Performances of RegCM4.4 over CORDEX-EA (phase 2) Region

GAO Xuejie, et al.

National Climate Center / China Meteorological Administration (NCC/CMA)

Climate Change Research Center / Chinese Academy of Sciences (CCRC/CAS)

7th ICTP Workshop on the Theory and Use of Regional Climate Models May 12-23, 2014, Trieste, Italy

Outline:

Part I. Configuration of RegCM4.4 over CORDEX-EA (phase 2) Region / China

- 1. RegCM4 driven by different re-analysis
- 2. Different convections (BATS)
- 3. Different convections (CLM)
- 4. Updated land surface cover

Part II. Simulation for the period of 1990-2005

Part III. Future work plan

Part I. Configuration of RegCM4.4 over CORDEX-EA (phase 2) Region / China

- ➤ Version: RegCM4.4-r10, One years simulation (2000)
- > Different driving re-analysis
- Different combinations of physics

1. RegCM4 driven by different re-analysis (Grell+BATS)

—ERA-Interim (ERA-Interim), ERA40, NCEP1, NCEP2

DJF temperature, difference between simulation and observation (°C)

JJA temperature, difference between simulation and observation (°C)

DJF precipitaton and wind in 700hPa (mm and m/s)

JJA precipitaton and wind in 700hPa (mm and m/s)

2. Different convections (ERA-Interim, BATS, emissivity)

DJF and JJA temperature, difference between simulation and observation (°C)

DJF and JJA precipitaton and wind in 700hPa (mm and m/s)

3. Different convections (ERA-Interim, CLM)

DJF and JJA temperature, difference between simulation and observation (°C)

DJF and JJA precipitaton and wind in 700hPa (mm and m/s)

4. Updated land surface cover

- ✓ The default LC has a lower resolution of 0.5°×0.5°, with bias compared to the dataset developed in China as well as common knowledge
- ✓ The LC is updated to the dataset based on the vegetation map of China

Dominant LC in the model grids

1 Bare	4 NDT Bor	7 BDT Tro
2 NET Tem	5 BET Tro	8 BDT Tem
3 NET Bor	6 BET Tem	9 BDT Bor
10 BES Tem	13 C3 arc	16 Crop
11 BDS Tem	14 C3 grass	
12 BDS Bor	15 C4 grass	

Percentage of LC over 3 regions

Too many bare soil and crop and too few shrub in DFA

Tibetan 80E~95E, **25N~35N**

Central China 105E~120E, 30N~35N

South China 95E~120E, **20N~25N**

DJF and JJA temperature (°C)

DJF and JJA precipitation (%)

4. Updated land surface cover

	Convection	BATS or CLM	Large pr	Cloud fraction	PBL	Driving field
CTL	Emanuel	CLM	SUBEX(Pal)	Bsaed on RH (Pal)	Hotslag	ERA-Interim
micro	-	-	Micro cloud physics	Baed on RH&cloud water (Xu)	-	-

- > Smaller domain
- > one DJF test (200611-200703)

DJF temperature: CTL-OBS (left) and Micro-CTL (right) (°C)

Cloud fraction along 52°N

Part 2. Simulation for the period of 1990-2005

Final Configuration:

> Version: RegCM4.4-r10

> Land surface: CLM

Convection: Emanuel

> PBL: Hotslag

> Updated land cover over China

> Resolution: 25km

> etc.

The observed and simulated DJF, JJA, and annual mean temperature for 1990-2005 (°C)

The observed and simulated DJF, JJA, and annual mean precipitation and 700hPa wind for 1990-2005 (mm and m/s)

Inter annual variability of temperature and precipitation

Trend of temperature and precipitation (1991-2005, °C/d, mm/10a)

Hot (Tmax ≥35°C) and Cold days (≤-10°C)

Light (1-10mm), Moderate (10-20mm) and Heay (>20mm) rain days

Part 3. Discussion and future work plan

- > Usual discrepancies with observation exist
 - **✓** Grell+Bats and Emanuel+CLM perform best
 - ✓ Warm bias over high latitudes in cold seasons (potentially can be improved by the micro-cloud physics)
 - **✓** Not enough rain in southern China (rainy areas)
 - **✓** Too much of rainfall in north (drier areas)
 - **✓** Too warm over deserts
 - ✓ Tests of new versions, and further development and tuning

- > Climate change simulations under RCP-CMIP5
- ➤ Comparison with other RCMs under CORDEX to address the uncertanties
- > Small ensemble of RegCM: different physics
 - ✓ Grell+Bats
 - **✓** Emanuel+CLM

