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Preliminaries

Preliminaries |

This lecture is about uncertainty principles and inequalities

m Quantum physics: impossibility to measure simultaneously
incoherent quantities with arbitrary precision (example:
position/momentum, time/frequency); how to model this
problem 7

m Harmonic analysis: a function (or vector) cannot be
represented in a concentrated’ way simultaneously in two
incoherent representations. How to describe this property ?

m Signal processing: to which extent can we define a single note
of musics (time/frequency)? how to design radar waveforms
in such a way that the reflected waves can be optimally
detected 7

universite
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Preliminaries

Preliminaries 1l

Signal analysis example: different ways of representing a linearly
frequency modulated signal:

1 |
0.4
0.5 l H“
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0
0.2
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0
150 50 100 150 200 250 0 100 200

Time course (left), and time-frequency representations: Wigner function (middle) and Gabor (right)

Obviously, the Wigner function displays the information in a much
neater way: frequency that varies linearly as a function of time.

AixMarseille
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Preliminaries

Preliminaries llI

radar/sonar detection problem: the location of the tallest peak
gives an estimate for the parameters (location and speed) of the
target

Gaussian waveform (left), and optimized waveform (right)

Obviously, detection will be easier with the optimized wavefon(r);1X Marseil

universite
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Preliminaries

Mathematics background |

m Hilbert space H: linear space (vectors), equipped with an
inner product x,y € H — (x,y) € C
B (ax+a'X,y) =alxy) + « <>( y)
m (ax, By + BY) = Blx.y) + B (xy)

m Norm: ||x]] = /{x, x).
m Examples (signal models)

= CV: finite sequences. (x,y) = S0 x[n]y[n].

m (?(Z): finite energy infinite sequences. (x,y) = > > x[n]y[n],
provided > |x[n]|? and " |y[n]|? converge.

= [*(R): finite energy continous time functions

(x,y) = ffooo x(t)y(t)dt, provided [ |x(t)|>dt and [ [y(t)|?dt
converge.

m L*([0,1]): guess...
(Aix Marseille
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Preliminaries

Mathematics background Il

m Other norms: measure different properties of
vectors/sequences/functions. In particular LP (quasi)norms

1/p
[xl[p = (Z IX[n]I”> :

For p < 2, measure spreading (or dispersion); for p > 2,
measure concentration (or sparsity).

m Fourier transforms (all sorts of...), Mellin transform,... defined
on the fly

AixMarseille
universite

Uncertainty principles | (Bruno Torrésani)




Introduction

Uncertainty principle: a long story: |

Uncertainty inequalities: impossibility for a function (or a vector) to be
simultaneously sharply concentrated in two different representations,
provided the latter are incoherent enough.

Example: time representation and frequency representation.

0.4 °
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. 0,14
0.3 2.5 6
- 0.12 .
0.28 2 01
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0.2 15 0.08
0.1 3
y 0.0
0.1 0.04 2
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0 0 0
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Gaussian functions at different scales (blue) and their Fourier transform (red)
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Introduction

Uncertainty principle: a long story: I

Uncertainty inequalities: impossibility for a function (or a vector) to be
simultaneously sharply concentrated in two different representations,
provided the latter are incoherent enough.

Example: time representation and frequency representation.
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Hermite functions (order 4) at different scales (blue) and their Fourier transform (red)
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Introduction

Uncertainty principle: a long story: Il

Uncertainty inequalities: impossibility for a function (or a vector) to be
simultaneously sharply concentrated in two different representations,
provided the latter are incoherent enough. Such a loose definition can be
made concrete by further specifying the following main ingredients:

m A global setting, generally a couple of Hilbert spaces (of functions
or vectors) providing two representations for the objects of interest
(e.g. time and frequency, or more general phase space variables).

m An invertible linear transform (operator, matrix) mapping the initial
representation to the other one, without information loss.

m A concentration measure for the elements of the two representation
spaces: variance, entropy, L? norms,...

