

2585-20

Joint ICTP-TWAS School on Coherent State Transforms, Time-Frequency and Time-Scale Analysis, Applications

2 - 20 June 2014

Quantizing compressed sensing: From high resolution to 1-bit quantization scheme

L. Jacques *UCL, Louvain-La-Neuve, Belgium*

Quantizing compressed sensing: From high resolution to 1-bit quantization scheme

Laurent Jacques, UCL, Belgium

Coherent state transforms, time-frequency and time-scale analysis, applications

Compressive Sampling

H. Rauhut's tutorial

Compressed Sensing

Highly compressed recap of what is ...

Compressive Sensing

Compressed Sampling

Generally, sampling is ...

Human readable signal!

Generally, sampling is ...

New ways to sample signals

" $Computer\ readable$ " sensing + prior information

Sensing World Human Device Sensing Signal

Optimized setup: sampling rate \propto information

Generally, sampling is ...

New ways to sample signals

structures, sparsity, low-rank, ...

"Computer readable" sensing + prior information

World

Sensing Device

Human

Optimized setup: sampling rate \propto information

... in a nutshell:

"Forget" Dirac, forget Nyquist, ask few (linear) questions about your informative (sparse) signal, and recover it differently (non-linearly)"

Assumption: the probability that our world is totally discrete is very high ...

Sensing method Signal M questions Then ... Sparsity y_i Prior $(\Psi = \mathrm{Id})$ $M \times N$ MGeneralized Linear Sensing! A signal in this $y_i = \langle \boldsymbol{\varphi}, \boldsymbol{x} \rangle = \boldsymbol{\varphi}^T \boldsymbol{x}$ discrete world 1 < i < M

Non-linear reconstruction!

If \boldsymbol{x} is K-sparse and if $\boldsymbol{\Phi}$ well "conditioned" then:

$$oldsymbol{x}^* = \underset{oldsymbol{u} \in \mathbb{R}^N}{\arg \min} \ \|oldsymbol{u}\|_0 ext{ s.t. } oldsymbol{y} = oldsymbol{\Phi} oldsymbol{u}$$

$$\|\mathbf{u}\|_0 = \#\{j : u_j \neq 0\}$$

Non-linear reconstruction!

If \boldsymbol{x} is K-sparse and if $\boldsymbol{\Phi}$ well "conditioned" then: (relax.)

$$oldsymbol{x}^* = rg \min_{oldsymbol{u} \in \mathbb{R}^N} \|oldsymbol{u}\|_{oldsymbol{u}} ext{ s.t. } oldsymbol{y} = oldsymbol{\Phi} oldsymbol{u}$$

$$\|\boldsymbol{u}\|_1 = \sum_j |u_j|$$

Simplifying assumption

$$\exists \ \delta \in (0,1)$$
 Restricted Isometry Property $\sqrt{1-\delta} \| \boldsymbol{v} \|_2 \leqslant \| \boldsymbol{\Phi} \boldsymbol{v} \|_2 \leqslant \sqrt{1+\delta} \| \boldsymbol{v} \|_2$ for all $2K$ sparse signals \boldsymbol{v} .

any subset of 2K columns is an *isometry*

If x is K-sparse and if Φ well "conditioned" then: (relax.)

$$m{x}^* = rg \min_{m{u} \in \mathbb{R}^N} \| m{u} \|_{\mathbf{x}} \text{ s.t. } m{y} = m{\Phi} m{u}$$

$$\mathbf{if} \ \delta < \sqrt{2} - 1 \text{ [Candes 08]}$$

$$\|\boldsymbol{u}\|_1 = \sum_j |u_j|$$

Simplifying assumption

If x is K-sparse and if Φ well "conditioned" then: (relax.)

$$m{x}^* = rg \min_{m{u} \in \mathbb{R}^N} \| m{u} \|_{\mathbf{x}} \text{ s.t. } m{y} = m{\Phi} m{u}$$
 [Candes 08]

$$\|\boldsymbol{u}\|_1 = \sum_j |u_j|$$

 $(Basis\ Pursuit)\ {\tiny [Chen,\ Donoho,\ Saunders,\ 1998]}$

Simplifying assumption

$$\exists \ \delta \in (0,1) \qquad \text{Restricted Isometry Property}$$

$$\sqrt{1-\delta} \|\boldsymbol{v}\|_2 \leqslant \|\boldsymbol{\Phi}\boldsymbol{v}\|_2 \leqslant \sqrt{1+\delta} \|\boldsymbol{v}\|_2$$
for all $2K$ sparse signals \boldsymbol{v} .

any subset of 2K columns is an *isometry*

Examples:

- + Gaussian
- + Bernoulli
- + Random Fourier
- +

$$M = O(K \log N/K) \ll N$$
$$\Phi \in \mathbb{R}^{M \times N}, \ \Phi_{ij} \sim_{\text{iid}} \mathcal{N}(0, 1)$$

If x is K-sparse and if Φ well "conditioned" then: (relax.)

$$m{x}^* = rg \min_{m{u} \in \mathbb{R}^N} \| m{u} \|_{m{k}} ext{ s.t. } m{y} = m{\Phi} m{u}$$
 [Candes 08]

$$\|\boldsymbol{u}\|_1 = \sum_j |u_j|$$

 $(Basis\ Pursuit)\ {\tiny [Chen,\ Donoho,\ Saunders,\ 1998]}$

If x is K-sparse and if Φ well "conditioned" then: (relax.)

$$oldsymbol{x}^* = \underset{oldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg\ min}} \ \|oldsymbol{u}\|_{oldsymbol{u}} \ \mathrm{s.t.} \ oldsymbol{y} = oldsymbol{\Phi} oldsymbol{u}$$

Solvers:

Linear Programming, Interior Point Method, Proximal Methods, ... **Tons** of toolboxes ...

$$\|\boldsymbol{u}\|_1 = \sum_j |u_j|$$

If x is K-sparse and if Φ well "conditioned" $oldsymbol{x}^* = rg \min_{\mathbf{w}} \|oldsymbol{u} - \mathbf{\Phi} oldsymbol{u}\| \leqslant \epsilon$ then: $oldsymbol{u} \in \mathbb{R}^N$

Solvers:

Linear Programming, Interior Point Method, Proximal Methods, ... **Tons** of toolboxes ...

$$\|\boldsymbol{u}\|_1 = \sum_j |u_j|$$

Robustness: vs sparse deviation + noise.

$$\|\boldsymbol{x} - \boldsymbol{x}^*\| \leqslant C \frac{1}{\sqrt{K}} \|\boldsymbol{x} - \boldsymbol{x}_K\|_1 + D\epsilon$$

 ℓ_2 -ball

If x is K-sparse and if Φ well "conditioned" $egin{aligned} oldsymbol{x}^* = & rg \min_{oldsymbol{u} \in \mathbb{R}^N} & \|oldsymbol{u} - oldsymbol{\Phi} oldsymbol{u}\|_{oldsymbol{u}} ext{ s.t. } oldsymbol{y} = oldsymbol{\Phi} oldsymbol{u} \ oldsymbol{u} = oldsymbol{u} oldsymbol{u} \end{aligned}$ then:

Solvers:

Linear Programming, Interior Point Method, Proximal Methods, ... **Tons** of toolboxes ...

$$\|\boldsymbol{u}\|_1 = \sum_j |u_j|$$

Part 1 When quantization meets compressed sensing

Outline:

- 1. Context
- 2. Former QCS methods and performance limits
- 3. Consistent Reconstructions
- 4. Sigma-Delta quantization in CS
- 5. To saturate or not? And how much?

1. Context

What is quantization?

• Generality:

Intuitively: "Quantization maps a bounded continuous domain to a set of finite elements (or codebook)"

$$\mathcal{Q}[x] \in \{q_1, q_2, \cdots\}$$

• Oldest example: rounding off $[x], [x], \dots \mathbb{R} \to \mathbb{Z}$

In \mathbb{R}^M , on each component of M-dimensional vectors:

$$\Omega = \{q_i \in \mathbb{R} : 1 \leqslant i \leqslant 2^B\}, \qquad \text{(levels)}$$

$$\mathcal{T} = \{t_i \in \overline{\mathbb{R}} : 1 \leqslant i \leqslant 2^B + 1, t_i \leqslant t_{i+1}\} \quad \text{(thresholds)}$$

$$\forall \lambda \in \mathbb{R}, \qquad \mathcal{Q}[\lambda] = q_i \iff \lambda \in \mathcal{R}_i \triangleq [t_i, t_{i+1}), \quad \text{1-D quantization cell}$$

$$\forall u \in \mathbb{R}^M, \quad (\mathcal{Q}[u])_i = \mathcal{Q}[u_i]$$

other names:

Pulse Code Modulation - PCM Memoryless Scalar Quantization - MSQ

In \mathbb{R}^M , on each component of M-dimensional vectors:

$$\Omega = \{q_i \in \mathbb{R} : 1 \leqslant i \leqslant 2^B\}, \qquad \text{(levels)}$$

$$\mathcal{T} = \{t_i \in \overline{\mathbb{R}} : 1 \leqslant i \leqslant 2^B + 1, t_i \leqslant t_{i+1}\} \quad \text{(thresholds)}$$

$$\forall \lambda \in \mathbb{R}, \qquad \mathcal{Q}[\lambda] = q_i \iff \lambda \in \mathcal{R}_i \triangleq [t_i, t_{i+1}), \quad \text{1-D quantization cell}$$

$$\forall u \in \mathbb{R}^M, \quad (\mathcal{Q}[u])_i = \mathcal{Q}[u_i]$$

Globally:

Globally:
$$\mathcal{Q}[oldsymbol{z}] = oldsymbol{q} \in \Omega^M \iff oldsymbol{z} \in \begin{bmatrix} \mathcal{M} - \mathrm{D} \text{ quantization cell} \\ \mathcal{R}_{i_1} \times \mathcal{R}_{i_2} \times \cdots \times \mathcal{R}_{i_M} \\ := \mathcal{Q}^{-1}[oldsymbol{q}]$$

Regular uniform

$$q_k = (k+1/2)\alpha$$
$$t_k = k\alpha$$

Regular uniform

$$q_k = (k+1/2)\alpha$$
$$t_k = k\alpha$$

Regular non-uniform

 Ω and \mathcal{T} optimized

e.g., wrt an input distribution Z find minimum distortion, *i.e.*,

$$\underset{\mathcal{T},\Omega}{Z} \qquad \text{argmin } \mathbb{E}_Z \|Z - \mathcal{Q}[Z]\|^2$$

▶ ∃ Non-regular (P. Boufounos)

Example 2: vector quantization

(caveat: not really covered in this tutorial, ... except $\Sigma\Delta$, see later)

Quantization = codebook Ω + quantization cells $\mathcal{R} = \{\mathcal{R}_i \subset \mathbb{R}^M\}$

(non-separable quantization)

e.g.,
$$\underset{\boldsymbol{\Omega},\boldsymbol{\mathcal{R}}}{\operatorname{argmin}} \ \mathbb{E}_{Z} \|\boldsymbol{Z} - \boldsymbol{\mathcal{Q}}[\boldsymbol{Z}]\|^{2}$$

Classical Sampling and Quantization

For acquisition:

Classical Sampling and Quantization

For acquisition:

For reconstruction:

Classical Sampling and Quantization

For acquisition:

For reconstruction:

Sampling: discretization in time \Rightarrow Lossless at the Nyquist rate

Quantization: discretization in amplitude ⇒ Always lossy

Need both for digital data acquisition

Compressive Sampling and Quantization

Compressed sensing theory says:

"Linearly sample a signal

at a rate function of

its intrinsic dimensionality"

Information theory and sensor designer say:

"Okay, but I need to

quantize/digitize my measurements!"

