predicted. If two non-sequential images were used the prediction 
may be very slightly off.

Beware of under-predicting (if there is a systematic variation in 
the intensity of adjacent spots, eg every 2nd spot is weak).

Beware of over-predicting if a cell edge has been doubled (rare).
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  Judging the success of the auto-indexing

•  The rms error in spot positions.

The magnitude of the error depends on the spot size and 
shape, on the the number of images included and how these 
images were collected.

Typical values are 0.1-0.2 mm for image plate data collected 
on a lab source (where spots tend to be larger) and 0.05-0.15 
mm for data collected on CCD detectors at synchrotrons.

However, if two images are used which were not collected 
sequentially (eg the first and last image of a data collection) 
the error is often higher (eg by a factor of 2) because the 
crystal orientation has changed during data collection or the 
rotation axis is not orthogonal to the X-ray beam.

If the crystal is imperfect and gives split spots, the error can 
be up to 1mm for a correct indexing.
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Mosaicity Estimation

Predict pattern with increasing values for the mosaic spread (eg 0.0, 
0.05, 0.1, 0.15 degrees). In each case, measure the total intensity of 
all predicted reflections. The mosaicity can be estimated from the 
plot of total intensity vs mosaic spread.

Parameter Refinement

Generally, once an orientation matrix and cell parameters have 
been derived from the autoindexing procedures described, these 
parameters are refined further using different algorithms.

Parameters to be refined:

1) Crystal parameters:
  Cell dimensions, orientation, mosaic spread.

2) Detector parameters:
  Detector position, orientation and (if appropriate) distortion 

parameters.

3) Beam parameters:
  Orientation, beam divergence.
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Two types of refinement

1) Using spot coordinates and a positional residual:

Ω1 = Σi ωix(Xi
calc- Xi

obs)2 +  ωiy(Yi
calc- Yi

obs)2

2) Using spot position in Φ and an angular residual:

Ω2 = Σi ωi[(Ri
calc- Ri

obs)/di
* ]2 

where Ri
calc,Ri

obs are the calculated and observed distances of 
the reciprocal lattice point di

* from the centre of the Ewald 
sphere (Post refinement).

The positional residual gives no information about small errors in the 
crystal orientation around the spindle axis, or about the mosaic 
spread.
The angular residual gives no information on the detector parameters 
(because it does not depend on spot positions).

Refinement based on spot coordinates

The refined parameters are:

i) The crystal to detector distance.

ii) The position of the centre of the diffraction pattern.

iii) A relative scale factor applied to the Y coordinates, YSCALE 
(allows for errors in cell parameters, or different pixel sizes in X 
and Y) .

iv) Small rotations of the detector about a horizontal axis and a 
vertical axis (TILT and TWIST).

v) Rotation of the detector about the X-ray beam direction.

vi) Radial (ROFF) and tangential offsets (TOFF) for images plates 
with spiral readout.



10

Why refine parameters that should not change ?

Parameters such as the detector distance and YSCALE would not be 
expected to change during an experiment (although small changes 
in distance can arise if the crystal is not centred on the rotation 
axis).

 However, refining these parameters can compensate for errors in 
the cell parameters, and, in cases of significant radiation damage, 
for genuine variation in the cell during data collection.

During integration, the main objective is to get the best possible 
prediction of the spot positions.

A smoothly changing decrease in the refined detector distance can 
be an indicator of an increase in cell size due to radiation damage.

For weak images, parameters like the detector twist and tilt are not 
well defined, and if they show a lot of variation should be fixed at 
the mean value.

Determining accurate cell parameters using Post Refinement

 Post-refinement uses the distribution of the intensity of partially 
recorded reflections over adjacent images, together with a model for 
the “rocking curve”, to determine the exact phi value at which a 
reciprocal lattice point lies exactly on the Ewald sphere. Note that at 
least two images are required.
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A fully-recorded spot is entirely 
recorded on one image

Partials are recorded on 
two or more images

“Fine-sliced” data has spots sampled 
in 3-dimensions

illustrations after Elspeth Garman

Fully recorded and partially recorded reflections

The radius of a reciprocal lattice 
point (ε) is modelled by:

Consider a partially recorded reflection spread over two images, with a 
recorded intensity I1 on the first and I2 on the second. To determine the 
“observed” position, Pʹ′ from the fraction of the total intensity that is observed 
on the first image , F = I1/(I1+I2), requires a model for the “rocking curve”, eg:

Knowing F and ε, ΔR, the distance of Pʹ′ from the sphere, can be calculated, giving 
Robs. (The plus or minus sign depends on whether the rlp is entering or exiting the 
sphere).

