

Defects and diffusion in metal oxides: Challenges for first-principles modelling

Karsten Albe, FG Materialmodellierung, TU Darmstadt

Johan Pohl, Peter Agoston, Paul Erhart, Manuel Diehm

FUNDING: DFG-SFB 595, BMBF "Gracis", Helmholtz Virtual Institute "MiCo", Schott Solar

How To Get Hydrogen?

Photocatalysis: Desired Materials Properties

- 1.23 eV < band gap \leq 3eV
- Engineered pathways of electron-hole pairs
- No defects acting as recombination sites
- Charge transfer used for water splitting instead of corrosion
- Efficient H_2 production and low overvoltages η
- Identify transparent passivating surface layer
- Couple Fermi level of metal catalyst to the quasi-Fermi levels of the semiconductor under illumination
- Design a working device
- Design and implement assembling procedures

Materials by Design

Materials by Design

Electronic Structure Theory

TECHNISCHE UNIVERSITÄT DARMSTADT

Basic material properties

Density functional theory

- Crystal structure
- Thermodynamic stability

Band-structure properties (perfect crystal lattice)

Many-body theory Quasi-particle energy calculations (GW)

- Band gap
- Absorption spectrum
- Effective masses

Defect properties (imperfect lattice)

Supercell calculations Defect theory

- Doping (electrical properties)
- Defects
- Self-trapped carriers

Defects in Semiconductors

Defect formation energy	$\Delta H = \Delta H_{D,q}(\boldsymbol{\mu}, \boldsymbol{E}_{F})$
Defect concentration	$c_{D} pprox \textit{N}_{site} imes \texttt{exp}(-\Delta \textit{H/kT})$
Electron/hole density	$c_e = \int f_{FD}(E - E_F) g(E) dE$
Charge neutrality	$-c_e + c_h + \Sigma [q \cdot c(D^q)] = 0$
Self-consistent solution	$\begin{array}{cccc} \Delta H(\boldsymbol{E}_{F}) & \longrightarrow & \boldsymbol{c}_{D}(\Delta H) & \longrightarrow & \boldsymbol{E}_{F} \\ \uparrow & & & & & \end{bmatrix}$
pO_2 dependence of μ_O	$\Delta \mu_{O}(\boldsymbol{T}, \boldsymbol{P}_{0}) = \frac{1}{2} [H_{0} + \Delta H(\boldsymbol{T})] - \frac{1}{2} \boldsymbol{T} \cdot [S_{0} + \Delta S(\boldsymbol{T})]$
(ideal gas)	$\Delta \mu_{O}(T, \mathbf{P}) = \Delta \mu_{O}(T, \mathbf{P}_{0}) + \frac{1}{2} k T \ln(\mathbf{P}/\mathbf{P}_{0})$

Inverse	Given a target concentration, find ΔH (i.e., find μ)
Direct	Given $\Delta H(\mu)$, find concentrations c_{D}
	Association/dissociation of <i>defect-clusters</i> (law of mass action)
High conc.	Account for competition of defects and host atoms for $N_{\rm site}$

ICTP – Workshop 2014

Ab-initio Thermodynamics of Point Defects

When DFT fails...

In defect calculations: band gaps

- Heavily underestimated
- Both LDA/GGA functionals
- Affects:
 - Defect levels
 - Defect formation energies

Correction: scissor operation!

- Shift the conduction band
- Align $E_g(DFT)$ and $E_g(EXP)$
- Donor type defects follow CB
- Correct formation energies

Alternative: hybrid or semi-empirical functionals

Pt/CuGaSe2 and Pt/CdS/CuGaSe2 as Photoelectrode

Chalcopyrite Band Gaps from HSE06

TECHNISCHE UNIVERSITÄT DARMSTADT

Chalcopyrite

Electronic band gaps (eV) with optimized

J. Pohl, K. Albe, J. Appl. Phys. 108, 023509 (2010)

Defects in CulnSe₂

Defects in CulnSe₂

Defects in CulnSe₂

Defects in CuGaSe₂

Conclusions on CIGS

- For a typical Cu(In,Ga)Se₂ absorber with [Ga]/[Ga]+[In]=0.25, Cu_{In} and Cu_{Ga} hole traps are the most detrimental defects! Copper-rich conditions maximize the concentration of this defect.
- For [Ga]/[Ga]+[In] > 0.5, Ga_{Cu} becomes a deep minority carrier trap and can limit device efficiency.