(e.g., in ADC)

The Quantized CS Problem (QCS)

Natural questions:

- How to integrate quantization in CS?
- ▶ What do we loose?

- Are they some theoretical limitations?

 (related to information theory? geometry?)
- ▶ How to minimize quantization effects in the reconstruction?

QCS: a system view

With no additional noise:

e.g., basis pursuit, greedy methods, ...

scalar or vector quantization

QCS: a system view

With no additional noise:

e.g., basis pursuit, greedy methods, ...

scalar or vector quantization

Finite codebook $\Rightarrow \hat{x} \neq x$

(i.e., impossibility to encode continuous domain in a finite number of elements)

QCS: a system view

With no additional noise:

e.g., basis pursuit, greedy methods, ...

Finite codebook $\Rightarrow \hat{x} \neq x$

Objective: Minimize $\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|$ given a certain number of: bits, measurements, or bits/meas.

How?

Where to act?

Change CS, Q or decoder?
Some of them? all?

2. Former QCS methods and performance limits

Scalar quantization in CS

Turning measurements into bits \rightarrow scalar quantization

$$q_i = \mathcal{Q}[(\mathbf{\Phi} \mathbf{x})_i] = \mathcal{Q}[\langle \boldsymbol{\phi}_i, \mathbf{x} \rangle] \in \Omega \subset \mathbb{R}$$
 $\mathbf{q} = \mathcal{Q}[\mathbf{\Phi} \mathbf{x}] \in \mathbf{\Omega} = \Omega^M,$

Important points:

- ▶ Definition of Φ independent of M (e.g., $\Phi_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$)

 → preserves measurement dynamic!
- ▶ B bits per measurement
- Total bit budget: R = BM
- ▶ No further encoding (e.g., entropic)

Quantization is like a noise

$$oxed{q} = \mathcal{Q}igl[\Phi xigr] = \Phi x + n$$
 distortion

quantization

Quantization is like a noise

$$oldsymbol{q} = \mathcal{Q}igl[oldsymbol{\Phi}oldsymbol{x}igr] = oldsymbol{\Phi}oldsymbol{x} + oldsymbol{n}$$

and CS is robust (e.g., with basis pursuit denoise)

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{argmin}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{\Phi}\boldsymbol{u} - \boldsymbol{q}\| \leqslant \epsilon \quad (BPDN)$$

 $\ell_2 - \ell_1$ instance optimality:

If $\|\boldsymbol{n}\| \leq \epsilon$ and $\frac{1}{\sqrt{M}}\boldsymbol{\Phi}$ is $RIP(\delta, 2K)$ with $\delta \leq \sqrt{2} - 1$, then

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \leqslant C \frac{\epsilon}{\sqrt{M}} + D e_0(K),$$

for some C, D > 0 and $e_0(K) = ||x - x_K||_1 / \sqrt{K}$.

Quantization is like a noise

$$oldsymbol{q} = \mathcal{Q}igl[\Phi xigr] = \Phi x + n$$

and CS is robust (e.g., with basis pursuit denoise)

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{argmin}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{\Phi}\boldsymbol{u} - \boldsymbol{q}\| \leqslant \epsilon \quad (BPDN)$$

 $\ell_2 - \ell_1$ instance optimality:

If $\|\boldsymbol{n}\| \leq \epsilon$ and $\frac{1}{\sqrt{M}}\boldsymbol{\Phi}$ is RIP $(\delta, 2K)$ with $\delta \leq \sqrt{2} - 1$, then

How to find it?

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \leqslant C \frac{\epsilon}{\sqrt{M}} + D e_0(K),$$

for some C, D > 0 and $e_0(K) = ||x - x_K||_1 / \sqrt{K}$.

1. For uniform quantization, by construction:

$$\Rightarrow \|\mathbf{n}\|^2 \leqslant M \|\mathbf{n}\|_{\infty}^2 \leqslant M\alpha^2/4$$

and plug this upper bound in BPDN

1. For uniform quantization, by construction:

$$n_i = \mathcal{Q}[(\mathbf{\Phi} \mathbf{x})_i] - (\mathbf{\Phi} \mathbf{x})_i$$
 $\in q_{k_i} - \mathcal{R}_{k_i} = [-\alpha/2, \alpha/2]$
 $\Rightarrow \|\mathbf{n}\|_{\infty} \le \alpha/2$

$$\Rightarrow \|\mathbf{n}\|^2 \leqslant M \|\mathbf{n}\|_{\infty}^2 \leqslant M\alpha^2/4$$

and plug this upper bound in BPDN

can be improved!

2. For uniform quantization, uniform model!

$$n_i = \mathcal{Q}[(\mathbf{\Phi} \mathbf{x})_i] - (\mathbf{\Phi} \mathbf{x})_i$$

 $\in q_{k_i} - \mathcal{R}_{k_i} = [-\alpha/2, \alpha/2]$
 $\sim_{\text{iid}} \text{Uniform}([-\alpha/2, \alpha/2])$
(HRA - high resolution assumption)

2. For uniform quantization, uniform model!

$$n_i = \mathcal{Q}[(\mathbf{\Phi} \mathbf{x})_i] - (\mathbf{\Phi} \mathbf{x})_i$$

 $\in q_{k_i} - \mathcal{R}_{k_i} = [-\alpha/2, \alpha/2]$
 $\sim_{\text{iid}} \text{Uniform}([-\alpha/2, \alpha/2])$
(HRA - high resolution assumption)

$$\Rightarrow \mathbb{E}|n_i|^2 = \alpha^2/12$$

$$-\alpha/2$$
 $\alpha/2$

$$\Rightarrow \| m{n} \|^2 \leqslant \mathbb{E} \| m{n} \|^2 + \kappa \sqrt{\mathrm{Var} \| m{n} \|^2}$$
 (Chernoff-Hoeffding, bounded RVs)

$$\leq M \frac{\alpha^2}{12} + \kappa \sqrt{M} \frac{\alpha^2}{6\sqrt{5}} = \epsilon_2^2 \simeq M \frac{\alpha^2}{12}$$
with $\Pr > 1 - e^{-2\kappa^2}$

and plug this upper bound in BPDN

Therefore, from BPDN $\ell_2 - \ell_1$ instance optimality:

$$\|\hat{oldsymbol{x}}-oldsymbol{x}\| \lesssim C\,lpha + D\,e_0(K),$$
 for $C,D>0$

(for BPDN with ϵ_2 , under prev. cond.)

Therefore, from BPDN $\ell_2 - \ell_1$ instance optimality:

$$\|\hat{m{x}}-m{x}\| \lesssim C\,lpha + D\,e_0(K),$$
 for $C,D>0$

(for BPDN with ϵ_2 , under prev. cond.)

- Assuming:
 - bounded dynamics: $\|\mathbf{\Phi}x\|_{\infty} = \max_{j} |(\mathbf{\Phi}x)_{i}| \leq \rho$ (e.g., by discarding saturation) (see later)
 - B bits per measurements $\Rightarrow \alpha \simeq \frac{2\rho}{2^B}$

$$\Rightarrow ext{BPDN RMSE} \lesssim C' \ 2^{-B} + D \, e_0(K)$$
 for $C', D > 0$

as soon as RIP holds: $M = O(K \log N/K)$

Equivalently: BPDN RMSE $\simeq O(2^{-R/M}) + e_0(K)$ for a rate R = BM bits (total "bid budget" for all meas.)

Scalar quantization in CS ...

RMSE Lower bound?

Let a fixed *K*-sparse $\boldsymbol{x} \in \mathbb{R}^N$

RMSE Lower bound?

- Let a fixed *K*-sparse $\boldsymbol{x} \in \mathbb{R}^N$
- Oracle: you know $T = \operatorname{supp} x$

RMSE Lower bound?

- Let a fixed K-sparse $\boldsymbol{x} \in \mathbb{R}^N$
- Oracle: you know $T = \operatorname{supp} \boldsymbol{x}$
- Noisy measurements (random noise):

Given
$$\mathbf{\Phi} \in \mathbb{R}^{M \times N}$$
 with $\Phi_{ij} \sim_{\text{iid}} N(0,1)$

$$\boldsymbol{y} = \boldsymbol{\Phi}_T \boldsymbol{x} + \boldsymbol{n}, \text{ with } \mathbb{E} \, \boldsymbol{n} \boldsymbol{n}^T = \sigma^2 \mathbf{Id}_{M \times M}$$

Compute LS solution:
$$\hat{\boldsymbol{x}}_T = \boldsymbol{\Phi}_T^{\dagger} \boldsymbol{y} = (\boldsymbol{\Phi}_T^* \boldsymbol{\Phi}_T)^{-1} \boldsymbol{\Phi}_T^* \boldsymbol{y}$$

$$\hat{\boldsymbol{x}}_{T^c} = 0$$

Then:
$$\text{MSE} = \mathbb{E}_{\boldsymbol{n}} \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|^2 \geqslant r^{-1} \sigma^2 \left(\frac{1 - \delta_1}{1 + \delta_K}\right)$$
 for oversampling factor $r = M/K$

(as for BPDN) & MSE $\leq \frac{1}{1-\delta_K}\sigma^2$ from [Needell, Tropp, 08]

for QCS:
$$\Rightarrow$$
 RMSE = $\Omega(r^{-1/2}2^{-B})$

& RMSE =
$$O(2^{-B})$$

3. Consistent Reconstructions

Consistent reconstructions in CS?