Post Refinement

Refine cell, orientation and mosaicity 
to minimise the angular residual (δ):
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Post Refinement Provides Very Accurate Cell Parameters

Using a few degrees of data in two segments widely separated in 
phi will typically give cell parameters that are accurate to a few 
parts in 10,000 (for resolutions higher than ~2.8Å). Two segments 
are essential for orthorhombic or lower symmetry, three or four are 
recommended for triclinic.

The crystal orientation is determined to better than 0.01 degrees 
(for crystals with typical mosaicity, less accurately for high 
mosaicity).

Ideally, the cell should be refined by post refinement prior to 
integration of the images, and fixed during the integration.

Integration of the Images

Step 1: Predict the position in the digitised image of each Bragg 
reflection.

Step 2: Estimate its intensity (need to subtract the X-ray background) 
and an error estimate of the intensity.  

1)  Predicting reflection positions

Accuracy in prediction is crucial. Ideally, cell parameters should be 
known to better than 0.1%. Errors in prediction will introduce 
systematic errors in profile fitting. 

Typically the detector parameters, crystal orientation and mosaic 
spread will be refined for every image during the integration. The cell 
parameters are not normally refined.
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2) Determining the X-ray background
The background can only be measured 
in a region around the spot either in two 
dimensions (X, Y, the detector co-
ordinates) for coarse phi-slices or in 3 
dimensions (X, Y and phi) for fine phi 
slices.  

Requires definition of a peak/
background mask. A plane is fitted to 
pixels in the background region 
(rejecting any outliers), and the 
equation of this background plane is 
used to calculate the background for 
pixels in the peak region.

Errors in the mask definition will give 
systematic errors in intensities.

Summation integration and Profile Fitting
Summation integration:
Sum the pixel values of all pixels in the peak area of the mask, and then 
subtract the sum of the background values calculated from the 
background plane for the same pixels.  

Profile fitting:
Assume that the shape or profile (in 2 or 3 dimensions) of the spots is 
known.  Then determine the scale factor which, when applied to the 
known spot profile, gives the best fit to be observed spot profile.  This 
scale factor is then proportional to the profile fitted intensity for the 
reflection. Minimise:
  
                           R = Σ ωi (Xi - KPi)2 

Xi is the background subtracted intensity at pixel i
Pi is the value of the standard profile at the corresponding pixel
ωi is a weight, derived from the expected variance of Xi
K is the scale factor to be determined



14

Determining the "Standard" Profile
The profiles are determined empirically (as the average of many spots). 
The spot shape varies according to position on the detector, and this must 
be allowed for (different programs do this in different ways).

Need to take precautions to avoid introducing systematic errors due to 
broadening profiles during averaging.
For each reflection integrated, a new profile is calculated as a weighted 
mean of the “standard” profiles for the adjacent regions.
Profile fitting is used for both fully recorded and partially recorded 
reflections. Although this is strictly not valid, in practice it works well.

The advantages of profile fitting

Profile fitting provides a more reliable estimate of the spot intensity for 
weak reflections than summation integration. It can be shown that the 
effect of profile fitting is to effectively “down-weight” the peripheral 
peak pixels (where the signal to noise is lowest) relative to the central 
pixels (where the signal to noise is highest).
(See AGW Leslie, Acta Cryst D55, 1696-1702,1999)
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A fully-recorded spot is entirely 
recorded on one image

Partials are recorded on 
two or more images

“Fine-sliced” data has spots sampled 
in 3-dimensions

illustrations after Elspeth Garman

Fully recorded and partially recorded reflections

Standard Deviation Estimates

For summation integration or profile fitted partially recorded reflections, 
a standard deviation can be obtained based on Poisson statistics.