(Aix Marseille
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Introduction

Uncertainty principle: a long story: IV

m W. Heisenberg (1927): One can never know with perfect accuracy
both of those two important factors which determine the movement
of one of the smallest particles-its position and its velocity. It is
impossible to determine accurately both the position and the
direction and speed of a particle at the same instant.

m Heisenberg: non-commutativity implies uncertainty, for position and
momentum operators. Uncertainty is measured by variance.

m Robertson (1929) and Schrédinger (1930): extend variance
inequality to arbitrary pairs of non-commuting self-adjoint operators.

m Robertson-Schrodinger inequality criticized because the bound
depends on the state. Entropic inequality proposed by Everett and
Hirschman (1957) proven later by Babenko and Beckner (1975) and
Lieb independently (1978).

m Recently, generalizations in various contexts (Maassen-Uffink
(1988), Ozaydin-Przebinda (2004), Rastegin (2010) ...)

AixMarseille
universite
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Introduction

Uncertainty principle: a long story: V

Uncertainty also showed up in other fields, for example:

m Information theory: Dembo rediscovers the result by Maassen and
Uffink (1991), together with other inequalities. These results are
apparently useful for quantum cryptography problems.

m Signal processing: Lieb proves an uncertainty relation for radar
ambiguity functions (1990), extended further by P. Flandrin for
affine ambiguity functions.

m “Sparsistics”: Recent works by Donoho-Stark (1989) in the
continuous case, and Donoho-Huo (1999), Elad-Bruckstein (2002),
Tao (2005), Meshulam (2006), Krahmer et al (2008),
Ghobbers-Jaming (2010)... more recently in discrete settings.

A main aspect in the recent developments is the exploitation of

uncertainty relations as a constructive result, compressed sensing is a
good illustration. (A'XWM%'?E'T'JE

Uncertainty principles | (Bruno Torrésani)



Introduction

Today: Variance as a measure of dispersion

First concepts: mean for localization, variance for dispersion.

= H)jHQ /t‘x(t)‘Q dt Vx = HX1H2 /(t—ex)2|x(t)|2 dt

€x

Q
"
N
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L e
-
-
-
-
-
-
5
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Heisenberg-Weyl inequality

Define the (unitary) Fourier transformation F : L*(R) — L*(R) as

X(v) = /OO x(t)e 2™t dt

— 00

Theorem (Heisenberg-Weyl)
For all x € L*(R) and ty, vy € R

oo 00 A X4
| e-wriare x [ o wpiswra > B

—00 —0o0

with equality if and only if x is a Gaussian function (suitably translated,
modulated, rescaled).

g(t) _ ae*(t*to)z/on e2i7rz/gt

with a€ C and 0 € R.

(Aix Mar{seirl’l;e
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Sketch of the proof |

Let x € L?(R). Without loss of generality, assume that all quantities are
finite (otherwise the inequality is trivially satisfied). Then

[ v?|x(v)|>dv < oo implies that x is continuous and X' € L*(R).

Assume first ty = vy = 0, and integrate by parts

Vod
/uta_|x()| dt = [tx( /|x )2t

As x, X € L*(R), as well t — tx(t), the above integrals have finite limits
as u— —o0, v — 00, as well as u[x(u)|? and v|x(V)|?. As x € L*(R),

those limits necessarily vanish.
Take absolute values and develop:
o0
+ ’/ tX (t)x(t)dt
—o00

P < \ | e

AixMarseille
universite
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Sketch of the proof Il

The Cauchy-Schwarz inequality yields

l1x]|? < 2\//00 £2|x(t)|2dt /jc X (t)|2dt .

Since the Fourier transform of X is the function v — 2imvx(v),
Plancherel’s formula gives the desired result

/oo X (t)[>dt = 4r? /OO V2 x(v)|Pdv

J —oo J —oco

Cauchy-Schwarz inequality is an equality iff the two functions involved are
proportional, i.e. X (t) = Kx(t), leading to centered gaussian functions.

