Y AND SIMULATION F materials

RST-PRINCIPLES PREDICTIONS UNDER REALIST Electrochemical conditions

AARZARI, THEORY AND SIMULATION OF MATERIALS, E

- Damian Scherlis (Universion of Buenos Aires)
- Oliviero Andreussi (University of Pisa)
- Celine Dupont (Universite Bourgogne)
- Matteo Cococcioni (EPFL)

Ismaila Dabo (Penn State) Nicephore Bonnet (AIST Tsukuba)

electrochemical environments

- Biology: Many processes take place in salty, watery environments
- Technology: Key industrial reactions take place in aqueous solutions or solvents
- Synthesis: Growth of nanoparticles and crystals by wet chemistry is strongly influenced by the solvent

electrochemical environments

- Energy: Electrified solid-liquid interfaces are key to harvesting, storing, and converting energy:
 - Photocatalysis in a dye-sensitized solar cell
 - Electrolyte chemistry in a lithium-ion battery
 - Fuel-into-electricity in a fuel cell

electrochemical environments

Water and solvation

What's wrong with water

It's a liquid! (need long ab-initio md) Even ils structure is challenging in DFT At what temperature does it melt/freeze What is its dielectric constant? H is light - tunnelling, Bose-Einstein sto

Water, ice, or glass?

BE water is overstructured Galli's group, JCP 2004, 2005) It melts at 400K... (Sit and Marzari, JCP 2005)

$$V_{quantum} = \int \vartheta (\rho(\vec{r}) - \alpha) d\vec{r}$$

$$untum = \int d\vec{r} \left[\vartheta \left(\rho(\vec{r}) - \left(\alpha - \frac{\Delta}{2} \right) \right) - \vartheta \left(\rho(\vec{r}) - \left(\alpha + \frac{\Delta}{2} \right) \right) \right] \frac{|\vec{\nabla}\rho(\vec{r})|}{\Delta}$$

sen-consistent continuum solvation mot

Electrostatics: Poisson equation in a dielectric medium

$$\nabla^2 V(\vec{r}) = -4\pi\rho(\vec{r}) \quad \rightarrow \quad \vec{\nabla} \cdot \left(\varepsilon \left[\rho(\vec{r})\right] \vec{\nabla} V(\vec{r})\right) = -4\pi\rho(\vec{r})$$

J.-L. Fattebert and F. Gygi, Int. J. Quantum Chem. 93, 139 (2003)

sen-consistent continuum solvation mot

Electrostatics: Poisson equation in a dielectric medium

$$\nabla^2 V(\vec{r}) = -4\pi\rho(\vec{r}) \quad \rightarrow \quad \vec{\nabla} \cdot \left(\varepsilon \left[\rho(\vec{r})\right] \vec{\nabla} V(\vec{r})\right) = -4\pi\rho(\vec{r})$$

J.-L. Fattebert and F. Gygi, Int. J. Quantum Chem. 93, 139 (2003)

Non-electrostatics (cavitation, etc...)

$$E \to E + \alpha S_{quantum}^{\left[\rho(\vec{r})\right]} + \beta V_{quantum}^{\left[\rho(\vec{r})\right]}$$

D.A. Scherlis, J.-L. Fattebert, F. Gygi, M. Cococcioni, and N. Marzari JCP 124, 074103 (2006)

O. Andreussi, I. Dabo, and N. Marzari, JCP 136, 064102 (2012)

Parameters in the model

$$E \to E^{\left[\varepsilon(\rho(\vec{r}))\right]} + \alpha S^{\left[\rho(\vec{r})\right]}_{quantum} + \beta V^{\left[\rho(\vec{r})\right]}_{quantum}$$

ree/four parameters:

- 2 parameters for dielectric function
- 1 or 2 parameters for non-electrostatic terms (proportional to quantum volume and quantum surface)

from multigrid to iterative

 $\nabla \cdot \epsilon \left(\rho^{elec} \left(\mathbf{r} \right) \right) \nabla \phi^{tot} \left(\mathbf{r} \right) = -4\pi \rho^{solute} \left(\mathbf{r} \right)$