- Problem in previous case: if \hat{x} solution of BPDN,
 - no Quantization Consistency (QC): $Q[\Phi \hat{x}] \neq Q[\Phi x]$

$$\|\mathbf{\Phi}\hat{\boldsymbol{x}} - \mathcal{Q}[\mathbf{\Phi}\boldsymbol{x}]\| \leqslant \epsilon_2 \quad \Rightarrow \mathcal{Q}[\mathbf{\Phi}\hat{\boldsymbol{x}}] = Q[\mathbf{\Phi}\boldsymbol{x}]$$

 \Rightarrow sensing information is fully not exploited!

• ℓ_2 constraint \approx Gaussian distribution (MAP - cond. log. lik.)

But why looking for consistency?

First,

Proposition (Goyal, Vetterli, Thao, 98) If T is known (with |T| = K), the best decoder $\operatorname{Dec}()$ provides a $\hat{\boldsymbol{x}} = \operatorname{Dec}(\boldsymbol{y}, \boldsymbol{\Phi})$ such that:

$$RMSE = (\mathbb{E}\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|^2)^{1/2} \gtrsim r^{-1}\alpha,$$

where \mathbb{E} is wrt a probability measure on \mathbf{x}_T in a bounded set $\mathcal{S} \subset \mathbb{R}^K$.

This bound is achieved, at least, for $\Phi_T = DFT \in \mathbb{R}^{M \times K}$, when Dec() is consistent.

V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in R^N: Analysis, Synthesis, and Algorithms", IEEE Tran. IT, 44(1), 1998

But why looking for consistency?

Second,

If $\Phi \in \mathbb{R}^{M \times N}$ is a (random) frame in \mathbb{R}^N $(M \ge N)$,

Then, for Q(y) = y + n with $n_i \sim \mathcal{U}([-\frac{1}{2}\alpha, \frac{1}{2}\alpha])$, and \hat{x} consistent,

$$(\mathbb{E}_{\boldsymbol{\Phi},\boldsymbol{n}}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^2)^{1/2} \lesssim r^{-1}\alpha,$$
 [Powell, Whitehouse, 2013]

(unit norm frame)

and

$$\|\boldsymbol{x} - \hat{\boldsymbol{x}}\| \lesssim r^{-1}\alpha \cdot O(\log M, \log N, \log \eta),$$

[LJ 2014]

(Gaussian frame)

with $\Pr \geqslant 1 - \eta$.

or $\frac{K}{M}\alpha \cdot O(\log K, \log M, \log N, \log \eta)$ in K sparse case

In quest of consistency...

Modify BPDN [W. Dai, O. Milenkovic, 09]

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{argmin}} \|\boldsymbol{u}\|_1 \text{ s.t. } \mathcal{Q}[\boldsymbol{\Phi}\boldsymbol{u}] = \boldsymbol{q}$$

+ modified greedy algo: "subspace pursuit"

$$\Leftrightarrow oldsymbol{\Phi} oldsymbol{u} \in \mathcal{Q}^{-1}[oldsymbol{q}] oldsymbol{v}$$

$$\Leftrightarrow \|\mathbf{\Phi} \boldsymbol{u} - \boldsymbol{q}\|_{\infty} \le \alpha/2$$
(if uniform quant.)

 \exists numerical methods

In quest of consistency...

Modify BPDN [W. Dai, O. Milenkovic, 09]

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{argmin}} \|\boldsymbol{u}\|_1 \text{ s.t. } \mathcal{Q}[\boldsymbol{\Phi}\boldsymbol{u}] = \boldsymbol{q}$$

Simulations: $M = 128, N = 256, K = 6,1000 \text{ trials } \Rightarrow \lambda \simeq 20$

W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009

 $\ell_2 \to \ell_p \ (p \ge 2)$

[LJ, Hammond, Fadili, 2009, 2011]

Distortion model:

$$q = Q[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$$

- Observation: $\|\mathbf{\Phi} \mathbf{x} \mathbf{q}\|_{\infty} \le \alpha/2$
- Reconstruction: Generalizing BPDN with BPDQ

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi} \boldsymbol{u}\|_p \leq \epsilon_p$$

Towards $p = \infty$ Related to GGD MAP

 $\ell_2 \to \ell_p \ (p \ge 2)$

[LJ, Hammond, Fadili, 2009, 2011]

Distortion model:

$$q = Q[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$$

- Observation: $\|\mathbf{\Phi} \mathbf{x} \mathbf{q}\|_{\infty} \le \alpha/2$
- Reconstruction: Generalizing BPDN with BPDQ

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi} \boldsymbol{u}\|_p \leq \epsilon_p$$

Towards $p = \infty$ Related to GGD MAP

How to find it? again, uniform model:

[LJ, Hammond, Fadili, 2009, 2011]

Distortion model:

$$q = Q[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$$

 $\ell_2 \to \ell_p \ (p \ge 2)$

- Observation: $\|\mathbf{\Phi} \mathbf{x} \mathbf{q}\|_{\infty} \le \alpha/2$
- Reconstruction: Generalizing BPDN with BPDQ

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi} \boldsymbol{u}\|_p \leq \epsilon_p$$

Towards $p = \infty$ Related to GGD MAP

How to find it? again, uniform model:

$$n_{i} = \mathcal{Q}[(\mathbf{\Phi}\boldsymbol{x})_{i}] - (\mathbf{\Phi}\boldsymbol{x})_{i}$$

$$\in q_{k_{i}} - \mathcal{R}_{k_{i}} = [-\alpha/2, \alpha/2] \implies$$

$$\sim_{\text{iid}} \text{Uniform}([-\alpha/2, \alpha/2])$$

$$= \mathcal{Q}[(\mathbf{\Phi}\boldsymbol{x})_{i}] - (\mathbf{\Phi}\boldsymbol{x})_{i}$$

$$\in q_{k_{i}} - \mathcal{R}_{k_{i}} = [-\alpha/2, \alpha/2] \implies \begin{cases} \frac{\text{Estimating } p^{\text{th moment:}}}{\epsilon_{p}(\alpha)} = \frac{\alpha}{2(p+1)^{1/p}} \left(M + \kappa(p+1)\sqrt{M}\right)^{1/p} \\ \text{works with } \Pr \geq 1 - e^{-2\kappa^{2}} \end{cases}$$

Note:
$$\epsilon_p(\alpha) \xrightarrow[p \to \infty]{} \frac{\alpha}{2} = QC!$$

 $\ell_2 \to \ell_p \ (p \ge 2)$

[LJ, Hammond, Fadili, 2009, 2011]

Distortion model:

$$q = Q[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$$

- Observation: $\|\mathbf{\Phi} \mathbf{x} \mathbf{q}\|_{\infty} \le \alpha/2$
- Reconstruction: Generalizing BPDN with BPDQ

$$\hat{\boldsymbol{x}} = \left[\underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi} \boldsymbol{u}\|_p \le \epsilon_p \right]$$

Towards $p = \infty$ Related to GGD MAP

BPDQ Stability?

 $\ell_2 \to \ell_p \ (p \ge 2)$

[LJ, Hammond, Fadili, 2009, 2011]

Distortion model:

$$q = Q[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$$

- Observation: $\|\mathbf{\Phi} \mathbf{x} \mathbf{q}\|_{\infty} \le \alpha/2$
- Reconstruction: Generalizing BPDN with BPDQ

$$\hat{\boldsymbol{x}} = \left[\underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi} \boldsymbol{u}\|_p \le \epsilon_p \right]$$

Towards $p = \infty$ Related to GGD MAP

BPDQ Stability?

Ok, if Φ is RIP_p of order K, i.e.,

$$\exists \mu_p > 0, \ \delta \in (0,1),$$

$$\sqrt{1-\delta} \|\boldsymbol{v}\|_2 \leqslant \frac{1}{\mu_p} \|\boldsymbol{\Phi}\boldsymbol{v}\|_p \leqslant \sqrt{1+\delta} \|\boldsymbol{v}\|_2,$$
for all K sparse signals \boldsymbol{v} .

 $\ell_2 \to \ell_p \ (p \ge 2)$

[LJ, Hammond, Fadili, 2009, 2011]

Distortion model:

$$q = Q[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$$

- Observation: $\|\mathbf{\Phi} \mathbf{x} \mathbf{q}\|_{\infty} \le \alpha/2$
- Reconstruction: Generalizing BPDN with BPDQ

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi} \boldsymbol{u}\|_p \leq \epsilon_p$$

Towards $p = \infty$ Related to GGD MAP

Gain over BPDN (for tight $\epsilon_p(\alpha, M)$) $\Rightarrow \|\boldsymbol{x} - \hat{\boldsymbol{x}}\| = O(\epsilon_p/\mu_p)$

$$\Rightarrow \|\boldsymbol{x} - \hat{\boldsymbol{x}}\| = O(\alpha/\sqrt{p+1})$$

But no free lunch: for Φ Gaussian

$$M = O((K \log N/K)^{p/2})$$

 \Rightarrow Another reading: limited range of valid p for a given M (and K)!

[LJ, Hammond, Fadili, 2009, 2011]

- * N=1024, K=16, Gaussian Φ
- * 500 K-sparse (canonical basis)
- * Non-zero components follow $\mathcal{N}(0,1)$
- * Quantiz. bin width $\alpha = \|\mathbf{\Phi} \mathbf{x}\|_{\infty}/40$

Histograms of $\alpha^{-1}(\boldsymbol{q} - \boldsymbol{\Phi}\hat{\boldsymbol{x}})_i$

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

[LJ, Hammond, Fadili, 2009, 2011]

- * N=1024, K=16, Gaussian Φ
- * 500 K-sparse (canonical basis)
- * Non-zero components follow $\mathcal{N}(0,1)$
- * Quantiz. bin width $\alpha = \|\mathbf{\Phi} \mathbf{x}\|_{\infty}/40$

Histograms of $\alpha^{-1}(\boldsymbol{q} - \boldsymbol{\Phi}\hat{\boldsymbol{x}})_i$

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

[LJ, Hammond, Fadili, 2009, 2011]

A bit outside the theory...

