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1. What is really quantization?
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What is really ...?
• In digital signal processing: quantization maps a large set of input values to a smaller set

such as rounding values to some unit of precision. Typically, a change of scale.

• In physics or mathematics, the term has a different meaning. For instance, the perplexing:
“ First quantization is a mystery. It is the attempt to get from a classical description of a
physical system to a quantum description of the “same” system. Now it doesn’t seem to be
true that God created a classical universe on the first day and then quantized it on the second
day...”a

• Or the following: “ We quantize things we do not really know to obtain things most of which
we are unable to measure”b

• The basic procedure, named “canonical”, starting from a phase space or symplectic manifold

R2 3 (q, p) , {q, p} = 1 7→ self-adjoint (Q,P ) , [Q,P ] = i~I ,
f(q, p) 7→ f(Q,P ) 7→ (Symf)(Q,P ) .

• Remind that [Q,P ] = i~I holds true with self-adjoint Q, P , only if they have continuous
spectrum (−∞,+∞)

• But then what about singular f , e.g. the angle arctan(p/q)? What about barriers or other
impassable boundaries? The motion on a circle? In a bounded interval? On the half-line? ....

aJ. Baez, Categories, quantization and much more, http://math.ucr.edu/home/baez/categories.html
(2006)

bJ.P.G., Metrobus Gavea-Botafogo 04/09/2013 morning
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Quantization
MUST
be
CANONICAL !!

What about integral
quantization??

What about 
POVM??
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More mathematically precise:

• Quantization is

(i) a linear map
Q : C(X) 7→ A(H)

C(X): vector space of complex-valued functions f (x) on a set X
A(H): vector space of linear operators

Q(f ) ≡ Af

in some complex Hilbert space H such that
(ii) f = 1 7→ identity operator I on H,

(iii) real f 7→ (essentially) self-adjoint operator Af in H.

• Add further requirements on X and C(X) (e.g., measure, topology, mani-
fold, closure under algebraic operations, time evolution or dynamics...)

• Add physical interpretation about measurement of spectra of classical f ∈
C(X) or quantumA(H) to which are given the status of observables.

• Add requirement of unambiguous classical limit of the quantum physical
quantities, the limit operation being associated to a change of scale
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2. Integral quantization
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Integral quantization: general setting and POVM

• (X, ν): measure space.

• X 3 x 7→ M(x) ∈ L(H): X-labelled family of bounded operators on
Hilbert space H resolving the identity I :∫

X

M(x) dν(x) = I , in a weak sense (1)

• If the M(x)’x are positive and unit trace,

M(x) ≡ ρ(x) (density matrix)

• If X is space with suitable topology, the map

B(X) 3 ∆ 7→
∫

∆

ρ(x) dν(x)

may define a normalized positive operator-valued measure (POVM) on the
σ-algebra B(X) of Borel sets.
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Integral quantization: the map

• Quantization of complex-valued functions f (x) on X is the linear map:

f 7→ Af =

∫
X

M(x) f (x) dν(x) , (2)

• understood as the sesquilinear form,

Bf(ψ1, ψ2) =

∫
X

〈ψ1|M(x)|ψ2〉 f (x) dν(x) , (3)

defined on a dense subspace of H.

• If f is real and at least semi-bounded, the Friedrich’s extension of Bf uni-
vocally defines a self-adjoint operator.

• If f is not semi-bounded, no natural choice of a self-adjoint operator asso-
ciated with Bf , a subtle questiona. We need more information onH.

asee for instance H. Bergeron, JPG, P. Siegl, A. Youssef, Eur. Phys. Lett. 92 60003 (2010); H.
Bergeron, P. Siegl, A. Youssef, J. Phys. A: Math. Theor. 45 244028 (2012)
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Integral quantization: back to classical

• If M(x) = ρ(x) and with another (or the same) family of positive unit trace
operators X 3 x 7→ ρ̃(x) ∈ L+(H) go back to the classical

Af 7→ f̌ (x) :=

∫
X

tr(ρ̃(x)ρ(x′)) f (x′) dν(x′) , “lower symbol” (4)

provided the integral be defined.