 Optimal conditions to minimize Cu_{In} and Cu_{Ga} are located on the copper-poor side, with not too high Se/metal-ratio!

J. Appl. Phys., Vol. 44, No. 10, October 1973

$\frac{1}{2}O_2 + V_0^{\bullet \bullet} + 2e' \rightleftharpoons O_1$

$$\frac{1}{2}O_2 + V_0 + 2e^r \rightleftharpoons O_0$$
$$K_0(T) = \frac{1}{P_{O_2}^{1/2}[V_0^{\bullet\bullet}][e^r]^2}$$

- Is standard defect chemistry correct ?
- Whats about other intrinsic defects ?

SnO₂: Intrinsic Conductivity and p(O₂)

TCO: What do we expect?

In principle oxygen vacancies or cation interstitals can be donors

O-Vacancy

SnO_2

- Constant formation energies for the neutral charge state
- Strongly reduced formation
 energies for positive charge states
- Indium oxide and tin oxide are truly intrinsically n-type semiconductors
- The behavior is more complex for

ZnO

Band Gaps and Defect States

TECHNISCHE UNIVERSITÄT DARMSTADT

Phys. Rev. Lett. **103** (2009) 245501, Phys. Rev. Lett. **106** (2011) 069602

Acceptor Defects

Increased formation energies of acceptor defects in all TCOs
 Doping limits agree with experiment for In₂O₃ but not for SnO₂

SnO_2 vs. In_2O_3

P. Agoston, C. Körber, A. Klein, M. J. Puska, R. M. Nieminen and K. Albe, J. Appl. Phys C. Körber P. Ágoston, A. Klein Sensors and Actuators B 139 2 665-672 (2009)

Diffusion: Migration Barriers

Point defects in ZnO: Kinetics

Appl. Phys. Lett. **88**, 201918 (2006)

Materials by Design

ITO-(001)

Oxygen : Indium : o Oxygen (1. layer) : O Indium (1. layer) : O

Oxygen chemical potential [eV]

In₂O₃-(001)

Oxygen : Indium : Oxygen (1. layer) : Oxygen (1. layer) : Indium (1. layer) : Indium (1. layer) :

In₂O₃-(001)

Oxygen : Indium : Oxygen (1. layer) : Indium (1. layer) : 0

Doping Effect

ITO-(001)

Oxygen : Indium : Oxygen (1. layer) : O Indium (1. layer) :

0

0

TECHNISCHE UNIVERSITÄT DARMSTADT

P. Agoston, K. Albe, Phys. Rev. B 84, 045311 (2011)

ITO-(001)

Oxygen : Indium : Oxygen (1. layer) : Indium (1. layer) :

Thermodynamics of Nanomaterials

$$F = \frac{6n^2 - 12n + 8}{n^3} = \frac{6}{N^{1/3}} \left(1 - \frac{2}{N^{1/3}} + \frac{8}{6N^{2/3}} \right) \approx \frac{6}{N^{1/3}}$$

Materials by Design

Volume Strain by Surface Stresses

CHEMPHYSCHEM MINIREVIEWS

DOI: 10.1002/cphc.201200257

Size-Dependent Lattice Expansion in Nanoparticles: Reality or Anomaly?