BPDN-TV SNR: 8.96 dB

 $BPDQ_{10}$ -TV SNR: 12.03 dB

- * Synthetic Angiogram [Michael Lustig 07, SPARCO],
- * **\Phi**: Random Fourier Ensemble
- * N/M = 8
- * Decoder: $\Delta_{TV,p}(y,\epsilon_p)$
- * Quantiz. bin width = 50 (i.e. 12 bins)

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

4. Sigma-Delta quantization in CS

Context:

Former attempts: (see prev. slides)

CS + uniform scalar quantization (or pulse code modulation - PCM)

For K-sparse signals:
$$\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi}\boldsymbol{x}] - \boldsymbol{\Phi}\boldsymbol{x}\|_{2} \leqslant c\sqrt{M}\alpha \Rightarrow \|\boldsymbol{x}^{*} - \boldsymbol{x}\| \leqslant C\alpha$$
 (with RIP) and for high λ , $\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi}\boldsymbol{x}] - \boldsymbol{\Phi}\boldsymbol{x}\|_{p} \leqslant cM^{1/p}\alpha \Rightarrow \|\boldsymbol{x}^{*} - \boldsymbol{x}\| \leqslant C\alpha/\sqrt{p+1}$ (with RIP_p)

- $lackbox{No (real) improvement if } M ext{ increases!}$
- Can we do better?

Context:

Former attempts: (see prev. slides)

CS + uniform scalar quantization (or pulse code modulation - PCM)

For K-sparse signals:
$$\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi}\boldsymbol{x}] - \boldsymbol{\Phi}\boldsymbol{x}\|_{2} \leqslant c\sqrt{M}\alpha \Rightarrow \|\boldsymbol{x}^{*} - \boldsymbol{x}\| \leqslant C\alpha$$
 (with RIP) and for high λ , $\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi}\boldsymbol{x}] - \boldsymbol{\Phi}\boldsymbol{x}\|_{p} \leqslant cM^{1/p}\alpha \Rightarrow \|\boldsymbol{x}^{*} - \boldsymbol{x}\| \leqslant C\alpha/\sqrt{p+1}$ (with RIP_p)

- No (real) improvement if M increases!
- Can we do better?

Can we have
$$\|\boldsymbol{x}^* - \boldsymbol{x}\| \leq O(r^{-s}\alpha)$$
 for some $s > 0$?

- Staying with PCM, $s \leq 1$ (Goyal-Vetterli-Thao lower bound)
- Solution: replacing PCM by $\Sigma \Delta$ quantization!

[S. Güntürk, A. Powell, R. Saab, Ö. Yılmaz]

▶ PCM: Signal sensing + unif. quantization (step α)

$$oldsymbol{x} \in \mathbb{R}^K \; oldsymbol{ o} \; oldsymbol{y} = oldsymbol{A} oldsymbol{x} \in \mathbb{R}^M$$
 $oldsymbol{q} = \mathcal{Q}_{ ext{PCM}}[oldsymbol{y}] ext{ with }$

$$q_k = \mathcal{Q}_{\text{PCM}}[y_k] := \underset{u \in \alpha \mathbb{Z}}{\operatorname{argmin}} |y_k - u|, \quad 1 \leqslant k \leqslant M$$

Let $A^{\#}$, a left inverse of A, *i.e.*, $A^{\#}A = Id$.

Then,
$$\hat{\boldsymbol{x}} := \boldsymbol{A}^{\#} \boldsymbol{q} \Rightarrow \|\boldsymbol{x} - \hat{\boldsymbol{x}}\| = \|\boldsymbol{A}^{\#} (\boldsymbol{y} - \boldsymbol{q})\|$$

- \rightarrow Goal: minimize $\|A^{\#}(y-q)\|!$
- Taking (Moore-Penrose) pseudo-inverse: $\mathbf{A}^{\#} = \mathbf{A}^{\dagger} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^*$ (or canonical dual of the frame \mathbf{A})
- In CS, this could be used if signal support was known (see before)

- $\Sigma \Delta = \text{noise shaping! Enjoy of:}$
 - freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^M$
 - freedom to take another left inverse $A^{\#}$

- $\Sigma \Delta = \text{noise shaping! Enjoy of:}$
 - freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^M$
 - freedom to take another left inverse $A^{\#}$
- 1st order $\Sigma\Delta$: (in 1-D) Quantizing the sequence $\{y_j: j \geq 0\}$ Use of state variables $\{\rho_j\}$ (1-step memory):

find
$$q_j$$
: $q_j = \mathcal{Q}_{\Sigma\Delta}^{(1)}[y_j] := \operatorname{argmin}_{u \in \alpha \mathbb{Z}} [\rho_{j-1} + y_j - u] = \mathcal{Q}_{\text{PCM}}[\rho_{j-1} + y_j]$
find ρ_j : $(\Delta \rho)_j = \rho_j - \rho_{j-1} = y_j - q_j$ (difference eq.)

- $\Sigma \Delta = \text{noise shaping! Enjoy of:}$
 - freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^M$
 - freedom to take another left inverse $A^{\#}$
- s^{th} order $\Sigma\Delta$: (in 1-D) Quantizing the sequence $\{y_j: j \geq 0\}$ Use of state variables $\{\rho_j\}$ (s-step memory):

 $\begin{array}{c} \underline{Remark:} \\ PCM \ is \\ 0^{th} \ order \ \Sigma \Delta \end{array}$

find
$$q_j$$
: $q_j = \mathcal{Q}_{\Sigma\Delta}^{(s)}[y_j] := \operatorname{argmin}_{u \in \alpha \mathbb{Z}} \left[\sum_{i=1}^s (-1)^{i-1} {s \choose i} \rho_{j-n} + y_j - u \right]$

find ρ_j : $(\Delta^s \rho)_j = y_j - q_j$ (sth order difference eq.)

- $\Sigma \Delta = \text{noise shaping! Enjoy of:}$
 - freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^M$
 - freedom to take another left inverse $A^{\#}$
- s^{th} order $\Sigma\Delta$:

Most important fact: $(\Delta^s \rho)_j = y_j - q_j \Leftrightarrow \mathbf{D}^s \boldsymbol{\rho} = \mathbf{y} - \mathbf{q}$

$\Sigma\Delta$ quantization (reminder)

- $\Sigma \Delta = \text{noise shaping! Enjoy of:}$
 - freedom to pick $q \in \alpha \mathbb{Z}^M$
 - freedom to take another left inverse $A^{\#}$
- s^{th} order $\Sigma\Delta$:

Most important fact:
$$(\Delta^s \rho)_j = y_j - q_j \Leftrightarrow \mathbf{D}^s \rho = \mathbf{y} - \mathbf{q}$$

 $\hat{\mathbf{x}} := \mathbf{A}^\# \mathbf{q} \Rightarrow \|\mathbf{x} - \hat{\mathbf{x}}\| = \|\mathbf{A}^\# \mathbf{D}^s (\mathbf{y} - \mathbf{q})\|$

$\Sigma\Delta$ quantization (reminder)

- $\Sigma \Delta = \text{noise shaping! Enjoy of:}$
 - freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^M$
 - freedom to take another left inverse $A^{\#}$
- s^{th} order $\Sigma\Delta$:

Most important fact:
$$(\Delta^s \rho)_j = y_j - q_j \Leftrightarrow \mathbf{D}^s \rho = \mathbf{y} - \mathbf{q}$$

 $\hat{\mathbf{x}} := \mathbf{A}^\# \mathbf{q} \Rightarrow \|\mathbf{x} - \hat{\mathbf{x}}\| = \|\mathbf{A}^\# \mathbf{D}^s (\mathbf{y} - \mathbf{q})\|$
minimize $\|\mathbf{A}^\# \mathbf{D}^s (\mathbf{y} - \mathbf{q})\|$!

Pseudo-inverse

$$\boldsymbol{A}^{\dagger} = (\boldsymbol{A}^* \boldsymbol{A})^{-1} \boldsymbol{A}^*$$

Sobolev duals

$$oldsymbol{A}_{\mathrm{sob},s} = (oldsymbol{D}^{-s}oldsymbol{A})^{\dagger}oldsymbol{D}^{-s}$$

$\Sigma\Delta$ quantization (reminder)

- $\Sigma \Delta = \text{noise shaping! Enjoy of:}$
 - freedom to pick $q \in \alpha \mathbb{Z}^M$
 - freedom to take another left inverse $A^{\#}$
- s^{th} order $\Sigma\Delta$:

Most important fact:
$$(\Delta^s \rho)_j = y_j - q_j \Leftrightarrow \mathbf{D}^s \boldsymbol{\rho} = \mathbf{y} - \mathbf{q}$$

$$\hat{m{x}} = m{A}_{\mathrm{sob},s}m{q}$$
 $m{A}_{\mathrm{sob},s} = (m{D}^{-s}m{A})^{\dagger}m{D}^{-s}$

Proposition Let $\mathbf{A} \in \mathbb{R}^{M \times K}$ with $A_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$.

For any $\kappa \in (0,1)$, if $r := M/K \geqslant c(\log M)^{1/(1-\kappa)}$, then with $Pr > 1 - e^{-c'M/r^{\kappa}}$,

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \leqslant C_s r^{-\kappa(s - \frac{1}{2})} \alpha,$$

for some $c, c', C_s > 0$.

proof: show that $\sigma_{\min}(\boldsymbol{D}^{-s}\boldsymbol{A}) > C'_s r^{\kappa(s-\frac{1}{2})} \sqrt{M}$

$\Sigma\Delta$ quantization in CS

$$\boldsymbol{x} \in \Sigma_K \subset \mathbb{R}^N \longrightarrow \boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{x} \in \mathbb{R}^M \longrightarrow \boldsymbol{q} = \mathcal{Q}_{\Sigma\Delta}^{(s)}[\boldsymbol{y}]$$

$$\|\boldsymbol{y} - \boldsymbol{q}\| \leqslant 2^{s-1} \alpha \sqrt{M}$$

Two-steps procedure:

<u>remark</u>: Recent dev. don't require these!

