Downscaling : a perspective from Australia

Bertrand Timbal

Centre for Australian Weather and Climate Research (CAWCR)

Australian Bureau of Meteorology

Australian Government

Bureau of Meteorology

Presentation overview

Update on activities in CORDEX-AustralAsia domain

General perspectives on SDM (in respect to RCM)

 A perspective from on-going work in Australia on combining SDM and RCM projections to enhance understanding about future climate

Australian Government Bureau of Meteorology

CORDEX-Oz

1

CORDEX-Oz experimental set-up

Australian Government

Bureau of Meteorology

CORDEX-Oz update

	RCM (group)					
GCM	COSMO-CLM (Institute of Coastal Research HZG, Germany)	CCAM (CSIRO, Australia) [& Queensland government]	WRF (3-member multi-physics ensemble) (Uni. of New South Wales, Australia)	BoM-SDM (Bureau of Met., Australia) Statistical technique Australian continent R, T _{max} , T _{min} only		
ERA-Interim						
MPI-ESM-LR						
EC-Earth						
HadGEM2-ES						
CNRM-CM5						
ACCESS 1.0						
CCSM4						
NorESM1-M						
GFDL-CM3						
ACCESS 1.3						
An other 15 GCMs		*				

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Australian Government Bureau of Meteorology

CORDEX-Oz wikipage

Create account or Sign in

CORDEX-AustralAsia wikipage

Search this site

Home	Groups	RCM domain	s Experiments	Models	Software	Publications	Edit this menu		
• Links		v	Welcome to CORDEX AustralAsia wikipage						
• Cont • List r • Invite • List a	i fo act members e all pages	Tł	 This is the RCM users wikipage that includes information about the CORDEX (COordinated Regional climate Downscaling Experiment) project over the AustralAsian region. Further information about the CORDEX project can be found here The main CORDEX data archive can be found here 						
Add a i	new page	If to	If you would like to contribute RCM simulations to CORDEX-AustralAsia please contact Daniel Argueso to join this wikipage. CORDEX Australasia has a now a mailing list. If you want to join it, please click the link below: https://groups.google.com/d/forum/cordexaustralasia						
	Edit this menu				page Edit Tags	revision: 17, last ed History Files	ited: 31 Jan 2013, 01:23 Print Site tools	(469 days ago) + Options	
Powered I	by Wikidot.co	m	Help Terms of Service Privacy Report a bug Flag as objectionable						

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License

Join the conversation at: http://cordex-australasia.wikidot.com/start

CSIRO

Australian Government Bureau of Meteorology

The scaling issue:

Broadly two approaches:

- Dynamical: regional climate models

Both are:

- dependent on GCMs
- able to cascade forward uncertainties

Differences:

- computing cost
- target variables (grid vs. point)
- physical consistency
- pros & cons ("horses for courses")

Australian Government **Bureau of Meteorology**

A large range of techniques

- Weather Generator:
 - Random generation of number for local predictands
 - Matching observed characteristics of the series
 - Driven by large-scale atmospheric states
 - E.g.: Conditional Probability, Markov Model
- <u>Transfer Function:</u>
 - Direct quantitative relationship is build
 - Some form of regression (linear or not)
 - multi using single predictor values
 - spatially distributed predictors
 - E.g.: MOS, PC, EOF, CCA, SVD, ANN
- Weather typing:
 - Classic synoptic climatology concept
 - Relate an atmospheric state to locale climate
 - Can introduce some form of dynamical approach (hybrid: dyn-sta)
 - E.g.: Analogues, clusters, airflow indices, CART

Australian Government

Method→	GCM	RCM	Scaling		Stat. Downscaling			
↓Feature			Mean I	Multi M.	Decile	W.G.	Anal.	NHMM
No bias in current climate means	Can be badly biased	Usually less biased	No bias	No bias	No bias	No bias	No bias	No bias
Represents changes in mean – coarse scale	Yes	Yes	Yes	Yes	Yes	Yes	Yes, but predictor dependent	Yes, but predictor dependent
Represents changes in mean – fine scale	No	Yes	No	No	No	No	Yes	Yes
Monthly variability realistic	Can be badly biased	Usually less biased	Yes	Yes	Yes	Yes	Yes	Yes
Monthly variability <i>changes</i> represented	Yes	Yes	Any change not captured	Any change not captured.	Yes	Yes	Yes	Yes
Daily variability realistic - Temperature	Can be badly biased	Usually less biased	Yes	Yes	Yes	Yes	Yes	Yes
Daily variability <i>change</i> represented - Temperature	Yes	Yes	Any change not captured	Any change not captured.	Yes	Yes	Yes	Yes
Daily variability realistic - Precipitation	Can be badly biased	Usually less biased	Yes	Yes	Yes	Yes	Yes	Yes
Daily variability <i>change</i> represented - Precipitation	Yes	Yes	Change not captured	Change not captured	Changes captured?	Yes	Yes	Yes
Inter-variable physical consistency	Yes	Yes	Yes	Not necessarily	Yes	Yes	Not sure	Not sure
Australian Government								