• Then classical limit condition means: given a scale parameter ε and a dis-
tance d(f, f̌ ):

d(f, f̌ )→ 0 as ε→ 0 . (5)
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Integral quantization: comments

• Quantization issues, e.g. spectral properties of Af , may be derived from
functional properties of the lower symbol f̌ .

• Quantizing constraints: suppose that (X, ν) is a smooth n-dim. manifold
on which is defined space D′(X) of distributions as the topological dual
of compactly supported n-forms on X . Some of these distributions, e.g.
δ(u(x)), express geometrical constraints. Extending the map f 7→ Af to
these objects yields the quantum version Aδ(u(x)) of these constraints.

• Different starting point, more in Dirac’s spirita (e.g. see (Loop) Quantum
Gravity and Quantum Cosmology) would consist in determining the kernel
of the operator Au issued from integral quantization u 7→ Au.

• Both methods are obviously not mathematically equivalent, except for a few
cases. They are possibly physically equivalent.

aP.A.M. Dirac, Lectures on Quantum Mechanics, Dover, New York, 2001
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3. A toy example: Sea star algebra
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Prologue: Euclidean plane with physicist notations

-

6

~i ≡ |0〉

|θ〉

O

~j ≡ |π/2〉

1

θ
�

�
�
�
�
�
�
�
��

Orthonormal basis (or frame) of the Euclidean plane R2 defined by the two vectors (in Dirac ket
notations) |0〉 and

∣∣π
2

〉
, where |θ〉 denotes the unit vector with polar angle θ ∈ [0, 2π). This frame is

such that
〈0|0〉 = 1 =

〈
π

2

∣∣∣ π
2

〉
, 〈0

∣∣∣π
2

〉
= 0 ,

and such that the sum of their corresponding orthogonal projectors resolves the unity

I = |0〉〈0|+
∣∣∣π
2

〉〈
π

2

∣∣∣ ,
i.e. a trivial reinterpretation of the matrix identity:(

1 0
0 1

)
=

(
1 0
0 0

)
+

(
0 0
0 1

)
.
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How marine bottom is 5-fold orientationally explored by starfish (sea
star)a

Possibly, in a noncommutative way through the pentagonal set of unit vectors (the “arms”)∣∣∣2nπ
5

〉
= R

(
−2nπ

5

)
|0〉 ≡ “coherent” state (CS)bc n = 0, 1, 2, 3, 4 mod(5)

with R(θ) :=

(
cos θ sin θ
− sin θ cos θ

)
.

aA marine echinoderm with five radiating arms. The undersides of the arms bear tube feet for locomo-
tion and, in predatory species, for opening the shells of mollusks. On the end of each arm or ray there is a
microscopic eye which allows the sea star to see, although it only allows it to see light and dark, which is
useful to see movement.

bJ-P. G., Coherent States in Quantum Physics (Wiley-VCH, Berlin, 2009)
cS. T. Ali, J.-P. Antoine, and J.-P. G., Coherent States, Wavelets and their Generalizations (Graduate

Texts in Mathematics, Springer, New York, 2000). Second edition just appeared, November 2013
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The 5-fold frame

• To the unit vector |θ〉 = cos θ|0〉 + sin θ
∣∣π

2

〉
, corresponds the orthogonal

projector Pθ given by:

Pθ = |θ〉〈θ| =
(

cos θ
sin θ

) (
cos θ sin θ

)
=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
= R(−θ)|0〉〈0|R(θ)

• Sea star resolution of the unity:

2

5

4∑
n=0

∣∣∣∣2πn5
〉〈

2πn

5

∣∣∣∣ =

(
1 0
0 1

)
≡ I (6)

• Here X = {0, 1, 2, 3, 4} ≡ is the set of orientations ≡ angles 2πn/5
explored by the starfish. It is equipped with discrete measure with uniform
weight 2/5. The operator

M(n) = ρ(n) =

∣∣∣∣2πn5
〉〈

2πn

5

∣∣∣∣ acts on H = C2
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What about N -fold frame? The unit circle?

