MODELLING PHOTOINDUCED REDOX PROCESSES IN THE BULK AND AT THE SURFACE OF TiO₂

Cristiana Di Valentin

Dipartimento di Scienza dei Materiali Università di Milano-Bicocca Milano - Italy

Workshop on Material Challenges in Devices for Fuel Solar Production and Employment ICTP – TRIESTE MAY 19-23, 2014

TITANIUM DIOXIDE PHOTOINDUCED APPLICATIONS

TiO₂ coating: anti-fogging

TiO₂ coating: self-cleaning glass and materials

TiO₂ coating: anti-bactirial anti-virial fungicidal

TiO₂ coating: deodorizing air-purification

TiO₂ based photo electrochemical water splitting

Grätzel cells

PHOTOINDUCED PROCESSES ON TITANIUM DIOXIDE

PEOPLE GENERICALLY TALK OF: RECOMBINATION OR CHARGE TRAPPING

BUT WHAT ARE THEY? STILL MANY OPEN QUESTIONS:

FOCUS OF OUR WORK

- PHOTOINDUCED EXCITONS
- CHARGE SEPARATION
- ELECTRON-HOLE PAIR
- SELF-TRAPPING
- CHARGE MIGRATION
- ROLE OF INTRINSIC
 - OR EXTRINSIC DEFECTS
- CHARGE TRAPPING AT SURFACE
- SCAVENGERS
- REDOX PROCESSES

OUTLINE

 computational info • photoexcited TiO₂: bulk excitons electron and hole polarons in bulk electron and hole polarons on clean or OH surface photoreduction and photooxidation at TiO₂ surface molecular oxygen as an electron scavenger organic molecules as hole scavengers (formic acid, methanol, iso-propanol, tert-butanol, glycerol and catechol) anatase vs rutile

conclusions

COMPUTATIONAL APPROACH

CRYSTAL09 (hybrid DFT)

atomic gaussian basis set and PBC (3D and 2D) Hybrid DFT functionals – spin polarized calculation hyperfine coupling constants (EPR)

QUANTUM EXPRESSO (standard DFT and DFT+U)

PWSCF: plane-wave-pseudopotential and PBC (3D) PBE functional – spin polarized calculations CAR-PARRINELLO molecular dynamics simulations

GAUSSIAN09 (hybrid DFT)

atomic gaussian basis set and embedded cluster approach Hybrid DFT functionals – spin polarized calculation hyperfine coupling constants and g-tensors (EPR) TD time dependent calculations

TiO₂ MODELS

RUTILE

ANATASE

anatase 101 surface

ICTP – TRIESTE MAY 19-23, 2014

anatase bulk

TiO₂: VERY IMPORTANT ROLE OF DEFECTS

COLOR CHANGE IN TiO₂ SAMPLES INDUCED BY INCREASING OXYGEN SUB-STOICHIOMETRY

DEFECTS CHANGE ELECTRONIC AND OPTICAL PROPERTIES OF THE MATERIAL

U. Diebold, Surf. Sci. Reports, 2003, 48, 53

V. Ganduglia-Pirovano et al. Surf. Sci. Rep. 62, 219 (2007)

M. A. Henderson Surf. Sci. 419, 174 (1999) S. Wendt et al. Science 320, 1755 (2008)

IN REDUCED TITANIA TI ATOMS ALWAYS EXCEED O ATOMS RESULTING IN THE FORMATION OF Ti³⁺ SPECIES

REDUCED TITANIA: Ti³⁺ SPECIES

UV-vis

(1) absorption bands in the visible region responsible for the change in color (assigned to dd transitions)

UPS/EELS

(2) occurrence of a new state in the gap at about 0.8-0.9 eV below the conduction band attributed to the reduced Ti^{3+} ions

XPS

EPR

(3) shift in the core level binding energies of the reduced Ti atoms from X-ray photoemission

(4) presence of more than one EPR signal associated to various kinds of paramagnetic Ti³⁺ ions in the lattice

TiO2(110) + O2

REDUCED TITANIA: Surface Oxygen Vacancy

PBE vs B3LYP

RUTILE (110) SURFACE

rutile 110 surface

pure DFT functionals (PBE): band gap underestimated

O vacancy induced states are at the bottom of conduction band (not 0.8 eV below as in exp.)

states delocalized, not localized as shown by EPR (Ti³⁺)

CDV, Pacchioni, Selloni PRL 97 (2006) 166803

ICTP – TRIESTE MAY 19-23, 2014

PBE ON DISTORTED B3LYP GEOMETRY LEADS TO LOCALIZATION!