P. Manuel Diehm,* Péter Ágoston, and Karsten Albe^[a]

Surface Energy vs. Surface Stress

TECHNISCHE UNIVERSITÄT DARMSTADT

Surface Energy

Work required to produce extra surface

†_{ii} Surface Stress

Work required to enlarge/minimize existing surface

 $dW = \gamma dA$

 $dW = d(\gamma A) = f_{ii} A d\varepsilon_{ii}$

Calculated Surface Stresses (DFT)

Material	Surface	Condition	x-direction	y-direction	γ	f_X	fy
						(eV Å-2)	
hex-Si	(0001)		(1100)	(1210)	0.114	-0.045	-0.039
	(1100)		(1210)	(0001)	0.086	-0.065	-0.032
	(1210)		(1100)	(0001)	0.097	-0.043	-0.030
hex-C	(0001)		(1100)	(1210)	0.419	0.003	0.029
	(1100)		(1210)	(0001)	0.184	-0.160	0.056
	(1210)		(1100)	(0001)	0.227	-0.337	0.020
GaN	(1100)		(1210)	(0001)	0.125	-0.106	-0.055
	(1210)		(1100)	(0001)	0.133	-0.031	-0.030
ZnO	$(1\bar{1}00)$		(1210)	(0001)	0.075	-0.088	-0.059
	(1210)		(1100)	(0001)	0.079	-0.011	-0.038
BeO	(1100)		(1210)	(0001)	0.109	-0.089	-0.054
	(1210)		(1100)	(0001)	0.113	-0.039	-0.044
MgO	(001)		(100)	(100)	0.073	0.223	0.223
CdO	(001)		(100)	(100)	0.051	0.210	0.210
KF	(001)		(100)	(100)	0.016	0.037	0.037
CsF	(001)		(100)	(100)	0.011	0.033	0.033
CsCl	(110)		(110)	(100)	0.014	0.058	-0.002
c-SrTiO₃	(001)	SrO-termination	(100)	(100)	0.166	0.116	0.116

Lattice Expansion

Material	Max. change (%)	Size (nm)	Method
CeO ₂	-0.32	5 - 1200	XRD
	+0.15	5 - 1200	XRD
	+0.33	5 - 60	XRD
	+0.45	6 - 25	XRD
	+1.85	15 - 30	XRD
	+2.6	2.1 - 6.7	ED
	+3.51	3 - 30	XRD
	+3.7	3 - 20	ED
	+6.8	2.2 - 11.8	ED
rutile-TiO ₂	<i>ā</i> : +0.50, <i>c</i> ̃: −0.09	5 - 25	XRD
	V/V ₀ : +1.40	5 - 20	XRD
anatase-TiO ₂	<i>ā</i> : +0.37, <i>c</i> : −0.53	2 - 65	XRD
	<i>ā</i> : +0.31, <i>c</i> : −0.34	5 - 40	XRD
	ā: –0.08, <i>č</i> : –0.29	5 - 35	XRD
MgO	+0.12	10 - 50	XRD
	-0.07	9 - 15	XRD
t-BaTiO₃	<i>ā</i> : +2.76, <i>c</i> : −0.12	100 - 350	ED
t-BiFeO₃	<i>ā</i> : +0.23, <i>c</i> : −0.47 1	1.0 - 86.4	XRD
t-PbTiO₃	<i>ā</i> : +0.46, <i>c</i> : −1.44	28 - 149	XRD
c-PbTiO₃	+0.05	28 - 149	XRD
c-SrTiO₃	+0.28	12 - 40	XRD
MnCr ₂ O ₄	+0.76	11 - 18	XRD
Ni _{0.6} Zn _{0.4} Fe ₂ O ₄	+0.36	10 - 230	XRD
ZnO	<i>ā</i> : +0.47, <i>č</i> : +0.85	≈ 10	ED
	<i>ā</i> : +0.34, <i>č</i> : +0.59	11.7	XRD
	<i>ā</i> : +0.04, <i>č</i> : +0.15	50 - 800	XRD
SnO ₂	<i>ā</i> : +0.32, <i>č</i> : +0.58	2.5 - 9.0	XRD
LiCoO ₂	<i>ā</i> : +0.46, <i>č</i> : +0.93	10 - 30	XRD
CaWO ₄	V/V ₀ : +0.65	5 - 30	XRD