 $\rho^{pol}\left(\mathbf{r}\right) \equiv -\nabla \cdot \mathbf{P}\left(\mathbf{r}\right) = \nabla \cdot \left(\frac{\epsilon \left(\rho^{elec}\left(\mathbf{r}\right)\right) - 1}{4\pi} \nabla \phi^{tot}\left(\mathbf{r}\right)\right)$

 $\nabla^{2}\phi^{tot}\left(\mathbf{r}\right) = -4\pi\left(\rho^{solute}\left(\mathbf{r}\right) + \rho^{pol}\left(\mathbf{r}\right)\right)$

Polarization charges

wo contributions

$$\rho^{pol}\left(\mathbf{r}\right) = \frac{1}{4\pi} \nabla \ln \epsilon \left(\rho^{elec}\left(\mathbf{r}\right)\right) \cdot \nabla \phi^{tot}\left(\mathbf{r}\right) - \frac{\epsilon \left(\rho^{elec}\left(\mathbf{r}\right)\right) - 1}{\epsilon \left(\rho^{elec}\left(\mathbf{r}\right)\right)} \rho^{solute}\left(\mathbf{r}\right)$$

Which dielectric function?

 ω^{0}

-

Extrema: $1, \varepsilon_0$

Flat in the solute

Flat in the bulk dielectric

Smooth

 $\varepsilon \left(\rho \right)$

instabilities

mooth piece-wise lefinition

sul: Electronic lensity decays .xponentially

Polarization charge s a function of the pradient of the ogarithm of epsilon

$$\epsilon_{\epsilon_{0},\rho_{min},\rho_{max}}\left(\rho^{elec}\right) = \begin{cases} 1 & \rho^{elec} > \rho_{max} \\ \exp\left(t\left(\ln\rho^{elec}\right)\right) & \rho_{min} < \rho^{elec} < \rho_{min} \\ \epsilon_{0} & \rho^{elec} < \rho_{min} \end{cases}$$

$$t(x) = \frac{\ln \epsilon_0}{2\pi} \left[2\pi \frac{(\ln \rho_{max} - x)}{(\ln \rho_{max} - \ln \rho_{min})} - \sin \left(2\pi \frac{(\ln \rho_{max} - x)}{(\ln \rho_{max} - \ln \rho_{min})} \right) \right]$$

Parameler filling

Cavity parameters to reproduce electrostatic solvation energy of PCM

Non-electrostatic parameters to reproduce total solvation free energies

on 240 solvation energies)

charged systems sm8 sccs

cellent results or cations (MAE 1.2 kcal/mol)

ery good results or anion, with parametrization IAE ~4.7 kcal/ ol)

Multiscale electrochemical model

- Work Function: Difference between the Fermi energy and the vacuum reference energy (q = 0 only)
- Electrode Potential: Difference between the Fermi energy and

to charging coming from the quantum, solvent, and countering fields (also the opposite could be done – at fixed potential

$$\frac{d^{2}v/dz^{2} = -4\pi\rho}{d^{2}v'/dz^{2} = -4\pi(\rho - \langle \rho \rangle)}$$

Second ingredient: SCCS (self-consistent continuum solvation)

(Guoy-Chapmann-Stern)

$$7 \cdot \epsilon \nabla \mathbf{v}^{corr} = -\mathbf{4}\pi(\langle \rho \rangle + \frac{\rho_{p}'}{\rho} + \frac{\rho_{d}}{\rho})$$

$$ho_{
m p}' =
abla \cdot \chi
abla {f v}'$$

$$\rho_{d} = z_{d}c_{d}\left(e^{-\frac{z_{d}v}{k_{B}\tau}} - e^{+\frac{z_{d}v}{k_{B}\tau}}\right) \text{ if } \rho < \rho_{1}$$
$$\Rightarrow \text{ ionic solvent reaction field}$$

