

2585-25

Joint ICTP-TWAS School on Coherent State Transforms, Time-Frequency and Time-Scale Analysis, Applications

2 - 20 June 2014

An application of wavelets, curvelets and shearlets to X-ray processing for art conservation

I. Daubechies

Duke University

Durham

USA

Wavelets

Basics: algorithm

mathematical properties

Application to painting analysis

Wavelets

illustrated via image analysis

Digital images consist of pixels

Small squares, each with constant grey value

Typically: 256 different grey values

(from pure white to

pure black)

numbered from 0 to 255

Example: a row in a self-portrait by Van Gogh

75 72 74 76 80 112 131 137 138 134 137 133 128 126 132 134 \rightarrow 140 139 132 133 131 131 133 138 138 134 131 135 139 137 138 ...

Example: a row in a self-portrait by Van Gogh

Example: a row in a self-portrait by Van Gogh

75 72 74 76 80 112 131 137 138 134 137 133 128 126 132 ...

73.5	74	78	121.5	137.5	135.5	130.5	129	
-3	0	4	19	1	3	-5	6	

73.75	99.75	136.5	129.75	
		'		
.5	43.5	-2	-1.5	

large differences point to sudden transitions, such as edges

given a function f

We consider a fine scale approximation of f

$$P_{fine}f = P_{J}f$$

$$P_{fine}f = P_{J}f$$
 = fine scale approximation to f

$$P_{J-1}f$$
 = coarser approximation to f (obtained by "averaging" $P_{J}f$)

given a function f

we continue this process and replace coarse approximation $P_{J-1}f$ by one that is even coarser

given a function f

the even coarser approximation $P_{J-2}f$

given a function f

and we repeat the process again ...

given a function f

and again ...

given a function f

In each of the successive approximations, some detail is lost

we next determine a coarser approximation to f by replacing pairs of constant levels by their average

given a function f

given a function f

given a function f

Let
$$P_{J-1} f - P_J f$$

given a function f

given a function f

given a function f

$$P_{J-1}f - P_{J-2}f$$

given a function f

given a function f

We have thus

$$P_{J}f(x) = \sum_{\ell=1}^{L} (P_{J-\ell+1}f(x) - P_{J-\ell}f(x)) + P_{J-L}f(x)$$
$$= \sum_{\ell=1}^{L} \sum_{k} c_{J-\ell,k} \psi(2^{J-\ell}x - k) + P_{J-L}f(x).$$

When $J \longrightarrow \infty$, $P_J f \longrightarrow f$; when $J - L \longrightarrow -\infty$, $P_{J-L} f \longrightarrow 0$. Moreover, the $\psi\left(2^j x - k\right)$ are orthogonal.

The algorithm of averaging and differencing corresponds thus to the decomposition of $f \in L^2(\mathbb{R})$ into the orthonormal basis $2^{j/2} \psi \left(2^j x - k \right) =: \psi_{j,k}(x)$.

The $\psi_{j,k}$ in the example are discontinuous; provided "averaging" and "differencing" are replaced by generalizations (corresponding to higher order approximation schemes), one still has a similar structure, with ψ supported on an interval, but now smoother.

The decomposition

$$f = \sum_{j,k} \langle f, \psi_{j,k} \rangle \psi_{j,k}$$

can be viewed as a particularly convenient form of Calderòn's formula.

The $(\psi_{j,k})_{j,k\in\mathbb{Z}}$ constitute an unconditional basis for many useful functional spaces.

Examples: $L^p(\mathbb{R})$ (for $1), <math>W^{s,p}(\mathbb{R})$, $B^q_{s,p}(\mathbb{R})$, $C^{\alpha}(\mathbb{R})$, ...

The 2-dimensional wavelet transform.

So far, we have worked in only 1 dimension

Pictures have pixels in TWO directions!

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

averaging pairwise

differencing pairwise

in each row

12 1 .5	106
98	85
79.5	74
75	75.5

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

121.5	106
98	85
79.5	74
75	75.5

1	-14
- 4	-8
-1	-2
-2	-1

vertically, in each of the two tables

121	122	113	99		12 1 .5	106		1	-14		
100	96	89	81		98	85		-4	-8		
80	79	75	73		79.5	74		-1	-2		
74	76	75	76		75	75.5		-2	-1		
							_			5	
	Γ	109.25	05	5.5	-22.5	-21		-1.5	-11	-5	6
		109.23									
		77.25	74	.75	-4.5	1.5		-1.5	-1.5	<u>-1</u>	1
						•		•			

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

77.25 74.75

-4.5 1.5

-1.5 -1.5

121 122 113 99	-11
100 96 89 81	-1.5
80 79 75 73)
74 76 75 76	<i>)</i>
109.25 95.5 102.37 -13.75	
77.25 74.75 76	1.25
) ([]])
89.19 -26.37) 7
-1 1	
)
-22.5 -21	,
-4.5 1.5	

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

109.25 95.5 74.75 77.25

11.25

-22.5 -21 **-4.5 1.5**

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

95.5

109.25

-1.5 -11

-1.5 -1.5

6

-5

-1

-1.5 -11

-1.5 -1.5

109.25 95.5

77.25 74.75

-8.12

89.19

11.25

11.

-5 6

-1 1

-22.5 -21

-4.5 1.5

89.19

-26.37

-22.5 -21 -4.5 1.5

Wavelet decomposition: graphical illustration of the algorithm and its properties

"Average" horizontally and vertically

"Difference" horizontally

"Average" vertically

"Difference" vertically

"Average" horizontally

"Difference" horizontally

"Difference" vertically

Repeat at the next scale

Repeat

Meaning of the successive approximations

Local properties reflected by the successive approximations

Compression

Compression Ratio: 3.3%

Compression Ratio: 10%

Localization: fast, interactive retrieval of data