OXYGEN DEFICIENT RUTILE (110) SURFACE

POLARONIC NATURE OF OXYGEN VACANCY

B3LYP

SELF-INTERACTION CORRECTION

PRAGMATIC WAYS TO IMPROVE THE MODEL

Hybrid functionals

Use of hybrid functionals where HF-like exchange is mixed in with the DFT exchange: B3LYP (20%), H&H LYP (50%)

 $E_{xc}^{B3LYP} = a E_x^{LSDA} + (1-a) E_x^{HF} + b E_x^{Becke} + (1-c) E_c^{LSDA} + c E_c^{LYP}$

Becke J. Chem. Phys. 98, 5648 (1993)

DFT+U methods

Systems where atomic-like features are persistent in the solid: explicit description of on-site Coulomb interaction for a few selected localized orbitals Add a Hubbard-like E_{Hub} term to the standard functional:

$\mathsf{E}_{\mathsf{LDA}+\mathsf{U}}\left[\mathsf{n}(\mathsf{r})\right] = \mathsf{E}_{\mathsf{LDA}}\left[\mathsf{n}(\mathsf{r})\right] + \mathsf{E}_{\mathsf{HUB}}\left[\{\mathsf{n}_{\mathsf{m}}^{\mathsf{I}\sigma}\}\right] - \mathsf{E}_{\mathsf{DC}}\left[\{\mathsf{n}_{\mathsf{m}}^{\mathsf{I}\sigma}\}\right]$

Anisimov et al., Phys. Rev. B 44, 943 (1991)

POLARONIC NATURE OF Ti³⁺ CENTERS

B3LYP AND PBE+U

V

Х

 \bigcirc

13.

POLARONIC NATURE: distortion around the defect Ti³⁺

HYBRID FUNCTIONALS and DFT+U VS STANDARDS GGA METHODS

Di Valentin C., Pacchioni G., Selloni A. PRL 97 (2006) 166803

Morgan B. J., Watson G. W. Surf. Sci. 601 (2007) 5034

Calzado C. J., Hernandez N. C., Sanz J. F. PRB 77 (2008) 045118

Mattioli G., Filippone F., Alippi P., Amore Bonapasta A. PRB 78 (2008) 241201

PHOTOEXCITED ANATASE TiO₂

PHOTOGENERATED CHARGES ARE PROBED BY:

- IR
- EPR
- PHOTOLUMINESCENCE
- O₂ PHOTODESORPTION

- PHOTOEXCITATION
- BULK EXCITONS
- CHARGE CARRIERS SEPARATION
- ELECTRON AND HOLE POLARONS TRAPPING IN BULK
- **MIGRATION TO THE SURFACE**
- TRAPPING AT CLEAN AND OH SURFACE

PHOTOEXCITED ANATASE TiO₂

ELECTRONIC GAP

PHOTOEMISSION EXPERIMENTS

DFT or MANY BODY CALCULATIONS

OPTICAL GAP

LIGHT ABSORPTION EXPERIMENTS

TD-DFT or BSE CALCULATIONS INCLUDING EXCITONIC EFFECTS

BUT:

ELECTRON-PHONON COUPLING and SELF_TRAPPING ENERGY (REORGANIZATION ENERGY -LOCAL RELAXATION EFFECTS)

NOT EASELY INCLUDED!

PHOTOEXCITED ANATASE TiO₂: EXCITONS FORMATION

PHYSICAL REVIEW B

VOLUME 52, NUMBER 11

15 SEPTEMBER 1995-I

Urbach tail of anatase TiO₂

H. Tang, F. Lévy, H. Berger, and P. E. Schmid

Institut de Physique Appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland (Received 17 January 1995; revised manuscript received 7 April 1995)

The fundamental absorption edge of the anatase phase of TiO_2 has been studied by performing polarized optical transmission measurements on single crystals at temperatures ranging from 4.2 to 300 K. An Urbach tail has been found that shows an exponential spectral dependence down to liquid-helium temperature. The optical gap of anatase has been estimated to be 3.420 eV in polarization ELc, and 3.460 eV in polarization E||c. Our experimental results can be accounted for in terms of the theory of Tovozawa and co-workers, which ascribes the Urbach tail to the momentary localization of excitons due to phonon interaction. Comparing, in this case, the measured abosrption spectra of anatase and rutile, we conclude that the excitons in anatase are self-trapped while those in rutile are free. This opposite nature of exciton states in anatase and rutile is consistent with the results of previous photoluminescence studies.