Electrochemical Boundary Conditions

$\frac{dv}{dz}(z) = -\left(\frac{36\pi c_d k_B T}{\epsilon_S}\right)^{\frac{1}{2}} \sinh \frac{z_d v(z)}{2k_B T} \text{ at } z = \pm L/2$

- I. Dabo, PhD, MIT (2007)
- I. Dabo, E. Cances, Y. L. Li, and N. Marzari, arXiv:0901.0096v2 (2009)

Application: Stark tuning

$$\frac{d\nu(C-O)}{d\mathcal{E}} = 28-32 \text{ cm}^{-1} \cdot \text{m}^{2}$$

- Technogically important system (CO poisoning).
- Accurate experimental data
- Highly sensitive to electrochemical conditions
- No comprehensive first-principles model.

I. Dabo, A. Wieckowski, N. Marzari, JACS 129, 11045-11052 (2007)

 $\nu(C-O)$

DFT (Exp.) atop 2050 cm⁻¹ (2070 cm bridge 1845 cm⁻¹ (1830 cm hcp 1752 cm⁻¹ (1760 cm fcc 1743 cm⁻¹ (1760 cm

charge and capacitance as a function of potential

Capacitance

Electrochemical vibrational Stark effect

Vibrational frequency

Application: Equilibrium shapes of nanoparticles (potential, pH)

[Tian, Science 2007]

The Wulff construction

Hydrogen underpotential deposition

Electrosorption of a proton (Norskov et al.)

Electrosorption of a proton (Norskov et al.)

At a potential U measured with respect to RHE:

$\Delta G_{tot} = eU + \Delta G(\theta) + kT \ln (\theta/(1-\theta))$

$\Delta G(\theta) = \Delta E + ZPE + 0.20eV$

Effect of pH

andard vs reference hydrogen electrode

 $RHE = \Phi_{SHE} + kT \ln [H^+] = \Phi_{SHE} - 0.059 \text{ X pH}$

Assumption from expts: PZC at 0 pH is 0.3V/RHE

t any other pH the charge on the surface

 $\sigma = -0.059 \text{ X pH X } c_{dl}$

Assumption from expts:

Hydrogen deposition curves: $\Delta G(pH,U)=0$

Haile et al., *Nature* **410**, 910 (2001)

Tin

Chemical-bond dynamics

10⁹ s ⁻¹

Proposed

10¹² s ⁻¹ (limited by reversa to 10¹¹ s ⁻¹)*

This work

10¹¹ s -1 10¹² s -1

ydrogen-bond dynamics

No significant CsHSO₄ / CsDSO₄ isotope effect

Chemical-bond dynamics

ydrogen-bond dynamics

SO₄ controls attempt frequency

SO₄ controls reversal rate

sHSO₄:

- New picture of hydrogen bond lynamics
- **SO**₄ rotation controls attempt requency of chemical bond dynamics and reversal rate of hydrogen bond lynamics
- SO₄ rotation (not chemical bond lynamics!) is rate limiting
- Topological analysis shows chains ncrease jump likelihood

- 1. Rotation of AIH tetrahedra at surf
- 2. Expansion alor lattice parameter
- 3. Shear of surfact planes

(001) Surface
 slab @ 275K

/ukawa et al., J. Alloys Comp. 6&447, 242 (2007):

- Stable at room T
- Intact AIH₄ units with little constraint from lattice
- Appearance of new vibrational peak at 1800 cm⁻¹
- Anton, J. Alloys Comp. 356&357, 400 003):

Conclusions

- First-principles electrochemistry is a novel challenge for our field – we need to understand the accuracy of our predictions, but especially to find novel ways to calculate experimentally relevant properties
- If we succeed, we can leverage the power of quantum simulations for characterization and design of novel materials/processes/devices.

Thank you for Listening!