As for the general case, let y be defined by
y(t) = e 2™0olx(t + to) .

Clearly ||y|]| = |Ix]|, and the result above applied to y yields directly (tNé;[MapfﬁﬁiTﬂe
desired bound.

Uncertainty principles | (Bruno Torrésani)
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Variances: Robertson-Schrodinger inequality

In a Hilbert space setting, associate with a symmetric operator A its
mean and variance in state x € H (for simplicity we assume ||x|| = 1) by

ex(A) = <AX7 X> ) VX(A) = ex(A2 - ex(A)2) = eX(AQ) - eX(A)2 :

Theorem (Robertson/Schrodinger)

Let x € H, with ||x|| = 1. Let A, B be symmetric continuous operators on
H. Denote by [A, Bl = AB— BA and {A, B} = AB+ BA the commutator
and the anti-commutator of A and B. Then for all x € D([A, B])

Vx(A)vi(B) > [eX([A, B])2 +e({A—e(A), B— eX(B)})2] .

| =

(Aix Mar{s,eirl’l;e

unive

The proof is below.
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Proof of the Robertson-Schrodinger inequality |

Let A, B be symmetric operators on H, and set as before
vx(A) = [[(A = ex(A)XII* = ex(A?) — ex(A)%.
Set

f=(A—elA))x and g=(B—e(B))x,

so that v (A) = ||f|? and v,(B) = ||g]|*.

Therefore
2
vl A)v(B) = [If]1* llell* > [{f,8)]° -

g = (L8 E) (8t

Now

and

AixMarseille
universite
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Proof of the Robertson-Schrodinger inequality |l

Now since A and B are symmetric,

(f.8) + (& 1) = ({A—e(A), B— ex(B)}x, X)

and
(£.8) — (g.f) = {[A— ex(A). B~ ex(B)x.x) = {[A, Blx, )
Then
WAKB) > [(A— elA) B~ e(B)}xx? +1(A Bix %]
> 1 [etA— e, B e(B))? + el 8]
> 1 [(ediA BY — el AedB)* + leiA BYP] |
which is the desired result. (Aot

Uncertainty principles | (Bruno Torrésani)
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Proof of the Robertson-Schrodinger inequality 1l

m Ignoring the anticommutator term leads to the standard
(Robertson) inequality

1
w(Ai(B) = e (A, B]) .
m The proof above assumes that Bx belongs to the domain of A,

which is not necessarily the case. In some situations, this may lead
to delicate problems.

universite
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Back to Heisenberg-Weyl inequality

The Heisenberg-Weyl inequality appears as a particular case. Set
H = L*(R), and take for A= T and B = F the infinitesimal generators of
modulations and translations

O =6, 1B = 5X (0, [TA =5 Loy

yields the standard Heisenberg-Weyl inequality

1
VX(T)VX(F) > 16? )

that coincides with the inequality above.
Generalizations to higher dimensions are straightforward.

AixMarseille
universite
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Back to Heisenberg-Weyl inequality (2)

Taking into account the anticommutator term: introduce the
time-frequency covariance

t,

- adarg(x(s)
[t g

— 00

The corresponding generalized Heisenberg-Weyl inequality becomes

Corollary

Let x € L*(R) be such that ||x|| = 1. For all ty,vy € R,

|G- wrkopd x [ - nPhw)l d > oy (14 6.

> S 1672

with equality if and only if x is a linear Gaussian chirp function

(Gaussian function with linear frequency modulation). e
universite
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Back to Heisenberg-Weyl inequality (2)

m for linear chirps, x(t) = e Tt g2imat’ /2 e time-frequency
covariance equals the linear modulation rate ¢(x) = a.

m for cubic chirps, x(t) = et 2im(at®/2+BE /34714 /4) the
time-frequency covariance equals c(x) = o + 3/4r2.