For profile fitted intensities the goodness of fit of the scaled standard 
profile to the true reflection profile can be used for fully recorded 
reflections. 

These will generally underestimate the true errors, and should be 
modified accordingly at the merging step so that they reflect the actual 
differences between multiple (symmetry related) measurements. It is 
important to get realistic estimates of the errors in the intensities.



16

Scaling slides from Phil Evans

Acta Cryst. (2006) D62, 72 -82

Protocol for space group determination 
(program POINTLESS by Phil Evans)

Pointless reads the MTZ file output by MOSFLM (ie before any 
scaling or averaging). It can be run on a (very) incomplete 
dataset.

1.  From the unit cell dimensions, find the highest compatible lattice 
symmetry (within a tolerance). This may be higher than the symmtery 
used when integrating the data. The input symmetry is ignored.

2. Score each symmetry element (rotation) belonging to lattice symmetry 
using all pairs of observations related by that element.

3. Score combinations of symmetry elements for all possible sub-groups 
(Laue groups) of lattice symmetry group. 

4. Score possible space groups from axial systematic absences.

Scoring functions for rotational symmetry based on correlation 
coefficient, since this relatively independent of the unknown scales. 
Rmeas values are also calculated
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Only the orthorhombic symmetry operators are present

Correlation coefficient on E2 Rfactor (multiplicity weighted)

Nelmt  Lklhd  Z-cc    CC        N  Rmeas    Symmetry & operator (in Lattice Cell)

  1   0.808   5.94   0.89    9313  0.115     identity
  2   0.828   6.05   0.91   14088  0.141 *** 2-fold l ( 0 0 1)  {-h,-k,+l}
  3   0.000   0.06   0.01   16864  0.527     2-fold   ( 1-1 0)  {-k,-h,-l}
  4   0.871   6.33   0.95   10418  0.100 *** 2-fold   ( 2-1 0)  {+h,-h-k,-l}
  5   0.000   0.53   0.08   12639  0.559     2-fold h ( 1 0 0)  {+h+k,-k,-l}
  6   0.000   0.06   0.01   16015  0.562     2-fold   ( 1 1 0)  {+k,+h,-l}
  7   0.870   6.32   0.95    2187  0.087 *** 2-fold k ( 0 1 0)  {-h,+h+k,-l}
  8   0.000   0.55   0.08    7552  0.540     2-fold   (-1 2 0)  {-h-k,+k,-l}
  9   0.000  -0.12  -0.02   11978  0.598     3-fold l ( 0 0 1)  {-h-k,+h,+l} {+k,-h-k,+l}
 10   0.000  -0.06  -0.01   17036  0.582     6-fold l ( 0 0 1)  {-k,+h+k,+l} {+h+k,-h,+l}

Z-score(CC)
“Likelihood”

Example: a C222 cell that is pseudo hexagonal

Score each symmetry operator in P622

A clear preference for Laue group Cmmm

Net Z(CC) 
Likelihood

Correlation coefficient
 & R-factor

Cell deviation

Net Z(CC) scores are 
Z+(symmetry in group) - Z-(symmetry not in group) 

Likelihood allows for the possibility of pseudo-symmetry

   Laue Group       Lklhd   NetZc  Zc+   Zc-    CC    CC-  Rmeas   R-  Delta  ReindexOperator 
 