• Actually resolution of unity holds for any regular N-fold polygon in the
plane.

2

N

N∑
n=0

∣∣∣∣2πnN
〉〈

2πn

N

∣∣∣∣ =

(
1 0
0 1

)
• And even in the continuous case:

1

π

∫ 2π

0

dθ |θ〉 〈θ| =
(

1 0
0 1

)
• Is thus obtained a continuous frame for the plane, that is to say, the con-

tinuous set of unit vectors forming the unit circle, for describing, with an
extreme redundancy, the euclidean plane.
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Measure set X explored by the starfish

• The set of angles 2πn/5, or, equivalently, of orientations n, is finite :
X = {0, 1, 2, 3, 4}, and equipped with discrete measure allowing to de-
fine a scalar product:∫

X

f (x) dµ(x)
def
=

2

5

4∑
n=0

f (n) , 〈φ|φ′〉 =
2

5

5∑
n=0

φ̄(n)φ′(n) .

• Choose 2 orthonormal elements, φ0(n) = cos(2πn/5) and φ1(n) =
sin(2πn/5), in “Hilbert space” L2(X,µ) and build the 5 unit vectors
(the sea star CS’s!) in the Euclidean plane with usual orthonormal basis
|0〉 ,

∣∣π
2

〉
:

X 3 n 7→ |n〉 ≡
∣∣∣∣2nπ5

〉
= φ0(n)|0〉 + φ1(n)

∣∣∣∣π2
〉
.

• Then this set of 5 unit vectors or coherent states resolve the identity in the
Euclidean plane R2. ∫

X

|x〉〈x| dµ(x) = I
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The quantum world of the starfish

• The resolution of the identity by the 5 “coherent” arms of the starfish opens
the door to its quantum world through the quantization

f (n) 7→
∫
X

f (x) |x〉〈x| dµ(x) =
2

5

4∑
n=0

f (n)

∣∣∣∣2nπ5
〉〈

2nπ

5

∣∣∣∣ ≡ Af

more precisely through spectral values and CS mean values of the 2 × 2
matrix Af , e.g. quantum angle is yielded with f (n) = 2πn/5

• If instead one had chosen as a finite frame the orthonormal basis |0〉, |π/2〉,
in R2, we would have obtained the trivial commutative quantization:

(f (0), f (1)) 7→ Af = diag(f (0), f (1))

• Similarly, quantum version of f (θ) 7→ Af = 1
π

∫ π
0 f (θ)|θ〉〈θ| dθ.
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“CS Quantization” as a particular “Integral Quantization”
• Start from a set X equipped with a measure µ and the Hilbert space L2(X,µ). Then pick an

orthonormal set O of φn(x)′s ∈ L2(X,µ) satisfying 0 < N (x) =
∑

n |φn(x)|2 <∞ (a.e.)

• Pick a Hilbert space H (the space of “quantum states”) with orthonormal basis {|en〉} in one-
to-one correspondence {|en〉 ↔ φn} with the elements of O.

• There results a family C of unit vectors |x〉 (the “coherent states”) inH, which are labelled by
elements of X and which resolve the unity operator in H:

X 3 x 7→ |x〉 =
1√
N (x)

∑
n

φn(x)|en〉 ,
∫
X

N (x) |x〉〈x| dµ(dx) = I .

• It is the departure point for analysing the original set X and functions living on it from the
point of view of the frame (in its true sense) C:

f(x) 7→ Af
def
=

∫
X

N (x) f(x) |x〉〈x| dµ(dx) (CS quantization)

• We end in general with a non-commutative algebra of operators in H. In turn, considering
the properties of f̌(x)

def
= 〈x|Af |x〉 in comparison with the original f(x) allows to decide if the

procedure does or does not make sense mathematically.