The bound /1 + ¢(x)? obviously depends on the function x.

m Uncertainty equalizers are not necessarily uncertaity minimizers...

rseille
\
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Klauder and Altes

Time-scale and other generalizations

m The previous inequality addresses time-frequency uncertainty, and
rests on translation and modulation operators

m There are other representation domains of interest

m Time-scale (translation and dilation operators)

m Higher dimensional position-momentum (straightforward
extension of the previous inequality)

m Higher dimensional position, momentum, scale, shear,...

(Aix Marseille
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Klauder and Altes
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Time-scale: Klauder's inequality |

Let A= D and B = F be infinitesimal generator of dilations and
translations

1 i i

[Dx](t) = i <2x(t) + tx(t)) . [FX() = %)J(t) . [D, A= —%F

Introduce the Fourier-Mellin transformation on the Hardy space
H2(R) = {XE Lz(]R)7 x=0 on R_} .
defined by logarithmic warping followed by Fourier transformation
e o dv o - dv
K(S) — / &(V)V_Qlﬂsi _ / )A((V)e—len(u)s -
0 Vv o Vv
The Fourier-Mellin transform is unitary: for all x € H*(R),

ez e = ey - (s

Uncertainty principles | (Bruno Torrésani)



Klauder and Altes
o000

Time-scale: Klauder's inequality |l

Corollary (Klauder's inequality)
For all x € D(F) with ||x|| =1

WDJA(F) > e A

More concretely, for all sy € R and vy € R,

\/ [ =iz d x \/ [-srisoras= o [vioPa,

Equality is reached for specific waveforms (Klauder waveforms).

x(v) = Kexp{aln(v) — bv +i(cIn(v) + d)} , veRT (Aix“,{“"ifs‘%i';le
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Time-scale: Klauder's inequality Il

the bound depends explicitely (and strongly) on x (Maass et al

2010 [17]); uncertainty equalizers do not coincide with uncertainty
minimizers.

The family of functions

o) = 3 1—% for [t <n
" 2/n | 0 otherwise

satisfy ||x,|| =1, e, (D) = e, (F) =0, vy (D) = 3/4 and v, (F) = 3/n?
for all n.

Alx-varseille
universite
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Altes inequality |

Alternative: (Altes 1979, Flandrin 2001, Ricaud & BT 2013) geometric
mean: for x € H*(R), set

é;:exp{|5<1”2 /OO|C$<(1/)|2In(y)dy} ,

In this new setting, one obtains a more familiar inequality, for x € H*(R)
such that ||x|| = 1,

/om (/&) [0 x [ (=50 x(3) o = g5

with equality if and only if x takes the form of an Altes waveform,

x(v) = Kexp {—; In(v) — aln*(v/b) + i(cIn(v) + d)} , veRT.

AixMarseille
universite
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Altes inequality Il

Connection with Heisenberg-Weyl:
Let U: H*(R) — L*(R) be the (unitary) warping operator defined by

Ux(v) = &/?x(¢") ,v Ry, Ux(s) = x(In(s))//s ,s € R,
Consider now the linear operators T and F on H*(R) defined by

T=UTU, F=UFU.

AixMarseille
universite

Uncertainty principles | (Bruno Torrésani)



Klauder and Altes
000000

Altes inequality Il

Lemma (Warping)

The warped operators T and F relate to dilation and frequency as

T= iD, F=2rIn <2£) .

21 s

T and F satisfy the canonical commutation relations on H*(R):

[0, ()] = [, In(F/2m)] = [T, | = U'[T, U=~ liacey

(Aix Marseille
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Altes inequality IV

Given any self adjoint operator A on H*(R), and for any x € H*(R), set
y = Ux; then

e(A) = (x, Ax) = (Uy, AU"y) = e, (UAU") , and similarly

Vi(A) = e(A%) — e(A)? = e, ((UAU")?) — e, (UAU*)? = v, (UAU")
Therefore,

Vi(D).vi(In(F)) = v, (T).vy(F) > T6m2

with equality if and only if y is a Gaussian function, i.e. x is an Altes
wavelet.