> 1    C m m m  *** 0.991   6.00  6.12  0.12   0.93  0.02   0.12  0.56   0.1 [1/2h1/2k,3/2h+1/2k,l] 
> 2  C 1 2/m 1      0.367   5.00  6.13  1.13   0.95  0.17   0.10  0.48   0.1 [3/2h+1/2k,-1/2h+1/2k,l] 
> 3  C 1 2/m 1      0.365   4.55  6.04  1.49   0.95  0.22   0.09  0.46   0.1 [1/2h-1/2k,3/2h+1/2k,l] 
> 4  P 1 2/m 1      0.250   4.88  5.99  1.11   0.91  0.17   0.14  0.49   0.0 [1/2h+1/2k,l,1/2h-1/2k] 
  5       P -1      0.031   4.27  5.94  1.67   0.89  0.25   0.12  0.44   0.0 [-1/2h+1/2k,-1/2h-1/2k,l] 
  6  C 1 2/m 1      0.000   2.45  4.18  1.73   0.08  0.26   0.54  0.44   0.1 [3/2h-1/2k,1/2h+1/2k,l] 
  7  C 1 2/m 1      0.000   1.62  3.40  1.79   0.08  0.27   0.56  0.43   0.1 [-1/2h-1/2k,3/2h-1/2k,l] 
  8  C 1 2/m 1      0.000   0.60  2.55  1.95   0.01  0.29   0.56  0.42   0.0 [-k,h,l] 
  9  C 1 2/m 1      0.000   0.57  2.52  1.96   0.01  0.29   0.53  0.43   0.0 [h,k,l] 
 10       P -3      0.000   0.75  2.68  1.93  -0.02  0.29   0.60  0.42   0.1 [1/2h-1/2k,1/2h+1/2k,l] 
 11    C m m m      0.000   2.60  3.80  1.20   0.44  0.18   0.38  0.47   0.1 [-1/2h-1/2k,3/2h-1/2k,l] 
=12    C m m m      0.000   0.94  2.59  1.65   0.26  0.25   0.42  0.46   0.0 [h,k,l] 
 13      P 6/m      0.000   0.83  2.54  1.70   0.24  0.26   0.45  0.44   0.1 [1/2h-1/2k,1/2h+1/2k,l] 
 14   P -3 m 1      0.000   0.72  2.46  1.74   0.24  0.26   0.45  0.44   0.1 [1/2h-1/2k,1/2h+1/2k,l] 
 15   P -3 1 m      0.000  -0.57  1.79  2.36   0.10  0.35   0.52  0.39   0.1 [1/2h-1/2k,1/2h+1/2k,l] 
 16  P 6/m m m      0.000   2.09  2.09  0.00   0.25  0.00   0.44  0.00   0.1 [1/2h-1/2k,1/2h+1/2k,l] 

Reindexing
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           Zone               Number  PeakHeight  SD  Probability ReflectionCondition 
 
    1   screw axis 2(1) [c]      109    0.878    0.083    0.747  00l: l=2n 
 
   Spacegroup         TotProb SysAbsProb     Reindex         Conditions 
 
    <C 2 2 21> ( 20)    1.063  0.747                         00l: l=2n (zones 1) 
    .......... 
     <C 2 2 2> ( 21)    0.360  0.253                          

Screw axis along 00l shows space group is C2221

PeakHeight from Fourier analysis
1.0 is perfect screw “Probability” of screw

Screws detected by Fourier 
analysis of I/σ 

Alternative indexing

If the true point group is lower symmetry than the lattice group, alternative 
valid but non-equivalent indexing schemes are possible, related by symmetry 
operators present in lattice group but not in point group (these are also the 
cases where merohedral twinning is possible)

eg if in space group P3 there are 4 different schemes ���
(h,k,l) or (-h,-k,l) or (k,h,-l) or (-k,-h,-l) 

For the first crystal, you can choose any scheme

For subsequent crystals, the autoindexing will randomly choose one setting, 
and we need to make it consistent: POINTLESS will do this for you by 
comparing the unmerged test data to a merged reference dataset



19

Data Processing: Scaling
The scaling and merging step is important because

•  it attempts to put all observations on a common scale
•  it provides the main diagnostics of data quality and 
whether the data collection is satisfactory

Because of this diagnostic role, it is important that data are 
scaled as soon as possible after collection, or during 
collection, preferably while the crystal is still on the 
camera.

Why are reflections on different scales?

Various physical factors lead to observed intensities being 
on different scales. Scaling models should if possible 
parameterise the experiment so different experiments may 
require different models

Understanding the effect of these factors allows a sensible 
design of correction and an understanding of what can go 
wrong

1) Factors related to incident beam and the rotation camera
2) Factors related to the crystal and the diffracted beam
3) Factors related to the detector
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1) Factors related to incident Xray beam
•  Incident beam intensity: variable on synchrotrons and not 
normally measured. Assumed to be constant during a single 
image, or at least varying smoothly and slowly (relative to 
exposure time). If this is not true, the data will be poor.