- 1. find the support T of x: coarse approx. with BPDN
- 2. compute $\hat{\boldsymbol{x}} := (\boldsymbol{\Phi}_T)_{\text{sob},s} \boldsymbol{q} = (\boldsymbol{D}^{-s} \boldsymbol{\Phi}_T)^{\dagger} \boldsymbol{D}^{-s} \boldsymbol{q}$

Proposition Let $\Phi \in \mathbb{R}^{M \times K}$ with $\Phi_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$. Suppose $\kappa \in (0,1)$ and $r := M/K \geqslant c(\log M)^{1/(1-\kappa)}$ for c > 0. Then, $\exists c', C, C_s > 0$ such that, with $Pr > 1 - e^{-c'M/r^{\kappa}}$, for all $\mathbf{x} \in \Sigma_K$ s.t. $\min_{i \in \text{supp } \mathbf{x}} |x_i| \geqslant C\alpha$,

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \leqslant C_s r^{-\kappa(s-\frac{1}{2})} \alpha.$$

 $\frac{\text{proof:}}{K\text{-column subset of }\pmb{\Phi}}$ + proba having good support.

$\Sigma\Delta$ quantization in CS

(Simulations)

 $M \in \{100, 200, \dots, 1000\}, K = 10 \text{ and } 1000 \text{ trials } (x_i \in \{0, \pm 1/\sqrt{K}\}, ||\boldsymbol{x}|| \simeq 1, \alpha = 10^{-2})$

Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., & Yılmaz, Ö. (2013). Sobolev duals for random frames and ΣΔ quantization of compressed sensing measurements. Foundations of Computational Mathematics, 13(1), 1-36.

5. To saturate or not? And how much?

Saturation phenomenon:

Uniform quantization:

- \bullet α quantization interval
- error per measurement bounded:

$$|\lambda - \mathcal{Q}_{\alpha}[\lambda]| \leqslant \alpha/2$$

Saturation phenomenon:

Uniform quantization:

- \bullet α quantization interval
- error per measurement bounded:

$$|\lambda - \mathcal{Q}_{\alpha}[\lambda]| \leqslant \alpha/2$$

Saturation phenomenon:

Uniform quantization:

- \bullet α quantization interval
- error per measurement bounded:

$$|\lambda - \mathcal{Q}_{\alpha}[\lambda]| \leqslant \alpha/2$$

Finite Dynamic Range Quantization:

- G "saturation level"
- ▶ B bit rate (bits per measurement)
- quantization interval is $\alpha = 2^{-B+1}G$
- \blacktriangleright measurements above G saturate
- ▶ saturation error is *unbounded*

CS guarantees are for bounded errors only!

Democracy in Action [Laska, Boufounos, Davenport, Baraniuk 12]

(i) <u>Saturation Rejection</u>:

Simply discard saturated measurements and corresponding rows of Φ

discard

row of Φ

"democratic measurements"

each measurement has roughly same amount of information

RIP holds on row subsets of Φ

Democracy in Action

discard row of Φ

Saturation Rejection:

Simply discard saturated measurements and corresponding rows of Φ

"democratic measurements"

each measurement has roughly same amount of information

Saturation Consistency:

Include saturated measurements as inequality constraint

 \triangleright RIP holds on row subsets of Φ

Experimental Results

Experimental Results

Note: optimal performance requires 10% saturation

Experimental Results The "saturation gap"

Experimental Results

The "saturation gap"

• Majority of measurements saturate • Recovery fails

Further Reading

- V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in RN: Analysis, Synthesis, and Algorithms", *IEEE Trans. Info. Theory*, 44(1), 1998
- P. T. Boufounos and R. G. Baraniuk, "Quantization of sparse representations," Rice University ECE Department Technical Report 0701. Summary appears in Proc. Data Compression Conference (DCC), Snowbird, UT, March 27-29, 2007
- W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009
- L. Jacques, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." *IEEE Transactions on Information Theory*, 57(1), 559-571, 2011
- J.N. Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk, "Democracy in action: Quantization, saturation, and compressive sensing". *Applied and Computational Harmonic Analysis*, 31(3), 429-443, 2011
- L. Jacques, D. Hammond, J. Fadili, "Stabilizing Nonuniformly Quantized Compressed Sensing with Scalar Companders", arXiv:1206.6003, 2012
- Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., & Yılmaz, Ö. "Sobolev duals for random frames and $\Sigma\Delta$ quantization of compressed sensing measurements". Foundations of Computational Mathematics, 13(1), 1-36, 2013
- A. M. Powell, J.T. Whitehouse, "Error bounds for consistent reconstruction: random polytopes and coverage processes", arXiv:1405.7094, 2013
- L Jacques, "Error Decay of (almost) Consistent Signal Estimations from Quantized Random Gaussian Projections", arXiv:1406.0022, 2014
- P. T. Boufounos, L. Jacques, F. Krahmer, R. Saab, "Quantization and Compressive Sensing", arXiv:1405.1194

Part 2 Extreme quantization: 1-bit compressed sensing

Outline:

- 1. Context
- 2. Theoretical performance limits
- 3. Stable embeddings: angles are preserved
- 4. Generalized Embeddings
- 5. 1-bit CS Reconstructions?
- 6. Playing with thresholds in 1-bit CS

1. Context

- Doable?
- For which "Sampling"?
- Which accuracy?

Reconstruction?

$$\{\pm 1\}^N$$

Why 1-bit? Very Fast Quantizers!

[FIG1] Stated number of bits versus sampling rate.

[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

Why 1-bit? Very Fast Quantizers!

[FIG1] Stated number of bits versus sampling rate.

[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

Compressed Sensing

1-bit Compressed Sensing

with:
$$\operatorname{sign} t = \begin{cases} 1 & \text{if } t > 0 \\ -1 & \text{if } t \leqslant 0 \end{cases}$$
 component-wise

1-bit Compressed Sensing

M-bits! But, which information inside q?

1-bit Computational Sensing

bits matter!

M-bits! But, which information inside q?

1-bit Computational Sensing

bits matter!

Warning 1: signal amplitude is lost!

$$q = \operatorname{sign}(\Phi(\lambda x)) = \operatorname{sign}(\Phi x), \quad \forall \lambda > 0$$

 \Rightarrow Amplitude is arbitrarily fixed

Examples:
$$\|x\| = 1 \text{ or } \|\Phi x\|_1 = 1$$

1-bit Computational Sensing

bits matter!

[Plan, Vershynin, 11]

Warning 2: \exists forbidden sensing!

Let
$$\boldsymbol{x}_{\lambda} := (1, \lambda, 0, \cdots, 0)^T \in \mathbb{R}^N$$

and
$$\mathbf{\Phi} \in \{\pm 1\}^{M \times N}$$
 (e.g., Bernoulli).

We have
$$\|\boldsymbol{x}_0 - \boldsymbol{x}_{\lambda}\| = \lambda$$

but
$$\mathbf{q} = \operatorname{sign}(\mathbf{\Phi} \mathbf{x}_0) = \operatorname{sign}(\mathbf{\Phi} \mathbf{x}_{\lambda}), \ \forall |\lambda| < 1$$

 \Rightarrow No hope to distinguish them by increasing M!

2. Theoretical performance limits

Lower bound: cell intersection viewpoint

Not all quantization cells intersected!

no more than
$$C = 2^K \binom{N}{K} \binom{M}{K}$$

Lower bound: cell intersection viewpoint

Not all quantization cells intersected! no more than $C = 2^K \binom{N}{K} \binom{M}{K}$

Most efficient ϵ -covering of $S^{N-1} \cap \Sigma_K$ with ϵ -caps

$$\Rightarrow \epsilon = \Omega(K/M)$$

→ Lower bound on any 1-bit reconstruction error

Reaching this bound?

Reaching this bound?

Carl Friedrich Gauss: "1-bit CS? I solved it at breakfast by randomly slicing my orange!" http://www.gaussfacts.com

 \boldsymbol{x} on S^2

M vectors:

 $\{\varphi_i: 1 \leqslant i \leqslant M\}$

iid Gaussian

Carl Friedrich Gauss: "1-bit CS? I solved it at breakfast by randomly slicing my orange!" http://www.gaussfacts.com

 \boldsymbol{x} on S^2

M vectors:

$$\{ \pmb{\varphi}_i : 1 \leqslant i \leqslant M \}$$
 iid Gaussian

1-bit Measurements

$$\langle \boldsymbol{\varphi}_1, \boldsymbol{x} \rangle > 0$$

Carl Friedrich Gauss:

"1-bit CS? I solved it at breakfast by randomly slicing my orange!"

http://www.gaussfacts.com

 \boldsymbol{x} on S^2

M vectors:

$$\{ \pmb{\varphi}_i : 1 \leqslant i \leqslant M \}$$
 iid Gaussian

1-bit Measurements

$$\langle \boldsymbol{arphi}_1, \boldsymbol{x} \rangle > 0$$

 $\langle \boldsymbol{arphi}_2, \boldsymbol{x} \rangle > 0$

Carl Friedrich Gauss:

"1-bit CS? I solved it at breakfast by randomly slicing my orange!"

http://www.gaussfacts.com

 \boldsymbol{x} on S^2

M vectors:

$$\{ \boldsymbol{\varphi}_i : 1 \leqslant i \leqslant M \}$$
 iid Gaussian

1-bit Measurements

$$egin{aligned} \langle oldsymbol{arphi}_1, oldsymbol{x}
angle > 0 \ \langle oldsymbol{arphi}_2, oldsymbol{x}
angle > 0 \ \langle oldsymbol{arphi}_3, oldsymbol{x}
angle \leqslant 0 \end{aligned}$$

 \boldsymbol{x} on S^2

M vectors:

$$\{ \boldsymbol{\varphi}_i : 1 \leqslant i \leqslant M \}$$
 iid Gaussian

1-bit Measurements

$$egin{align} \langle oldsymbol{arphi}_1, oldsymbol{x}
angle > 0 \ \langle oldsymbol{arphi}_2, oldsymbol{x}
angle \leqslant 0 \ \langle oldsymbol{arphi}_4, oldsymbol{x}
angle > 0 \ \end{pmatrix}$$