• Changing the frame family C produces another quantization, possibly mathematically and/or
physically equivalent to the previous one, possibly not.
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Quantum angle for starfish?
• Quantization of “classical observable”:

C5 3 f = (a0, a1, a2, a3, a4)→ 2

5

4∑
n=0

an

∣∣∣2nπ
5

〉〈
2nπ

5

∣∣∣ =

(
α β
γ δ

)
≡ Af ∈M(2,C)

• Quantum version of the classical angle function n 7→ A(n) = 2πn/5 mod 5:

A(n) 7→ AA =
2

5

4∑
n=0

2nπ

5

∣∣∣2nπ
5

〉〈
2nπ

5

∣∣∣ =
π

5

(
3 β
β 5

)
, β = −1

5
(3− τ)3/2 ≈ −0 · 325 ,

where τ = 2 cos π5 = 1+
√

5
2 is the golden mean.

• Spectral values of the starfish quantum angle:

λ± = (4±
√

1 + β2)
π

5
≈

{
1 · 01π
2 · 95

5
π

λ+ + λ−
2

=
4π

5
.

• Eigenvectors: |2.25π/5 = 9π/20〉, |19π/20〉
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Covariance

• Given f = (a0, a1, a2, a3, a4), i.e. f (n) = an and extended periodically
mod(5), the operator Af is covariant with respect to rotations R(2πn′/5),
n′ = 0, 1, 2, 3, 4 mod(5):

R(−2πn′/5)AfR(2πn′/5) = AR(−2πn′/5)f

where
R(2πn′/5)f (n) = f (n− n′ mod(5)) .

• In particular for the quantum angle,

R(−2πn′/5)AAR(2πn′/5) = AA +
2n′π

5
I .
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Back to the classical world

• Lower symbol of the quantum angle: f̌ ≡ (ā0, ā1, ā2, ā3, ā4),
ān ≡

〈
2nπ

5

∣∣Af

∣∣2nπ
5

〉
, is more regular.

• It is the following function on X :

Ǎ(0) =
3π

5
, Ǎ(1) =

4.31π

5
, Ǎ(2) =

3.39π

5
, Ǎ(3) =

2.46π

5
, Ǎ(4) =

4.14π

5
,

• We observe that its values oscillate around 4π/5 which is the mean value
of the two eigenvalues and which is also the average of the original angle
function in the following classical sense:

〈f〉class
def
=

1

5

4∑
n=0

f (n) =
1

2
tr(Af) .

• It is proveda that 〈f〉class is the limit which is reached after infinitely re-

peated maps f 7→ f̌ 7→ ˇ̌f 7→ . . . .

• Meaning of all that in Biomechanics?
aFinite tight frames and some applications, N. Cotfas and JPG (topical review) J. Phys. A: Math.

Theor. 43, 193001-27 (2010).
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How deep marine bottom is 7-fold orientationally explored by
starfish?

Very recently seven-fold sea stars have been observed in Antarctic deep-sea
hydrothermal vents!
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Might hand fingers form a quantum frame?
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What about the continuous frame?

• Quantization of “classical observable”:

f (θ)→ 1

π

∫ 2π

0

dθ f (θ) |θ〉〈θ| ≡ Af ∈M(2,C)

• Quantum version of the classical angle function:

θ 7→ Aθ =

(
π −1

2

−1
2

π

)
.

• Spectral values:
λ = π ± 1/2

• Lower symbol

〈θ|Aθ|θ〉 = π − sin 2θ

2
is a sort of rough regularization of the angle function which varies between
the two eigenvalues of Aθ.
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Probabilistic aspects I

• Behind the resolution of the identity lies an interpretation in terms of ge-
ometrical probability which could reveal interesting for understanding the
starfish!

• Consider a subset ∆ ⊂ X (finite case) or a Borel ∆ ⊂ [0, 2π) and the
restrictions

a(∆) =
2

N

∑
n∈∆

∣∣∣∣2πnN
〉〈

2πn

N

∣∣∣∣ or =
1

π

∫
∆

dθ|θ〉〈θ| .