AixMarseille
universite
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Klauder and Altes wavelets
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Breitenberger's inequality |

Breitenberger's inequality addresses the case of continuous-time,
periodic functions (or equivalently, by Fourier duality,
discrete-time, infinite sequences).

Fourier transformation: given x € L*([0,1]), define its Fourier
(coefficient) transform x by

o0
X{n] = /lx(t)e_z"””t dt | x(t) = Z K]t
0 =
in the “standard” L? convergence sense:
N .
g e 3 st <o,

AixMarseille
universite
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Breitenberger's inequality |l

Ax(t) = E@mt(t) . Bx() = ———X();  then [A B = —A.

2 2

B is symmetric, but A is not (A is unitary, thus normal). A
theorem by M. Erb [10] states that the standard uncertainty
inequality holds true when B is symmetric and A is normal:

1
= 1672

for all x € D([A, BJ) such that ||x|| = 1.

vx(A)vx(B) > [{[A, Blx, %),

sseille

\ “universite
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Periodic functions

Breitenberger's inequality Il

Introduce now means and variances

Angular mean and variance of x (with ||x|| = 1):

1
ex(A) :/ EMIx(B)P dt,  vi(A) = [[(A—e(A)x]|* = 1~ |ex(A)]
0
Mean and variance in frequency domain:

ex(B) =) nlkal®,  w(B) = [|(B—ex(B))x* = (IX[*~ |(x X))

Erb's inequality yields (Aix Marseille
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Breitenberger's inequality 1V

Corollary (Breitenberger 83 [3

For all absolutely continuous x such that X € L*([—n,x]), ||x]| = 1,
1
(1~ Jex(A)P) x [IXIP = % ] = 2ol AP

with equality if and only if x(t) = ™t (k € 7.): then e,(A) = 0.

Im Geometric interpretation: circular
e variance

1 JeA)
1 A= e Ar

T w(8) = Y it~ (3 mistol”)

AixMarsei
universite
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Breitenberger's inequality V

Corollary

For all a.c. x such that X € L*([—~,7]),

[x|| =1, and e (A) # 0,

1

B 2
1 — |ex(A)] x [IX]12 = (6 X) 2] > T6-2

|ex(A)[?

m Equality is not possible: there is room for improvement

m Phenomenon analyzed in details by Parhizkar et al [24]:
improved bounds, and numerical and analytic solutions for
optimizers (Mathieu sines and cosines).

seille
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Continuous limit

Consider the case of x € CV, with periodic boundary conditions.

Problem: the notion of mean value is not clear, as x and X are both
periodic sequences. To overcome this issue, assume that x and X are
centered at 0, and defined on a set

N N—-1 N—-1
D(N) =< — ,— yen
) { 2N 2N’ 2VN }
Define the corresponding DFT of x as

1 .
K] = X[fle”2 1y e D(N)
\/N tE;N)

and the concentration /variance as

Z (x|

Aix+M ill
t€D(N) (Ao Marsele
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Continuous limit

To suitable functions y € L*(R), associate the vector x, defined by

X[ = Y yt+s), teDN)
s€ZV/N

Theorem (Nam 2013)

Assume there exists a constant € such that

max {|y(8)l, Y @)1 D) 1Y (B} < . > VN2

Then
(1—+e)

1+ \/E)vyVy > vy vy, > (1 — \/E)vyvj, > T6m2

Pending question: how close are the optimizers to sampled periodiz(d'X Marseille

uni

Gaussians ?

Uncertainty principles | (Bruno Torrésani)
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Conclusions

m Variance is the most common way to define concentration for
functions: concentration around some reference location (the mean).

m Variance is associated to a translation structure... which may not be
adequate, or even available, in some situations (think of graphs for
example).

m In the Robertson inequality, the lower bound for v, (A)v,(B)
generally depends on the state x, which may be inadequate if one
seeks variance minimizers.

m |t makes sense to study other types of concentration properties.

AixMarseille
universite
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