URBACH TAIL DEPENDENCE WITH T INDICATES A SELF-TRAPPED EXCITON FOR ANATASE NOT FOR RUTILE

PHOTOEXCITED ANATASE TiO₂

GROUND STATE: SINGLET GROUND STATE

EXCITED STATE: TRIPLET GROUND STATE

THESE ARE CORRECTLY DESCRIBED BY DFT WHICH IS A GROUND STATE THEORY

SINGLE POINT CALCULATION

SINGLE POINT CALCULATION

STRUCTURAL RELAXATION: SELF TRAPPING

SELF TRAPPING ENERGY

CDV, Selloni JPC Lett. 2 (2011) 2223

EXCITONS AND POLARONS IN BULK ANATASE TIO₂

ICTP – TRIESTE MAY 19-23, 2014

EXCITONS AND POLARONS ON ANATASE TiO₂ (101) SURFACE

ICTP – TRIESTE MAY 19-23, 2014

POLARONIC DISTORSION

HOLE TRAPPING: DIRECT OR INDIRECT MECHANISM?

R. Nakamura, Y. Nakato JACS 2004 126 1290

HOLE POLARONS ON ANATASE TIO₂ (101) OH SURFACE

EXCITONS AND POLARONS IN ANATASE TiO₂

ONE-ELECTRON KOHN-SHAM EIGENSTATES

Electron associated (Ti³⁺) state similar to ground state (n-type TiO₂) Ti³⁺ species Hole associated (O⁻) state much lower than for ground state (p-type TiO₂) N species: 2.7 eV! in line with lower photooxidation properties of N-doped TiO₂

EXCITONS AND POLARONS IN ANATASE TIO₂

TOTAL ENERGY DIFFERENCES

DRIVING FORCE TO TRAVEL FROM BULK TO SURFACE

EXP. HOLE OXIDATION POTENTIALS ARE REDUCED OF 1.3-1.4 V UPON TRAPPING

ICTP – TRIESTE MAY 19-23, 2014

CDV, Selloni JPC Lett. 2 (2011) 2223

TRAPPED ELECTRONS IN TiO₂

SCIENTIFIC REPORTS

Received

4 November 2013

OPEN Probing electrons in TiO₂ polaronic trap SUBJECT AREAS: PHOTOCONTALYSS RECTION C STRUCTURE PHOTOCONTALYSS PHOTOC

Hikmet Sezen¹, Maria Buchholz¹, Alexei Nefedov¹, Carsten Natzeck¹, Stefan Heissler¹, Cristiana Di Valentin² & Christof Wöll¹

E_{STe} = 380 meV

Total energy difference between free CB e⁻ and self-trapped e⁻

In collaboration with C. Wöll KIT Scientific Reports 4 (2014) 3808

TRAPPED HOLES IN ANATASE TIO2

EPR MEASUREMENTS: 170 HYPERFINE COUPLING CONSTANTS

			g-tensor ^a	¹⁷ O hyperfine coupling ^b			
system (T, K)		82	8y	gx	Az	Ay	Ax
TiO_2/H_2O colloids (8) ^c TiO_2/H_2O with ¹⁷ O ^c		2.0073 2.0073 2.002	2.0188 2.0188	2.0273 2.0273 2.07	104	19	19
MgO (77)* BeO (1.5) ⁷		2.002	2.042 2.0149	2.042 2.0149 2.021	103.5	19.5	19.5
and a second filled and the fille of the fille		2.0020	2.021	2.021			
Micic et al O _{2c} -	. JP(a _i	2.0020 So	1993) B _x	7277	B _y		В
Micic et al O _{2c} - EXP.	. JP(a _i	2.0020 So 2	2.021 1993) B _x 41	7277	B _y 41		B -8

DEGREE OF LOCALIZATION BY B3LYP IN EXCELLENT AGREEMENT WITH EPR DATA

SCHEMATIC REPRESENTATION OF BULK ANATASE TiO₂ SPECTROSCOPY

Ongoing collaboration with Claudia Draxl (Berlin) for comparison with BSE calculations including excitonic effects but no ionic relaxation

