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• 1.23 eV < band gap ≤ 3eV  

• Engineered pathways of   
electron-hole pairs 

• No defects acting as recombination sites 

• Charge transfer used for water splitting  
instead of corrosion 

• Efficient H2 production and  low 
overvoltages h 

• Identify transparent passivating surface 
layer  

• Couple Fermi level of metal catalyst to 
the quasi-Fermi levels of the 
semiconductor under illumination 

• Design a working device 

• Design and implement assembling 
procedures 

Photocatalysis: Desired Materials Properties 

p-region 

n-region 
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Tailored  Nanostructures 

 
 
 
 
 
 

Design Concept 

Materials by Design 

Tailored Band Gaps 
 
 
 
 
 
 

 
Tailored  Surfaces and 

Interfaces 
 
 
 
 
 
 

 
Device Integration 
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Electronic Structure Theory 
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Defects in Semiconductors 
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Determination of the ground-state 

properties of pure phases 

Ground-states of defects in super cells 

Calculation of the formation energies at the 

VBM 

Determination of the defect formation 

enthalpies as a function of the fermi 

energy and the chemical potentials in 

equilibrium 

Correction of size effects 

Self-consistent 

determination of the fermi 

level 

Ab-initio Thermodynamics of Point Defects 



ICTP –Workshop 2014 

In defect calculations: band gaps  

 Heavily underestimated 

 Both LDA/GGA functionals 

 Affects: 

 Defect levels 

 Defect formation energies 

Correction: scissor operation! 

 Shift the conduction band 

 Align Eg(DFT) and Eg(EXP)  

 Donor type defects follow CB 

 Correct formation energies  

Alternative: hybrid or semi-empirical functionals 

 

 

When DFT fails… 
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Pt/CuGaSe2 and Pt/CdS/CuGaSe2 
as Photoelectrode 

0.1 M Na2SO4 aq. (pH 9), 

300 W Xe lamp, 5 mV s-1 
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Chalcopyrite Band Gaps from HSE06 

J. Pohl, K. Albe, J. Appl. Phys. 108, 023509 (2010) 

Chalcopyrite 

  

Electronic band gaps (eV) with optimized 

exchange screening parameter      = 0.13: 
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Phase stability Point defect 

formation enthalpies 

Defects in CuInSe2 

J. Pohl, K. Albe, Phys. Rev. B 87, 245203 (2013) 
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Phase stability Point defect 

formation enthalpies 

Defects in CuInSe2 

J. Pohl, K. Albe, Phys. Rev. B 87, 245203 (2013) 
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Phase stability Point defect 

formation enthalpies 

Defects in CuInSe2 

J. Pohl, K. Albe, Phys. Rev. B 87, 245203 (2013) 
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Defects in CuGaSe2 

Phase stability Point defect 

formation enthalpies 

J. Pohl, K. Albe, Phys. Rev. B 87, 245203 (2013) 
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1.04 eV 

1.68 eV Conduction band edge 

Valence band edge 

0.11 eV 

CuInSe2 CuGaSe2 

0.0 

1.33 eV  (+1/0) 

1.26 eV  

(+2/+1) 

0.67 eV 

0.21 eV   (0/-1) 

 

0.74 eV (-1/-2) 

GaCu  

CuIn,Ga 

Antisite Defects in CuInSe2 and CuGaSe2 
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• For a typical Cu(In,Ga)Se2 absorber with [Ga]/[Ga]+[In]=0.25, 

CuIn and CuGa hole traps are the most detrimental defects! 

Copper-rich conditions maximize the concentration of this defect. 

 

• For [Ga]/[Ga]+[In] > 0.5, GaCu becomes a deep minority carrier trap and 

can limit device efficiency. 

 

 

 

• Optimal conditions to minimize CuIn and 

CuGa are located on the copper-poor 

side, with not too high Se/metal-ratio! 

Conclusions on CIGS 
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SnO2: Intrinsic Conductivity and p(O2) 
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• Is standard defect  
      chemistry correct ? 
 
• Whats about other 
       intrinsic defects ?  



ICTP –Workshop 2014 

“deep” - Donor 

“shallow” - Donor 

Intrinsic  
n-typeTCO 

In principle oxygen vacancies or cation interstitals can be donors  

TCO: What do we expect? 



ICTP –Workshop 2014 

O-Vacancy 

Agoston, Albe/ Phys. Rev. Lett. 103 (2009) 245501, Phys. Rev. Lett. 106  (2011) 069602  

 Constant formation energies for the 

neutral charge state  

 Strongly reduced formation 

energies for positive charge states 

 Indium oxide and tin oxide are truly 

intrinsically n-type semiconductors 

 The behavior is more complex for 

ZnO 
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Phys. Rev. Lett. 103 (2009) 245501, Phys. Rev. Lett. 106  (2011) 069602  

 

  

Band Gaps and Defect States 



ICTP –Workshop 2014 

Increased formation energies of acceptor defects in all TCOs 

Doping limits agree with experiment for In
2
O

3 
but not for SnO

2 

Acceptor Defects 
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P. Agoston, C. Körber, A. Klein, M. J. Puska, R. M. Nieminen and K. Albe, J. Appl. Phys  

C. Körber P. Ágoston, A. Klein Sensors and Actuators B 139 2  665-672  (2009) 

Doped SnO2 has no oxygen interstitials ! 
Therefore high conductivities can be expected 

SnO2 vs. In2O3 
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Diffusion: Migration Barriers 
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Point defects in ZnO: Kinetics 

Appl. Phys. Lett. 