 \boldsymbol{x} on S^2

M vectors:

 $\{ \boldsymbol{\varphi}_i : 1 \leqslant i \leqslant M \}$ iid Gaussian

1-bit Measurements

$$egin{array}{c|c} \langle oldsymbol{arphi}_1, oldsymbol{x}
angle > 0 \ \langle oldsymbol{arphi}_3, oldsymbol{x}
angle \leqslant 0 \ \langle oldsymbol{arphi}_4, oldsymbol{x}
angle > 0 \ \langle oldsymbol{arphi}_5, oldsymbol{x}
angle > 0 \end{array}$$

 \boldsymbol{x} on S^2

M vectors:

 $\{ \pmb{\varphi}_i : 1 \leqslant i \leqslant M \}$ iid Gaussian

1-bit Measurements

$$egin{array}{c} \langle oldsymbol{arphi}_1, oldsymbol{x}
angle > 0 \ \langle oldsymbol{arphi}_3, oldsymbol{x}
angle \leqslant 0 \ \langle oldsymbol{arphi}_4, oldsymbol{x}
angle > 0 \ \langle oldsymbol{arphi}_5, oldsymbol{x}
angle > 0 \ \end{array}$$

 $^{\flat} \varphi_4$ φ_3 Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly slicing my orange!"
http://www.gaussfacts.com

Smaller and smaller when M increases

 $\{\boldsymbol{u}:\operatorname{sign}\left(\boldsymbol{\Phi}\boldsymbol{u}\right)=\operatorname{sign}\left(\boldsymbol{\Phi}\boldsymbol{x}\right)\}$

 φ_1

 \boldsymbol{x} on S^2

M vectors:

 $\{ \boldsymbol{\varphi}_i : 1 \leqslant i \leqslant M \}$ iid Gaussian

1-bit Measurements

$\langle oldsymbol{arphi}_1, oldsymbol{x} angle$	> 0
$\langle oldsymbol{arphi}_2, oldsymbol{x} angle$	> 0
$\langle oldsymbol{arphi}_3, oldsymbol{x} angle$	≤ 0
$\langle oldsymbol{arphi}_4, oldsymbol{x} angle$	> 0
$\langle oldsymbol{arphi}_5, oldsymbol{x} angle$	> 0
•	

Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly slicing my orange!"
http://www.gaussfacts.com

Smaller and smaller when M increases

 $\{u : \operatorname{sign}(\Phi u) = \operatorname{sign}(\Phi x)\}$

Lower bound on this width?

 φ_3

 $^{\flat}\varphi_4$

Carl Friedrich Gauss: "1-bit CS? I solved it at breakfast by randomly slicing my orange!" http://www.gaussfacts.com

Let
$$A(\cdot) := \operatorname{sign}(\mathbf{\Phi} \cdot)$$
 with $\mathbf{\Phi} \sim \mathcal{N}^{M \times N}(0, 1)$.
If $M = O(\epsilon^{-1} K \log N)$, then, w.h.p,

for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s} ,

$$A(\mathbf{x}) = A(\mathbf{s}) \Rightarrow \|\mathbf{x} - \mathbf{s}\| \le \epsilon$$

 $\Leftrightarrow \epsilon = O(\frac{K}{M} \log \frac{MN}{K})$

Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly slicing my orange!"
http://www.gaussfacts.com

Let $A(\cdot) := \operatorname{sign}(\mathbf{\Phi} \cdot)$ with $\mathbf{\Phi} \sim \mathcal{N}^{M \times N}(0, 1)$. If $M = O(\epsilon^{-1} K \log N)$, then, w.h.p,

 $\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{$

for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s} ,

$$A(\boldsymbol{x}) = A(\boldsymbol{s}) \Rightarrow \|\boldsymbol{x} - \boldsymbol{s}\| \le \epsilon$$

$$\Leftrightarrow \epsilon = O\left(\frac{K}{M} \log \frac{MN}{K}\right)$$

almost optimal

Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly slicing my orange!"
http://www.gaussfacts.com

Let $A(\cdot) := \operatorname{sign}(\mathbf{\Phi} \cdot)$ with $\mathbf{\Phi} \sim \mathcal{N}^{M \times N}(0, 1)$.

If $M = O(\epsilon^{-1} K \log N)$, then, w.h.p,

for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s} ,

$$A(x) = A(s) \Rightarrow ||x - s|| \le \epsilon$$

 $\Leftrightarrow \epsilon = O(\frac{K}{M} \log \frac{MN}{K})$

almost optimal

Note: You can even afford a small error, i.e.,

if only b bits are different between $A(\mathbf{x})$ and $A(\mathbf{s})$

$$\Rightarrow \|oldsymbol{x} - oldsymbol{s}\| \leqslant rac{K+b}{K} \, \epsilon$$

3. Stable embeddings: angles are preserved

What's known?

Let's define

$$A(\boldsymbol{u}) := \operatorname{sign}(\boldsymbol{\Phi}\boldsymbol{u}) \Leftrightarrow A_j(\boldsymbol{u}) = \operatorname{sign}(\boldsymbol{\varphi}_j \cdot \boldsymbol{u}) \in \{\pm 1\}$$
Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{N-1} \text{ (wlog)}$

$$\mathbb{P}[A_j(\boldsymbol{u}) \neq A_j(\boldsymbol{v})] = ?$$

What's known?

Let's define

$$A(\boldsymbol{u}) := \operatorname{sign}(\boldsymbol{\Phi}\boldsymbol{u}) \Leftrightarrow A_j(\boldsymbol{u}) = \operatorname{sign}(\boldsymbol{\varphi}_j \cdot \boldsymbol{u}) \in \{\pm 1\}$$

$$\downarrow j^{\text{th row of } \boldsymbol{\Phi}}$$
Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{N-1} \text{ (wlog)}$

$$\mathbb{P}[A_j(\boldsymbol{u}) \neq A_j(\boldsymbol{v})] = \frac{1}{\pi} \operatorname{angle}(\boldsymbol{u}, \boldsymbol{v})$$

$$=\frac{1}{\pi}\theta_{uv}$$

What's known?

Let's define

$$A(\boldsymbol{u}) := \operatorname{sign}(\boldsymbol{\Phi}\boldsymbol{u}) \Leftrightarrow A_j(\boldsymbol{u}) = \operatorname{sign}(\boldsymbol{\varphi}_j \cdot \boldsymbol{u}) \in \{\pm 1\}$$

Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{N-1}$ (wlog)

$$\mathbb{P}[A_j(\boldsymbol{u}) \neq A_j(\boldsymbol{v})] = \frac{1}{\pi} \operatorname{angle}(\boldsymbol{u}, \boldsymbol{v})$$
$$= \frac{1}{\pi} \theta_{uv}$$

 $A_j(\boldsymbol{u}) \oplus A_j(\boldsymbol{v})$ (XOR)

$$\Rightarrow X_j = \frac{1}{2}|A_j(\boldsymbol{u}) - A_j(\boldsymbol{v})| \sim \text{Bernoulli}(\frac{\theta_{uv}}{\pi}) \in \{0, 1\}$$

Starting point: Hamming/Angle Concentration

Metrics of interest:

$$d_H(\boldsymbol{u}, \boldsymbol{v}) = \frac{1}{M} \sum_i (u_i \oplus v_i)$$
 (norm. Hamming)
 $d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) = \frac{1}{\pi} \arccos(\langle \boldsymbol{x}, \boldsymbol{s} \rangle)$ (norm. angle)

Starting point: Hamming/Angle Concentration

Metrics of interest:

$$d_H(\boldsymbol{u}, \boldsymbol{v}) = \frac{1}{M} \sum_i (u_i \oplus v_i)$$
 (norm. Hamming)
 $d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) = \frac{1}{\pi} \arccos(\langle \boldsymbol{x}, \boldsymbol{s} \rangle)$ (norm. angle)

Known fact: if $\Phi \sim \mathcal{N}^{M \times N}(0,1)$ [e.g., Goemans, Williamson 1995]

Let
$$\mathbf{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$$
, $A(\cdot) = \text{sign}(\mathbf{\Phi} \cdot) \in \{-1,1\}^M$ and $\epsilon > 0$.
For any $\mathbf{x}, \mathbf{s} \in S^{N-1}$, we have

$$\frac{1}{M} \sum_{i=1}^{M} X_i = \frac{1}{M} \sum_{i} A_i(\boldsymbol{x}) \oplus A_i(\boldsymbol{s})$$

Binary ϵ Stable Embedding (B ϵ SE)

A mapping $A: \mathbb{R}^N \to \{\pm 1\}^M$ is a binary ϵ -stable embedding (B ϵ SE) of order K for sparse vectors if

$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leq d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leq d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) + \epsilon$$
 for all $\boldsymbol{x}, \boldsymbol{s} \in S^{N-1}$ with $\boldsymbol{x} \pm \boldsymbol{s}$ K-sparse.

kind of "binary restricted (quasi) isometry"

Binary ϵ Stable Embedding (B ϵ SE)

A mapping $A: \mathbb{R}^N \to \{\pm 1\}^M$ is a binary ϵ -stable embedding (B ϵ SE) of order K for sparse vectors if

$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leq d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leq d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) + \epsilon$$
 for all $\boldsymbol{x}, \boldsymbol{s} \in S^{N-1}$ with $\boldsymbol{x} \pm \boldsymbol{s}$ K-sparse.

kind of "binary restricted (quasi) isometry"

- Corollary: for any algorithm with output \boldsymbol{x}^* jointly K-sparse and consistent (i.e., $A(\mathbf{x}^*) = A(\mathbf{x})$), $d_{\rm ang}(\boldsymbol{x}, \boldsymbol{x}^*) \leqslant 2\epsilon!$
- If limited binary noise, $d_{\rm ang}$ still bounded
- If not exactly sparse signals (but almost), d_{ang} still bounded

$B \in SE$ existence? Yes!