Bureau of Meteorology

Courtesy Penny Whetton CAWCR, CSIRO

Assumptions made for SDM

- Relies on large-scale predictors for which Climate System Models are most skilful:
 - Several grid lengths
 - Tropospheric variables (away from the surface)
 - Dynamic variables (geopotential, wind, temperature)
- The transfer function must remain valid in different climate conditions:
 - Hard to demonstrate
 - Can be evaluated by comparison with other approaches
- The predictors must encompass the entire climate change signal:
 - Importance of testing several predictors
 - Uncertainties related to the choice of predictors

Australian Government Bureau of Meteorology

Predictors

- Large scale fields which drive the local climate
- Variables well represented by Climate Models

Statistical model validation:

- Data quality
- The length of the dataset
- Stability in time
- Re-analyses: NCEP, ERA
- Applying the SM: Coupled **GCMs** Control and **Transient simulations**

Daily local observations

- Good quality measurements
- Long record (few decades)
- Variables influenced by the weather

Predictands

WMO network:

- Rainfall
- Tmax
- Tmin
- Others

Non meteorological variables:

- Hydrological variables
- Agriculture index

Australian Government

Context for current work

- Delivery of a new set of national climate change projections across the Australian continent
- To be released in 2014 (superseding 2007 projections)
- Application ready datasets
- Downscaling is part of the mix (dynamical & statistical)
- Well defined user-needs (NRM groups)

• Planning (risk management and opportunities)

Australian Government Bureau of Meteorology

Statistical Downscaling

- Well used and developed technique (based on daily meteorological analogues)
- 20th century (1950-2005)
- RCPs 4.5 & 8.5 only (2006-2100)
- Continuum from 1950 to 2100
- 22 CMIP5 GCMs available
- Downscaled variables: daily for Rainfall Tmax Tmin

• Australia-wide on a grid (BoM operational 0.05° resolution)

Australian Government Bureau of Meteorology

3 obvious challenges

• Size of dataset:

- SDM outputs increase 50.000 times between CMIP3 and CMIP5 crop of outputs
- Application "ready" dataset (!)
- Limitations on predictands available
 - Well observed (length, completeness) variables
 - User needs are broader (full Atmo-LS coupling)
- Station observation vs. grid
 - Real observation = ground truth
 - Heavy reliance on stations in climate impact applications

Australian Government

Bureau of Meteorology

Gridded data provides the spatial coverage

ESD outputs

Large-scale predictor

- Growth in reanalysis products
 - NCEP 1/2, ERA40, ERA-interim, JRA, MERRA, CSFR, 20th century RA
 - Choices and trade-offs
 - Length vs. accuracy & resolution
 - Increased resolutions (CMIP5 vs. CMIP3)
- Choice of Predictors limited by GCMs
 - Processes well represented ("General Circulation")
 - Data availability (daily data needs)
 - CMIP3: 12 models / 26 ; CMIP5: 22 models / 59

Australian Government

Climate Data Marketplace

- Application "ready" dataset
 - Direct model (GCM) outputs & scaling factors
 - RCM & SDM dataset
 - Need for post-processing and bias corrections

Teng et al.,

J. of Hydro.,

Limitation of scaling approach

Added value of Downscaling

Convergence btw methods

JJA

DJF

Comparison of different downscaling approaches

- Understand the convergences (airflow against orography)
- And the divergences (SDM= translation; RCM = independence)

A2 scenario

-50

-60

Convergence with obs. trends

Presentation summary

- CORDEX-Australasian domain: you can contribute!!
- A range of SDMs exist as a complement to RCM approaches
- Our perspective from developing Australia-wide projections with application ready dataset:
 - Hard to displace "old habits": users love scaling approaches
 - Downscaling is not required everywhere
 - Need to guide users through the various options (implications)
 - Combining SDM and RCM provides additional in-sight
 - Required to fully describe the uncertainty space