88, 201918 (2006) 
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Design Concept 

Materials by Design 

Tailored Band Gaps 
 
 
 
 
 
 

 
Tailored  Surfaces and 

Interfaces 
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2 3 5 

E. Morales, U. Diebold, Appl. Phys. Lett. , 139, 665-672 (2009)  

Experiment Experiment 

Oxygen                 : Indium                : 
Oxygen (1. layer)  : Indium (1. layer) : 

2 3 5 

ITO-(001) 
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2 3 5 

Experiment Experiment 

Simulation Simulation Simulation 

Oxygen                 : Indium                : 
Oxygen (1. layer)  : Indium (1. layer) : 

2 3 5 

In2O3-(001) 
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2 3 5 

Experiment Experiment 

Simulation Simulation Simulation 

Oxygen                 : Indium                : 
Oxygen (1. layer)  : Indium (1. layer) : 

2 3 5 

 No compelling agreement with experiment 

In2O3-(001) 
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 Peroxide splitting highly favorable 

Doping Effect 
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Oxygen                 : Indium                : 
Oxygen (1. layer)  : Indium (1. layer) : 

Experiment Simulation 

ITO-(001) 

P. Agoston, K. Albe, Phys. Rev.  B 84, 045311 (2011) 
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Oxygen                 : Indium                : 
Oxygen (1. layer)  : Indium (1. layer) : 

 Improved agreement with experiment 
when the effect of doping is considered 

ITO-(001) 
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Thermodynamics of Nanomaterials 
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Tailored  Nanostructures 

 
 
 
 
 
 

Design Concept 

Materials by Design 

Tailored Band Gaps 
 
 
 
 
 
 

 
Tailored  Surfaces and 

Interfaces 
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Volume Strain by Surface Stresses 

MgO (compressive):   GaN (tensile) 



ICTP –Workshop 2014 

 Surface Energy vs. Surface Stress 
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Calculated Surface Stresses (DFT) 
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Lattice Expansion 
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Stress Distribution: MD vs. FEM 
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Ab-initio Phase Diagrams 

 

 

Calculate the total energies of a set of structures 

 (e.g. from DFT) 

Fit a model Hamiltonian to the set of structures 

(least squares fit / genetic algorithm) 

Predict new ground states 

or 

just include more structures 

Calculate the phase diagram 

(using Monte Carlo) 
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      (for species B replace     →     and        →     ) 

     (Pohl, Albe, Acta Materialia  57, 4140 (2009)) 

BOS-Model 

How to calculate the energy of a binary alloy system with two species A and B? 
 
Refined Bond Order Simulation Mixing model (BOS: Zhu, dePristo 1995)  
 

 

  

where 

is the site energy of an atom of species A with coordination Z 

is the number of odd neighbors in the n-th shell 

is the difference in the site energy when changing a n-th neighbor to odd species 

is an asymmetry parameter (asymmetry considered for nearest neighbors only) 
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Bulk Phase Diagram Pt-Rh 

Gibb’s Free Energy surface 

Theoretical Pt-Rh Bulk phase diagram 

Warren-Cowley Short Range Order Parameters 
 
(Pohl, Albe,  ACTA MAT 57, 4140 (2009)) 
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Nanophase diagram 

Effects for shrinking particle size: 
 

 ordering temperature sinks 

 concentration stability range of some  

    ordered phases broadens 

 stable phases shift towards higher con- 

    centrations of segregating species (Pt) 

 two-phase regions shrink 

 

Beilstein J. Nanotechnol. 2012, 3, 1–11.  
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2 % Pt, Diameter 7.8 nm 
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6 % Pt 
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10 % Pt 
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18% Pt 
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28 % Pt 
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28% Pt 
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42% Pt 
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44% Pt 
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46% Pt 
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46% Pt 
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60% Pt 
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60% Pt 
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86% Pt 
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86% Pt 
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Size-dependent Diffusion ? 
Vacancy Mechanism 
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Vacancies in Lattice Model: KMC 

Müller/Albe 

Acta Mat. (2007) 
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Vacancies in Lattice Model: KMC 

Model: Cu eV28.1f

vE
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Vacancy Formation Energy: Lattice model 
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Vacancies in Nanoparticles 

Surface stress f Surface energy  

f
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: atomic volume 

V = : - Vrel:= formation volume 
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 Surface Energy vs. Surface Stress 
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Take home messages 

 The properties of point defects and surfaces in oxides are most 

sensitive to the Fermi-energy   

  We need Fermi-level engineering 

 Defects not only go along with excess energies but also stresses 

  Strain effects due to point, line and planar defects  

                   can be significant  

 Thermodynamics and kinetics on the nanoscale can be very 

different  

  We need a better understanding of nanoeffects 