•  Illuminated volume: changes with φ if beam smaller than 
crystal.

•  Absorption in primary beam by crystal: 
indistinguishable from illuminated volume changes.

•  Variations in rotation speed and shutter 
synchronisation: These errors are disastrous, difficult to 
detect, and impossible to correct for: we assume that the crystal 
rotation rate is constant and that adjacent images exactly abut in 
φ. Shutter synchronisation errors lead to partial bias  which may 
be positive, unlike the usual negative bias.

2) Factors related to crystal and diffracted beam

•   Absorption in secondary beam - serious at long 
wavelength (including CuKα), worth correcting for 
SAD/MAD data, especially sulphur SAD.

•   Radiation damage - serious on high brilliance sources. 
Not correctable unless small as the structure is changing. 
Extrapolation to zero (quarter) dose successful in some cases (Kay Diederich).

The relative B-factor is largely a correction for radiation 
damage
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3) Factors related to the detector

• The detector should be properly calibrated for spatial 
distortion and sensitivity of response, and should be 
stable. Problems with this are difficult to detect from 
typical diffraction data, but can be seen in cases of 
very high symmetry (cubic).

• The useful area of the detector should be calibrated or 
told to the integration program

– Calibration should flag defective pixels and dead regions 
eg between tiles

– The user should tell the integration program about 
shadows from the beamstop, beamstop support or cryocooler 
(define bad areas by circles, rectangles, arcs etc)

Determination of scales
What information do we have?
Scales are determined by comparison of symmetry-related 
reflections, ie by adjusting scale factors to get the best internal 
consistency of intensities. Note that we do not know the true 
intensities and an internally-consistent dataset is not necessarily 
correct. Systematic errors will remain.

Minimize Φ = Σhl whl (Ihl - 1/khl<Ih>)2

Ihl l’th intensity observation of reflection h

khl  scale factor for Ihl
              <Ih> current estimate of Ih

khl is a function of the parameters of the scaling model

ghl = 1/ khl is a function of the parameters of the scaling model

ghl = g(φ rotation/image number) . g(time) . g(s)   …. other factors

                  Primary beam so        B-factor  Absorption
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ghl = g(φ rotation/image number) . g(time) .         g(s)           ...other factors

               Primary beam s0            B-factor      Absorption         eg “tails”

Scaling function

scale is smooth function of spindle 
rotation (Φ)

or discontinuous function of image 
(batch) number (usually less 
appropriate)

g(time) = exp[+2B(time) sin2φ/λ2]

essentially a time-dependent radiation 
damage correction

Time

fall-off of high 
resolution data 
with time

variation of 
intensity with φ

φ

Sample dataset: Rotating 
anode (RU200, Osmic mirrors, 
Mar345)  Cu Kα (1.54Å)
100 images, 1°, 5min/°, resolution 
1.8Å

Rmerge

No AbsCorr

AbsCorr

No AbsCorr

AbsCorr<I>/sd

Correction improves the data

corrected

uncorrected

Phasing power

expressed as sum of spherical harmonics  g(θ,φ) = ΣlΣm Clm Ylm(θ,φ)

Secondary beam correction (absorption) 

scale as function of secondary beam direction (θ,φ)
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What to look at ?
How well do equivalent observations agree with each other ?

    1. R-factors

(a) Rmerge (Rsym) = Σ | Ihl - <Ih> | / Σ | <Ih> |

This is the traditional measure of agreement, but it increases 
with higher multiplicity even though the merged data is 

better.

(b) Rmeas = Rr.i.m.= Σ √(n/n-1) | Ihl - <Ih> | / Σ | <Ih> |

The multiplicity-weight R-factor allows for the improvement in data 
with higher multiplicity. This is particularly useful when comparing 
different possible point-groups.

