

Regional Downscaling Experiments for CORDEX-East Asia

Hyun-Suk Kang

National Institute of Meteorological Research Korea Meteorological Administration

acknowledged to:

all colleagues at KNU, SNU, YU, UNIST, and POSTECH

A Regional Downscaling Project coordinated by KMA

Domains for climate projections at KMA

KMA/NIMR

CMIP5 experiment with HadGEM2-AO and provide GCM forcing Regional downscaling for 2 domains with HadGEM3-RA Maintaining CORDEX-EA databank

Dynamical Downscaling Group

- Multi-RCMs forced by HadGFM2-AO
- Ensemble method
- Uncertainty Assessment

Statistical Downscaling Group

- Methods' Development
- High-resolution projection data up to 1 km
- Focusing on national scenario

(Extreme) Analysis Group

- Evaluation of CORDEX outputs for extreme events
- Evaluation of Tropical Cyclones

Application Group

- Essential factors for administrative districts in agriculture, health, and disaster prevention sectors.
- 5 regional climate models for CORDEX-EA domain (50 km) and smaller sub-region (12.5 km).
- I statistical downscaling model for Korean peninsula up to I km's resolution.
- I group from Japan (U.Tokyo) has participated recently.

Downscaling Experiments

completed

on going (or planned)

evaluation / historical / rcp 2.6, 4.5, 6.0, 8.5

Model Configurations

Model		HadGEM3-RA	RegCM4	SNURCM (MM5)	WRF	GRIMS (YSU RSM)	
Institute		KMA/NIMR	Kongju Nat. U.	Seoul Nat. U	Seoul Nat. U.	Yonsei U.	
Grid Numbers (Lat. x Lon.)		183 x 220	197 x 243	197 x 233	197 x 233	198 x 241	
Physics	Radiation	General 2- stream	ССМЗ	CCM2	RRTM	Chou	
	Cloud	Mixed phase	SUBEX	Resiner II	WSM3	diagnostic microphysics	
	Convection	Revised mass-flux	MIT-Emanuel	KF2	KF2	SAS	
	Non-local PBL	Lock et al.	Holtslag	YSU	YSU	YSU	
	Land	MOSE II	CLM3	CLM3	NOAH	NOAH	
	Nudging	No	Yes	Yes	Yes	Yes	

Annual Mean Bias (model - obs.)

20-year (1989-2008) mean

[Surface Air Temperature (°C)]

[Precipitation (mm/day)]

Performance-based Ensemble Average Method

(Courtesy of Suh et al., 2012)

$$\tilde{T} = \sum_{i=1}^{N_m} P w_i^n T_i - \sum_{i=1}^{N_m} P w_i^n \Delta T_i \quad \text{, where} \quad P w_i^n = \frac{P w_i}{\sum_{i=1}^{N_m} P w_i} \quad \text{and} \quad P w_i = \frac{1}{(RMSE_i + 1)} |Cor_i|$$

Bias (°C)

Bias (°C)

RegCM4(ERA)

RegCM4(R-2)

SNURCM(ERA)

SNURCM(R-2)

WRF(ERA)

WRF(R-2)

RSM(ERA)

RSM(R-2)

Annual mean time series (9-year moving average)

<Temperature>

<Precipitation>

Monsoon Evolution (Korea)

Averaged over 120 -130 °E (1979-2005)

Additional Experiments with HadGEM3-RA

Boundary forcing impacts with

- SST and sea-ice: Observational Climatology + GCM anomalies
- Lateral BC: more stabilized (over 400 years) GCM forcing

Surface Air Temperature Extremes (1979-2005 JJA)

- Mean and extreme climatology
 - similar spatial pattern, i.e., warmer in eastern and southern China
- MME bias
 - Similar spatial patterns between mean and extreme
 - Cold bias in Korea, southern China, and Japan
 - Warm bias in central and northern China and Mongolia
 - Mean biases are smaller than extreme.