• One easily checks:

a(∅) = 0 , a(X or [0, 2π)) = Id,

a(∪i∈J∆i) =
∑
i∈J

a(∆i) , if ∆i ∩∆j = ∅ for all i 6= j .

Map ∆ 7→ a(∆) defines a normalized measure on the set of subsets of X
or on the σ-algebra of the Borel sets in the interval [0, 2π), assuming its
values in the set of positive linear operators on the Euclidean plane: it is a
POVM.
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Probabilistic aspects II (continuous case)
• For |φ〉 a unit vector the application

∆ 7→ 〈φ|a(∆)|φ〉 =
1

π

∫
∆

cos2(θ − φ) dθ

is a probability measure. It is positive, of total mass 1, and it inherits σ-additivity from a(∆).

• The quantity 〈φ|a(∆)|φ〉 means that direction |φ〉 is examined from the point of view of the
family of vectors {|θ〉, θ ∈ ∆}. As a matter of fact, it has a geometrical probability interpre-
tation in the plane. With no loss of generality let us choose φ = 0.

• Recall the canonical equation describing a straight line Dθ,p in the plane :

〈θ|u〉 ≡ cos θ x+ sin θ y = p ,

where |θ 〉 is the direction normal to Dθ,p and the parameter p is equal to the distance of Dθ,p

to the origin.

• There follows that dp dθ is the (non-normalized) probability measure element on the set{
Dθ,p

}
of the lines randomly chosen in the plane.

• Picking a certain θ, consider the set {Dθ,p} of the lines normal to |θ〉 that intersect the segment
with origin O and length | cos θ| equal to the projection of |θ〉 onto |0〉 as shown in Figure of
next slide.
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O

|0〉

|θ〉

�
�
�
�
�
�
�
�
�
�
���

-
HH

HHH
HHH

HH
HHH

HHH

HHH
HHH

HH

HHH
HHH

HH

H
HHH

HHHH

cos2 θ
{

︸ ︷︷ ︸
cos θ

Set {Dθ,p} of straight lines normal to |θ〉 that intersect the segment with origin
O and length | cos θ | equal to the projection of |θ〉 onto |0〉.
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Probabilistic aspects III (continuous case)

• The measure of this set is equal to :(∫ cos2 θ

0

dp

)
dθ = cos2 θ dθ . (7)

Integrating (7) over all directions |θ〉 gives the area of the unit circle.

• Hence 〈φ|a(∆)|φ〉 is the probability for a straight line in the plane to belong
to the set of secants of segments that are projections 〈φ|θ〉 of the unit vectors
|θ〉, θ ∈ ∆ onto the unit vector |φ〉.
• One could think in terms of polarizer 〈θ| and analyzer |θ〉 “sandwiching”

the directional signal |φ〉.
• The discrete case can be considered in the same way: maybe something of

interest here for analyzing the perception of orientations by the sea star...
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Unit circle: quantization with more general POVM

• Just replace P0 = |0〉〈0| in

I =
1

π

∫ 2π

0

Pθ dθ =
1

π

∫ 2π

0

R(−θ)P0R(θ) dθ , ,

by a 2× 2 symmetric matrix M =

(
a b
b d

)
.

• We still have the resolution of the unity and the resultant quantization:

Af =
1

π(a + d)

∫ 2π

0

f (θ)R(−θ)MR(θ) dθ .

• In particular, with a density matrix M ≡ ρ =

(
a b
b 1− a

)
, 0 6 a 6 1 and

det ρ = a− (a2 + b2) > 0, i.e. |b| 6
√
a(1− a), we obtain a POVM.

• The corresponding quantum angle reads as Aρ
θ =

(
π − b 1

2
− a

1
2
− a π − b

)
with

eigenvalues: π − b±
(

1
2
− a

)
and eigenvectors |π/4〉, |3π/4〉 .
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