50th Anniversary 1964-2014

Joint ICTP-TWAS School on Coherent State Transforms, TimeFrequency and Time-Scale Analysis, Applications

$$
2 \text { - } 20 \text { June } 2014
$$

An application of wavelets, curvelets and shearlets to X-ray

 processing for art conservationI. Daubechies

Duke University
Durham
USA

Wavelets

Basics: algorithm mathematical properties

Application to painting analysis

Wavelets

illustrated via image analysis

Digital images consist of pixels

Small squares, each with constant grey value

Typically: 256 different grey values (from pure white to pure black)
numbered from 0 to 255

Example: a row in a self-portrait by Van Gogh

 $\rightarrow 140139132133131131133138138134131135139137138 \ldots$

Example: a row in a self-portrait by Van Gogh

$\begin{array}{lllllllllllllllll}75 & 72 & 74 & 74 & 76 & 80 & 112 & 131 & 137 & 138 & 134 & 137 & 133 & 128 & 126 & 132\end{array}$

Example: a row in a self-portrait

 by Van Gogh

73.5	74	78	121.5	137.5	135.5	130.5	129
-3	0	4	19	1	3	-5	6

73.75	99.75	136.5	129.75
.5	43.5	-2	-1.5

large differences point to sudden transitions, such as edges

What does this correspond to mathematically?

given a function f

What does this correspond to mathematically?

given a function f

We consider a fine scale approximation of f

$$
P_{\text {fine }} f=P_{J} f
$$

What does this correspond to mathematically?

given a function f

$\boldsymbol{P}_{\text {fine }} \boldsymbol{f}=\boldsymbol{P}_{\boldsymbol{J}} \boldsymbol{f}=$ fine scale approximation to f

What does this correspond to mathematically?

given a function f

we next determine a coarser approximation to f by replacing pairs of constant levels by their average

What does this correspond to mathematically?

given a function f

$$
\begin{aligned}
& P_{J-1} f=\text { coarser approximation to } f \\
& \quad \text { (obtained by "averaging" } \boldsymbol{P}_{J} f \text {) }
\end{aligned}
$$

What does this correspond to mathematically?

given a function f

we continue this process and replace coarse approximation $P_{J-l} f$ by one that is even coarser

What does this correspond to mathematically?

given a function f

the even coarser approximation $P_{J-2} f$

What does this correspond to mathematically?

given a function f

and we repeat the process again ...

What does this correspond to mathematically?

given a function f

and again ...

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost
we next determine a coarser approximation to f
by replacing pairs of constant levels by their average

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

$$
P_{J-1} f-P_{J} f
$$

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

$$
P_{J-1} f-P_{J-2} f
$$

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

$$
P_{J-2} f-P_{J-3} f
$$

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost

What does this correspond to mathematically?

given a function f

In each of the successive approximations, some detail is lost
given a function f

$$
P_{J}(x)-P_{J-1}(x)=\sum_{k} c_{J-1, k} \Psi\left(2^{J-1} x-k\right)
$$

$\psi\left(2^{J-2} x\right)$
$\psi\left(2^{J-3} x\right)$

$$
\begin{aligned}
& P_{J-1}(x)-P_{J-2}(x)=\sum_{k} c_{J-2, k} \Psi\left(2^{J-2} x-k\right) \\
& P_{J-2}(x)-P_{J-3}(x)=\sum_{k} c_{J-3, k} \Psi\left(2^{J-3} x-k\right)
\end{aligned}
$$

In each of the successive approximations, some detail is lost

We have thus

$$
\begin{aligned}
P_{J} f(x) & =\sum_{\ell=1}^{L}\left(P_{J-\ell+1} f(x)-P_{J-\ell} f(x)\right)+P_{J-L} f(x) \\
& =\sum_{\ell=1}^{L} \sum_{k} c_{J-\ell, k} \psi\left(2^{J-\ell} x-k\right)+P_{J-L} f(x)
\end{aligned}
$$

When $J \longrightarrow \infty, P_{J} f \longrightarrow f$; when $J-L \longrightarrow-\infty, P_{J-L} f \longrightarrow 0$.
Moreover, the $\psi\left(2^{j} x-k\right)$ are orthogonal.
The algorithm of averaging and differencing corresponds thus to the decomposition of $f \in L^{2}(\mathbb{R})$ into the orthonormal basis $2^{j / 2} \psi\left(2^{j} x-k\right)=: \psi_{j, k}(x)$.

The $\psi_{j, k}$ in the example are discontinuous; provided "averaging" and "differencing" are replaced by generalizations (corresponding to higher order approximation schemes), one still has a similar structure, with ψ supported on an interval, but now smoother.

The decomposition

$$
f=\sum_{j, k}\left\langle f, \psi_{j, k}\right\rangle \psi_{j, k}
$$

can be viewed as a particularly convenient form of Calderòn's formula.

The $\left(\psi_{j, k}\right)_{j, k \in \mathbb{Z}}$ constitute an unconditional basis for many useful functional spaces.

Examples: $L^{p}(\mathbb{R})($ for $1<p<\infty), W^{s, p}(\mathbb{R}), B_{s, p}^{q}(\mathbb{R}), C^{\alpha}(\mathbb{R}), \ldots$

The 2-dimensional wavelet transform.

So far, we have worked in only 1 dimension

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

averaging pairwise
differencing pairwise
in each row

121	122	113	99			
100	96	89	81			
80	79	75	73			
74	76	75	76	\quad	121.5	106
:---	:---					
98	85					
79.5	74					
75	75.5	\quad	1	-14		
:---:	:---:					
-4	-8					
-1	-2					
-2	-1					

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

109.25 95.5 77.25 74.75	-22.5 -21 -4.5 1.5
	-1.5 -11 -1.5 -1.5
-5 6 -1 1	

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

$$
\begin{array}{rr}
-1.5 & -11 \\
-1.5 & -1.5 \\
\hline 10
\end{array}
$$

109.25	95.5
77.25	74.75

Wavelet decomposition: graphical illustration of the algorithm and its properties

"Difference" vertically

ane

Meaning of the successive approximations

Local properties reflected by the successive approximations

Compression

Compression Ratio: 3.3\%

Compression Ratio: 10\%

Localization:
 fast, interactive retrieval of data