Let
$$\Phi \sim \mathcal{N}^{M \times N}(0,1)$$
, fix $0 \leq \eta \leq 1$ and $\epsilon > 0$. If

$$M \geqslant \frac{4}{\epsilon^2} \left(K \log(N) + 2K \log(\frac{50}{\epsilon}) + \log(\frac{2}{\eta}) \right),$$

then Φ is a B ϵ SE with Pr > 1 - η .

$$M = O(\epsilon^{-2} K \log N)$$

$B \in SE$ existence?

Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leq \eta \leq 1$ and $\epsilon > 0$. If

$$M \geqslant \frac{4}{\epsilon^2} \left(K \log(N) + 2K \log(\frac{50}{\epsilon}) + \log(\frac{2}{\eta}) \right),$$

then Φ is a B ϵ SE with Pr > 1 - η .

 $M = O(\epsilon^{-2} K \log N)$

Proof sketch:

1) Generalize

$$\mathbb{P}_{\Phi} \left[\left| d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) - d_{\operatorname{ang}}(\boldsymbol{x}, \boldsymbol{s}) \right| \leqslant \epsilon \right] \geqslant 1 - 2e^{-2\epsilon^2 M}.$$

to

$$\mathbb{P}_{\mathbf{\Phi}}\left[\left| d_H(A(\boldsymbol{u}), A(\boldsymbol{v})) - d_{\operatorname{ang}}(\boldsymbol{x}, \boldsymbol{s}) \right| \leqslant \epsilon + (\frac{\pi}{2}D)^{1/2} \delta \right] \geqslant 1 - 2e^{-2\epsilon^2 M}.$$

for $\boldsymbol{u}, \boldsymbol{v}$ in a *D*-dimensional neighborhood of width δ around \boldsymbol{x} and \boldsymbol{s} resp.

$$O(\binom{N}{K}\delta^{-2K}) = O((\frac{eN}{K\delta^2})^K)$$
 neighborhoods.

3) Apply Point 1 with union bound, and "stir until the proof thickens"

random plane

$B \in SE$ existence?

Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leqslant \eta \leqslant 1$ and $\epsilon > 0$. If

$$M \geqslant \frac{4}{\epsilon^2} \left(K \log(N) + 2K \log(\frac{50}{\epsilon}) + \log(\frac{2}{\eta}) \right),$$

then Φ is a B ϵ SE with Pr > 1 - η .

$$M = O(\epsilon^{-2} K \log N)$$

BeSE consistency "width":
$$\epsilon = O\left(\left(\frac{K}{M}\log\frac{MN}{K}\right)^{1/2}\right)$$

$B \in SE$ existence? Yes!

Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leq \eta \leq 1$ and $\epsilon > 0$. If

$$M \geqslant \frac{4}{\epsilon^2} \left(K \log(N) + 2K \log(\frac{50}{\epsilon}) + \log(\frac{2}{\eta}) \right),$$

then Φ is a B ϵ SE with Pr > 1 - η .

$$M = O(\epsilon^{-2} K \log N)$$

$$\Rightarrow \frac{B\epsilon SE \text{ consistency "width":}}{\epsilon = O((\frac{K}{M}\log\frac{MN}{K})^{1/2})}$$

not as optimal but stronger result! $d_H \leftrightarrow d_{\rm ang}$

4. Generalized Embeddings

Beyond strict sparsity ... [Plan, Vershynin]

Let $\mathcal{K} \subset S^{N-1}$ (e.g., compressible signals s.t. $\|\boldsymbol{x}\|_2/\|\boldsymbol{x}\|_1 \leqslant \sqrt{K}$) $\neq \Sigma_K$

What can we say on $d_H(A(\boldsymbol{x}), A(\boldsymbol{s}))$ for $\boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}$?

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

[Plan, Vershynin]

Let $\mathcal{K} \subset S^{N-1}$ (e.g., compressible signals s.t. $\|\boldsymbol{x}\|_2/\|\boldsymbol{x}\|_1 \leqslant \sqrt{K}$) $\neq \Sigma_K$

What can we say on $d_H(A(\boldsymbol{x}), A(\boldsymbol{s}))$ for $\boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}$?

Uniform tesselation: [Plan, Vershynin, 11]

P(# random hyperplanes btw \boldsymbol{x} and $\boldsymbol{s} \propto d_{\rm ang}(\boldsymbol{x}, \boldsymbol{s})$)? $d_H(A(\boldsymbol{x}), A(\boldsymbol{s}))$

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

Beyond strict sparsity ... [Plan, Vershynin]

Measuring the "dimension" of $\mathcal{K} \to \text{Gaussian mean width}$:

$$w(\mathcal{K}) := \mathbb{E} \sup_{\boldsymbol{u} \in \mathcal{K} - \mathcal{K}} \langle \boldsymbol{g}, \boldsymbol{u} \rangle, \text{ with } g_k \sim_{\text{iid}} \mathcal{N}(0, 1)$$

width in direction η

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

Beyond strict sparsity ... [Plan, Vershynin]

Measuring the "dimension" of $\mathcal{K} \to \text{Gaussian mean width}$:

$$w(\mathcal{K}) := \mathbb{E} \sup_{\boldsymbol{u} \in \mathcal{K} - \mathcal{K}} \langle \boldsymbol{g}, \boldsymbol{u} \rangle, \text{ with } g_k \sim_{\text{iid}} \mathcal{N}(0, 1)$$

Examples:

$$w^{2}(\mathcal{S}^{N-1}) \leq 4N$$

 $w^{2}(\mathcal{K}) \leq C\log |\mathcal{K}|$ (for finite sets)
 $w^{2}(\mathcal{K}) \leq L$ if subspace with dim $\mathcal{K} = L$
 $w^{2}(\Sigma_{K}) \simeq K \log(2N/K)$

- Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
- Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

[Plan, Vershynin]

Proposition Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^N$. Then, for some C, c > 0, if

$$M \geqslant C\epsilon^{-6}w^2(\mathcal{K}),$$

then, with $Pr \ge 1 - e^{-c\epsilon^2 M}$, we have

$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leqslant d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}.$$

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

[Plan, Vershynin]

Proposition Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^N$. Then, for some C, c > 0, if

$$M \geqslant C\epsilon^{-6}w^2(\mathcal{K}),$$
 not as optimal but

stronger result!

then, with $Pr \geqslant 1 - e^{-c\epsilon^2 M}$, we have

$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leqslant d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}.$$

Generalize B \in SE to more general sets.

In particular, to

$$C_K = \{ \boldsymbol{u} \in \mathbb{R}^N : \|\boldsymbol{u}\|_2 / \|\boldsymbol{u}\|_1 \leqslant \sqrt{K} \} \supset \Sigma_K$$

with $w^2(C_K) \leqslant cK \log N / K$.

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

[Plan, Vershynin]

Proposition Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^N$. Then, for some C, c > 0, if

$$M \geqslant C\epsilon^{-6}w^2(\mathcal{K}),$$
 not as optimal but

stronger result!

then, with $Pr \geqslant 1 - e^{-c\epsilon^2 M}$, we have

$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leqslant d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}.$$

Generalize B \in SE to more general sets.

In particular, to

$$C_K = \{ \boldsymbol{u} \in \mathbb{R}^N : \|\boldsymbol{u}\|_2 / \|\boldsymbol{u}\|_1 \leqslant \sqrt{K} \} \supset \Sigma_K$$

with $w^2(C_K) \leqslant cK \log N / K$.

⇒ Extension to "1-bit Matrix Completion" possible!

i.e.,
$$w^2(r\text{-rank }N_1 \times N_2 \text{ matrix}) \leqslant c r(N_1 + N_2)!$$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

5. 1-bit CS Reconstructions?

Dumbest 1-bit reconstruction

Fact:

If
$$M = O(\epsilon^{-2}K \log N/K)$$
 (for $\boldsymbol{x} \in \Sigma_K$ fixed, $\forall \boldsymbol{s} \in \Sigma_K$)
or, if $M = O(\epsilon^{-6}K \log N/K)$ ($\forall \boldsymbol{x}, \boldsymbol{s} \in \Sigma_K$), then, w.h.p,
 $\left|\frac{\sqrt{\pi}/2}{M}\langle \operatorname{sign}(\boldsymbol{\Phi}\boldsymbol{x}), \boldsymbol{\Phi}\boldsymbol{s} \rangle - \langle \boldsymbol{x}, \boldsymbol{s} \rangle\right| \leq \epsilon$ [Plan, Vershynin, 12]

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212. LJ, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", <u>SAMPTA2013</u>

Dumbest 1-bit reconstruction

Fact: If
$$M = O(\epsilon^{-2}K \log N/K)$$
 (for $\boldsymbol{x} \in \Sigma_K$ fixed, $\forall \boldsymbol{s} \in \Sigma_K$) or, if $M = O(\epsilon^{-6}K \log N/K)$ ($\forall \boldsymbol{x}, \boldsymbol{s} \in \Sigma_K$), then, w.h.p,
$$\left|\frac{\sqrt{\pi}/2}{M}\langle \operatorname{sign}(\boldsymbol{\Phi}\boldsymbol{x}), \boldsymbol{\Phi}\boldsymbol{s}\rangle - \langle \boldsymbol{x}, \boldsymbol{s}\rangle\right| \leq \epsilon \quad \text{[Plan, Vershynin, 12]}$$

Implication? [LJ, Degraux, De Vleeschouwer, 13]

Let
$$\boldsymbol{x} \in \Sigma_K \cap S^{N-1}$$
 and $\boldsymbol{q} = \operatorname{sign}(\boldsymbol{\Phi}\boldsymbol{x})$.
Compute

$$\hat{m{x}} = rac{\pi}{2M}\,\mathcal{H}_K(m{\Phi}^*m{q})$$

Then, if previous property holds,

$$\|\boldsymbol{x} - \hat{\boldsymbol{x}}\| \le 2\epsilon.$$

Non-uniform case (
$$x$$
 given):

$$\Rightarrow \epsilon = O\left(\left(\frac{K}{M}\log\frac{MN}{K}\right)^{1/2}\right)$$
Uniform case:

$$\Rightarrow \epsilon = O\left(\left(\frac{K}{M}\log\frac{MN}{K}\right)^{1/6}\right)$$

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212. LJ, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", <u>SAMPTA2013</u>

Initial approach

- Let $q = \operatorname{sign}(\Phi x) =: A(x)$
- Initially: [Boufounos, Baraniuk 2008]