PHOTOREDUCTION AND PHOTOOXIDATION AT TiO₂ SURFACE

ELECTRON SCAVENGER 02 **HOLE SCAVENGERS ORGANIC ACIDS AND ALCOHOLS**

FORMIC ACID – METHANOL – ISOPROPANOL TERT-BUTANOL – GLYCEROL – CATECHOL

CDV and D. Fittipaldi JPC Lett. 4 (2013) 1901

DEFINITIONS

METHANOL: UNDISSOCIATED VS DISSOCIATED ADSORPTION MODES

D_e(eV) -0.65

-0.46

METHANOL: HOLE TRAPPING

$S^+M \rightarrow SM^+$				
$E_{TRAP} = E_{SM} - E_{SM}$				
IP _{GAS}	10.6 eV			
IP _{ME₃(H)_F⁺}	6.2 eV			
E _{TRAP}	-0.65 eV			
-0.52 eV < E _T	_{RAP} < -0.65 eV			

M. Shen, M. A. Henderson JPC Lett. 2011 2 2707: adsorbed methoxy and not molecularly adsorbed methanol is the reactive species for hole-mediated oxidation of methanol on TiO₂ (110)

> PHOTOINDUCED PROTON DISSOCIATION COUPLED PROTON AND HOLE TRANSFERS

TERT-BUTANOL: UNDISSOCIATED VS DISSOCIATED ADSORPTION MODES

D_e(eV) -0.46

-0.37

-0.35

TERT-BUTANOL: HOLE TRAPPING

$$S^+M \rightarrow SM^+$$

$$\mathsf{E}_{\mathsf{TRAP}} = \mathsf{E}_{\mathsf{SM}} + - \mathsf{E}_{\mathsf{S}} + \mathsf{M}$$

IP _{GAS}	9.4 eV
IP _{TB(H)_F⁺}	6.0 eV
E _{TRAP}	-0.64 eV
-0.56 eV < E _{TI}	_{RAP} < -0.64 eV

GLYCEROL: UNDISSOCIATED VS DISSOCIATED ADSORPTION MODES

GLYCEROL: HOLE TRAPPING

C-C BOND ELONGATION: IN THE PROCESS OF FORMING FORMALDEHYDE AND ETHYLENE GLYCOL

CATECHOL: UNDISSOCIATED VS DISSOCIATED ADSORPTION MODES

 $D_{e}(eV)$ -0.22

CATECHOL: HOLE TRAPPING

HIGH HOLE STABILIZATION THROUGH DELOCALIZATION ON THE AROMATIC RING

COMPARATIVE ANALYSIS OF SCAVENGING POWER

 $\Delta IP_{s} = IP_{s^{*}M} - IP_{s}$

COMPARATIVE ANALYSIS OF SCAVENGING POWER

Μ	ΔIP_s	∆MVB	E _{TRAP}	∆ MVB+E_{TRAP}
Formic Acid	-0.59	-0.31	-0.22	-0.53
Methanol	-0.69	-0.44	-0.65	-1.09
Tert-butanol	-1.07	-0.57	-0.64	-1.21
Isopropanol	-0.91	-0.48	-0.90	-1.38
Glycerol	-1.32	-0.76	-0.77	-1.53

GLYCEROL > ISOPROPANOL > TERT-BUTANOL > METHANOL > FORMIC ACID

T. RAJH AND CO. JPC C 2012, 116, 878

REDUCED SURFACE WORKFUNCTION DUE TO SURFACE DIPOLE CHANGE EASIER FORMATION OF HOLE AT SURFACE

CDV and D. Fittipaldi JPC Lett. 4 (2013) 1901

OPTICAL ABSORPTION MEASUREMENTS OF PHOTOEXCITED ELECTRONS IN THE PRESENCE OF HOLE SCAVENGERS

O₂ ELECTRON SCAVENGER

Ti_{5c}³⁺

 $E_{trap} = -1.4 eV$

CONCLUSIONS

- bulk/surface excitons and polarons in photoexcited anatase TiO₂ can be described with a simplified approach which takes into account self-trapping energy and local relaxation
- we find that a driving force exists for photoexcited electrons and holes to travel from the bulk to the surface
- comparison with exp. data from IR, EPR and luminescence spectroscopies is very good for the photoexcited model system
- photoexcited holes trapping by adsorbed organic alcohols and acids induces proton dissociation (except for catecol which is an excellent hole scavenger
 because of the states in the gap)
- the change in the surface workfunction as a consequence of adsorption together with the trapping ability of the molecular species enhance the driving force for photoexcited electrons and holes to travel from the bulk to the surface
- on these basis we could define a scale of scavenging power
- interesting comparison between trapping energies on anatase and rutile!