Material	Max. change (%)	Size (nm)	Method	Source
NaCl	-0.33	4.8 - 15	ED	[40]
KCI	-0.69	1.8 - 15	ED	[40]
NaBr	-0.82	3.5 - 15	ED	[40]
LiF	-0.87	3.2 - 9	ED	[40]
Pt	-0.42	3.8 - 12.2	ED	[13]
Au	-0.69	1.8 - 15	ED	[40]
	-0.27	3.5 - 12.5	ED	[11]
Ag	-3.08	3 - 17.8	ED	[12]
Cu	-2.09	2.4 - 9.2	ED	[13]
Bi	-2.34	3.5 - 10	ED	[40]
Ni	+0.49	18.6 - 51.3	XRD	[41]
Si _x Ge _{1-x}	+1.5	7 - 35	ED	[42]

Fig. 3. Hydrostatic stress in a Cu nanoparticle: (a) the atomistic simulation results, (b) the finite element computations.

Fig. 2. Hydrostatic stress in a spherical particle.

Int. J. Mat. Res. (formerly Z. Metallkd.) 102 (2011) 6

Stress Distribution: MD vs. FEM

-1.84

-1.82

Ab-initio Phase Diagrams

TECHNISCHE UNIVERSITÄT DARMSTADT

ICTP – Workshop 2014

BOS-Model

How to calculate the energy of a binary alloy system with two species A and B?

Refined Bond Order Simulation Mixing model (BOS: Zhu, dePristo 1995)

$$\epsilon_Z^A(M_n) = \epsilon_Z^A + \frac{1}{2} \sum_{n=1}^4 M_n \Delta E_n^{AB} + \frac{1}{2} M_1 (M_1 - 1) \lambda_1^A$$

where

 ϵ_Z^A is the site energy of an atom of species A with coordination Z

 M_n is the number of odd neighbors in the *n*-th shell

 ΔE_n^{AB} is the difference in the site energy when changing a *n*-th neighbor to odd species λ_1^A is an asymmetry parameter (asymmetry considered for nearest neighbors only)

(for species B replace $\epsilon_Z^A \rightarrow \epsilon_Z^B$ and $\lambda_1^A \rightarrow \lambda_1^B$)

⁽Pohl, Albe, Acta Materialia 57, 4140 (2009))

Bulk Phase Diagram Pt-Rh

Nanophase diagram

Beilstein J. Nanotechnol. 2012, 3, 1–11.

2 % Pt, Diameter 7.8 nm

ICTP – Workshop 2014

Size-dependent Diffusion ? Vacancy Mechanism

Vacancies in Lattice Model: KMC

TECHNISCHE UNIVERSITÄT DARMSTADT

Müller/Albe Acta Mat. (2007)

Vacancies in Lattice Model: KMC

Vacancy Formation Energy: Lattice model

Vacancies in Lattice Model

Vacancies in Nanoparticles

 $\Delta V = \Omega$: - $\Delta Vrel$:= formation volume

Surface Energy vs. Surface Stress

TECHNISCHE UNIVERSITÄT DARMSTADT

Surface Energy

Work required to produce extra surface

†_{ii} Surface Stress

Work required to enlarge/minimize existing surface

 $dW = \gamma dA$

 $dW = d(\gamma A) = f_{ii} A d\varepsilon_{ii}$

 $\frac{1}{A}\frac{d(\gamma A)}{d\varepsilon_{ii}}$

Materials by Design

Take home messages

 The properties of point defects and surfaces in oxides are most sensitive to the Fermi-energy

 \rightarrow We need Fermi-level engineering

- Defects not only go along with excess energies but also stresses
 - → Strain effects due to point, line and planar defects can be significant
- Thermodynamics and kinetics on the nanoscale can be very different
 - \rightarrow We need a better understanding of nanoeffects