Diederichs & Karplus, Nature Structural Biology, 4, 269-275 (1997)
Weiss & Hilgenfeld, J.Appl.Cryst. 30, 203-205 (1997)

2. Intensities and standard deviations: what is the real resolution ? 

(a) Corrected σ’(Ihl)2 = SDfac2 [σ2 + SdB <Ih> + (SdAdd <Ih>)2]

The corrected σ’(I) is compared with the intensities: the most useful statistic is 
 < <I>/ σ (<I>) >  (labelled Mn(I)/sd in table) as a function of resolution

This statistic shows the improvement of the estimate 
of <I> with multiple measurements. It is the best 
indicator of the true resolution limit

< <I>/ σ(<I>) >   greater than ~ 2 (or so)

Maybe lower for anisotropic data, 1.5 to 1.0

(b) Correlation 
between half datasets 
(random halves)

ResolutionC
or

re
la

tio
n 

co
ef

fic
ie

nt

Correlation of 
<I> indicating a 
resolution limit
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Are some parts of the data bad ?

Analysis of Rmerge against batch number gives a very clear 
indication  of problems local to some regions of the data. 
Perhaps something has gone wrong with the integration 
step, or there are some bad images

Here the beginning of the 
dataset is wrong due to 
problems in integration

 Do the parameters (k, B etc) make physical sense ?

These scale factors 
follow a reasonable 
absorption curve

These B-factors are not 
sensible
As well as being highly 
variable, they are also 
positive: Bfactors should be 
negative (ie sharpening later 
observations)
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 Partial bias
This measures the systematic difference between fulls and 
summed partials (if there are any fully recorded observations).

Fractional Bias = Σ (<Ifull> - Ipartial) / Σ <I> 

Typically, its value is negative, ie the summed partials are bigger 
than the fulls, due to truncation of diffuse scattering tails on fulls 
(a partially-recorded observation is recorded over at least twice 
the angular range of a full)

Negative bias may be corrected (very approximately) by the 
TAILS correction

A positive bias generally indicates some serious problem with 
the data collection (shutter mistiming, rotation speed variation)

 Outliers
Detection of outliers is easiest if the multiplicity is high

Removal of spots behind the backstop shadow does not work well 
at present: usually it rejects all the good ones, so tell Mosflm 
where the backstop shadow is

Scala also has facilities for omitting regions of the detector 
(rectangles and arcs of circles)

Inspect the ROGUES file to see what is being rejected (at least 
occasionally)

The ROGUES file contains all rejected reflections (flag "*", "@" for I+- rejects, "#" for Emax rejects)
    TotFrc = total fraction, fulls (f) or partials (p)
    Flag I+ or I- for Bijvoet classes
    DelI/sd = (Ihl - Mn(I)others)/sqrt[sd(Ihl)**2 + sd(Mn(I))**2]
   h   k   l     h   k   l  Batch      I  sigI    E  TotFrc Flag Scale   LP   DelI/sd d(A)   Xdet   Ydet    Phi
   (measured)     (unique)
 
  -2  -2   0     2   2   0   1220  24941  2756  1.03  0.95p  I-  2.434  0.031   -1.1 30.40 1263.7 1103.2  210.8
  -4   2   0     2   2   0   1146   9400  2101  0.63  0.99p *I+  3.017  0.032   -6.7 30.40 1266.4 1123.3  151.3
   4  -2   0     2   2   0   1148  27521  2972  1.08  1.09p  I-  2.882  0.032    0.0 30.40 1058.8 1130.0  153.2
   2  -4   0     2   2   0   1075  29967  2865  1.13  0.92p  I+  2.706  0.032    1.1 30.40 1060.9 1106.6   94.4
                    Weighted mean  27407



26

Anomalous signal correlation coefficient
Scala version 3 allows different datasets to be scaled together 
(eg MAD data), and analyses correlations between the 
anomalous and dispersive differences. The same analysis can be 
applied to two “halves” of a single λ dataset.

In this case there is little anomalous signal beyond about 6Å 
resolution (Hg derivative, two wavelengths)

Converting Intensities to Amplitudes (Truncate)
1)  Gives best estimate of amplitude for reflections where the measured 

intensity is negative.
2)  Provides an estimate of Wilson B factor (how rapidly amplitudes fall 

of with resolution).
3)  Detects anisotropy in diffraction.
4)  Check for twinning:

Cumulative intensity plot (N(z))

Twinned Untwinned