Precipitation Extremes (1979-2005 JJA)

- Mean and extreme climatology
 - similar spatial pattern
 (Monsoon rain bands and heavy rains in southern China, South Korea, and Japan)
- MME bias
 - Overall wet biases (29 % wetter in mean, 22% wetter in extreme)
 - Dry bias in South Korea and Kyushu, which means 'Changma' front is not captured by most RCMs.

Characteristics of Mean and Extremes

Temperature climatology JJA 1979-2005

Precipitation climatology JJA 1979-2005

- TAS: means show better performance than extremes (higher spatial correlation)
- PR: extremes have higher skill than means (better spatial variability)
- HadGEM3RA and RegCM show better performance than others

Tropical Cyclone Track Density

Tracking Method

(Oouchi et at., 2006; Camargo et al., 2007)

- I) Find the local minimum sea level pressure
- 2) Maximum RV at 850 hPa > $4.9 \times 10^{-5} \, s^{-1}$
- 3) Maximum wind speed at surface > 17 ms⁻¹
- 4) Warm core criterion: $\Delta T = \Delta T_{300} + \Delta T_{500} + \Delta T_{700} > 2.0 K_{15N}$
- 5) Maximum wind speed at 850 hPa > that at 300 hPa
- 6) Duration of all above condition > 2 days

Tropical Cyclone Track Density

Tracking Method

(Oouchi et at., 2006; Camargo et al., 2007)

- I) Find the local minimum sea level pressure
- 2) Maximum RV at 850 hPa > $4.9 \times 10^{-5} \text{ s}^{-1}$
- 3) Maximum wind speed at surface > 17 ms⁻¹
- 4) Warm core criterion: $\Delta T = \Delta T_{300} + \Delta T_{500} + \Delta T_{700} > 2.0 K_{15N}$
- 5) Maximum wind speed at 850 hPa > that at 300 hPa
- 6) Duration of all above condition > 2 days

Genesis Potential Index (GPI)

$$GPI = \left| 10^5 \eta \right|^{3/2} (RH / 50)^3 (PI / 70)^3 (1 + 0.1 V_{shear})^{-2}$$

SFC. Temperature vs. Precipitation

Interannual Variability of TC Genesis Frequency

	RSMC	HadGEM3RA	RegCM4	SNURCM	WRF	GRIMS	MME
AVE	22.2	2.9	20.5	27.6	21.3	19.3	22.1
STD	4.2	1.8	6.2	5.5	4.1	4.5	3.9
CORR	 	0.50	0.65	0.58	0.63	0.15	0.68

Statistical Downscaling

PRIDE (PRISM based Downscaling Estimation Model)

Observation

PRISM based Seasonal
Cycle using GIS
information (DEM,
topographic facet, costal
proximity, and distance)
and AWS observations

RCMs

Use the RCM-based anomalies by removing systematic bias and model seasonal cycle

weighting factors for Modified-PRISM

Applications

- Based on the results from 4 RCPs x 2 RCMs
- Spatial distribution and time series for 230 administrative districts
- Essential factors for agriculture, health, and disaster prevention sectors.

<Agriculture>

growth duration, effective accumulated temperature, winkler scale, vegetable period, crop period, frostless period, chill units, climatic productivity index, thermo-hydro index, evapotranspiration, heating period, cooling period, etc...

<Health>

Heat Index (HI), Discomfort Index (DI), Apparent Temperature (AT), Net Effective Temperature (NET), Humidex, Windchill

<Disaster Prevention>

Standard Precipitation Index (SPI)

http://cordex-ea.climate.go.kr

Regional Ocean Downscaling

Summary

- CORDEX-Phase I experiments for East Asia region have been completed successfully, and their outputs are welcomed to be used by analysis groups as well as IAV sectors via http://cordex-ea.climate.go.kr
- Evaluation of the outputs are currently focusing on multi-model ensemble, monsoon evolution, and climate extremes including tropical cyclones.
- Multi-GCM/RCMs metrics are essential, and RCM should be further developed toward RCESM to capture more realistic activities of monsoon front and tropical cyclones.
- Statistical downscaling and its application for interdisciplinary sectors are still limited only on nation-wide scale.
- Phase-II experiments with smaller domain but with higher-resolution are prepared by EA groups.

Thanks for your attention.