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u}}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \operatorname{diag}(\boldsymbol{q}) \, \boldsymbol{\Phi} \boldsymbol{u} > 0 \text{ and } \|\boldsymbol{u}\|_2 = 1$$

Non-convex! 2 numerical choices:

- 1. relax + projection on S^{N-1}
- 2. "trust region methods"
 - $\rightarrow Restricted$ -Step Shrinkage (RSS)

Consistency constraint:

$$\{\boldsymbol{u} \in \mathbb{R}^N \cap S^{N-1} : \boldsymbol{q} = A(\boldsymbol{u})\}$$

$$\Leftrightarrow \{\boldsymbol{u} \in \mathbb{R}^N \cap S^{N-1} : \operatorname{diag}(\boldsymbol{q})\boldsymbol{\Phi}\boldsymbol{u} > 0\}$$

$$\ni \boldsymbol{x}$$

Initial approach

- Let $q = \operatorname{sign}(\Phi x) =: A(x)$
- Initially: [Boufounos, Baraniuk 2008]

(e.g., take the
$$1^{st}$$
 choice)

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u}}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \operatorname{diag}(\boldsymbol{q}) \, \boldsymbol{\Phi} \boldsymbol{u} > 0 \text{ and } \|\boldsymbol{u}\|_2 = 1$$

(relaxed)
$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u}}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 + \lambda \|(\operatorname{diag}(\boldsymbol{q})\,\boldsymbol{\Phi}\boldsymbol{u})_-\|^2 \text{ s.t. } \|\boldsymbol{u}\|_2 = 1$$

→ Solved by projected gradient descent

Initial approach

- Let $q = \operatorname{sign}(\Phi x) =: A(x)$
- Initially: [Boufounos, Baraniuk 2008]

$$(e.g., take$$
 the 1st choice)

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u}}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \operatorname{diag}(\boldsymbol{q}) \, \boldsymbol{\Phi} \boldsymbol{u} > 0 \text{ and } \|\boldsymbol{u}\|_2 = 1$$

(relaxed)
$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u}}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_1 + \lambda \|(\operatorname{diag}(\boldsymbol{q})\,\boldsymbol{\Phi}\boldsymbol{u})_-\|^2 \text{ s.t. } \|\boldsymbol{u}\|_2 = 1$$

→ Solved by projected gradient descent

Other methods:

- Matching Sign Pursuit [Boufounos]
- Restricted-Step Shrinkage (RSS) [Laska, We, Yin, Baraniuk]
- Binary Iterative Hard Thresholding [Jacques, Laska, Boufounos, Baraniuk]
- Convex Optimization [Plan, Vershynin]
 - ...

Matching Sign Pursuit (MSP)

- Iterative greedy algorithm, similar to CoSaMP [Needell, Tropp, 08]
- Maintains running signal estimate and its support T.
- MSP iteration:
 - Identify sign violations $\rightarrow r = (\text{diag}(y) \Phi \hat{x})_{-}$
 - Compute proxy $\longrightarrow p = \Phi^T r$
 - Identify support $\longrightarrow \Omega = \operatorname{supp} \boldsymbol{p}|_{2K} \cup T$
 - Consistent Reconstruction over support estimate:

$$m{b}|_{\Omega} = \arg\min_{m{u} \in \mathbb{R}^N} \|(\operatorname{diag}(m{y}) \mathbf{\Phi} m{u})_-\|_2^2 \text{ s.t } \|m{u}\|_2 = 1 \text{ and } m{u}|_{T^c} = 0$$

Truncate, normalize, and update estimate: $\hat{x} \leftarrow b|_K / ||b|_K||_2$

Matching Sign Pursuit (MSP)

Boufounos, P. T. (2009, November). "Greedy sparse signal reconstruction from sign measurements". In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on (pp. 1305-1309). IEEE.

Binary Iterative Hard Thresholding

Given $\boldsymbol{q} = A(\boldsymbol{x})$ and K, set l = 0, $\boldsymbol{x}^0 = 0$:

$$\mathbf{a}^{l+1} = \mathbf{x}^l + \frac{\tau}{2} \mathbf{\Phi}^T (\mathbf{q} - A(\mathbf{x}^l)),$$
$$\mathbf{x}^{l+1} = \mathcal{H}_K(\mathbf{a}^{l+1}), \quad l \leftarrow l+1$$

("gradient" towards consistency) $(\tau > 0 \text{ controls gradient descent})$ (proj. K-sparse signal set)

with $\mathcal{H}_K(u) = K$ -term hard thresholding

Stop when $d_H(\boldsymbol{q}, A(\boldsymbol{x}^{l+1})) = 0$ or $l = \max$. iter.

► minimizes
$$\mathcal{J}(\boldsymbol{x}') = \|[\operatorname{diag}(\boldsymbol{q})(\boldsymbol{\Phi}\boldsymbol{x}')]_{-}\|_{1}$$
 with $(\lambda)_{-} = (\lambda - |\lambda|)/2$

$$\varphi_{k}$$
 φ_{k}
 q

$$\mathcal{J}(oldsymbol{x}') = \sum_{j=1}^{M} |(\widehat{\operatorname{sign}}(\langle oldsymbol{arphi}_j, oldsymbol{x}
angle) \langle oldsymbol{arphi}_j, oldsymbol{x}'
angle)_-|$$
 $q_k - A(oldsymbol{x}^l)_k = 0$

 $q_j - A(\boldsymbol{x}^l)_i > 0$

(connections with ML hinge loss, 1-bit classification)

Binary Iterative Hard Thresholding

N = 1000, K = 10Bernoulli-Gaussian model normalized signals 1000 trials

Matching Sign pursuit (MSP)
Restricted-Step Shrinkage (RSS)
Binary Iterative Hard Thresholding (BIHT)

Binary Iterative Hard Thresholding

Testing B ϵ SE: $d_{ang}(\boldsymbol{x}, \boldsymbol{x}^*) \leq d_H(A(\boldsymbol{x}), A(\boldsymbol{x}^*)) + \epsilon(M)$

$$M/N = 0.7$$

$$M/N = 1.5$$

Remark: CS vs bits/meas.

$$N = 2000, K = 20$$

Bernoulli-Gaussian model normalized signals

B bits/measurement

$$B = 1, ..., 12$$

$$M = \text{Total Bits}/B$$

1000 trials

[Plan, Vershynin, 12]

Let $\mathbf{q} = \operatorname{sign}(\mathbf{\Phi} \mathbf{x})$ for some signal $\mathbf{x} \in \mathcal{K} \subset B_2^N$

Compute
$$\hat{\boldsymbol{x}} = \arg\max_{\boldsymbol{u} \in \mathbb{R}^N} \boldsymbol{q}^T \boldsymbol{\Phi} \boldsymbol{u}$$
 s.t. $\boldsymbol{u} \in \mathcal{K}$

e.g., sparse, compressible, low-rank matrix

Convex problem if \mathcal{K} convex! No ambiguous amplitude definition $(\boldsymbol{u} = 0 \text{ avoided})$

S. Bahmani, P.T. Boufounos, B. Raj, "Robust 1-bit Compressive Sensing via Gradient Support Pursuit", arxiv:1304.6626

consistency

[Plan, Vershynin, 12]

Let $\mathbf{q} = \operatorname{sign}(\mathbf{\Phi} \mathbf{x})$ for some signal $\mathbf{x} \in \mathcal{K} \subset B_2^N$

e.g., sparse, compressible, low-rank matrix

Compute
$$\hat{\boldsymbol{x}} = \arg\max_{\boldsymbol{u} \in \mathbb{R}^N} \underline{\boldsymbol{q}^T \boldsymbol{\Phi} \boldsymbol{u}}_{\text{maximize}} \text{ s.t. } \boldsymbol{u} \in \mathcal{K}$$

consistency

Convex problem if K convex! No ambiguous amplitude definition $(\boldsymbol{u} = 0 \text{ avoided})$

(PV-L0 problem) [Bahmani, Boufounos, Raj, 13] *Remark*:

$$\hat{\boldsymbol{x}} = \frac{1}{\|\mathcal{H}_K(\boldsymbol{\Phi}^*\boldsymbol{q})\|} \mathcal{H}_K(\boldsymbol{\Phi}^*\boldsymbol{q}) \text{ if } \mathcal{K} = \Sigma_K !!$$

S. Bahmani, P.T. Boufounos, B. Raj, "Robust 1-bit Compressive Sensing via Gradient Support Pursuit", arxiv:1304.6626

[Plan, Vershynin, 12]

Let
$$\mathbf{q} = \operatorname{sign}(\mathbf{\Phi} \mathbf{x})$$
 for some signal $\mathbf{x} \in \mathcal{K} \subset B_2^N$

Compute
$$\hat{\boldsymbol{x}} = \arg\max_{\boldsymbol{u} \in \mathbb{R}^N} \boldsymbol{q}^T \boldsymbol{\Phi} \boldsymbol{u}$$
 s.t. $\boldsymbol{u} \in \mathcal{K}$

-2 if \boldsymbol{x} is fixed

e.g., sparse,

compressible,

low-rank matrix

consistency

Proposition (assuming $\|\boldsymbol{x}\| = 1$) For some C, c > 0, if $M \geqslant C\epsilon^{-6}w^2(\mathcal{K})$, then, with $Pr \geqslant 1 - e^{-c\epsilon^2 M}$, we have $\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|^2 \leqslant \sqrt{\frac{\pi}{2}} \epsilon$.

[Plan, Vershynin, 12]

Let $\mathbf{q} = \text{sign}(\mathbf{\Phi}\mathbf{x})$ for some signal $\mathbf{x} \in \mathcal{K} \subset B_2^N$

Compute
$$\hat{\boldsymbol{x}} = \arg\max_{\boldsymbol{u} \in \mathbb{R}^N} \boldsymbol{q}^T \boldsymbol{\Phi} \boldsymbol{u}$$
 s.t. $\boldsymbol{u} \in \mathcal{K}$

Proposition (assuming $\|\mathbf{x}\| = 1$) For some C, c > 0, if $M \ge C\epsilon^{-6}w^2(\mathcal{K})$, then, with $Pr \geqslant 1 - e^{-c\epsilon^2 M}$, we have $\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|^2 \leqslant \sqrt{\frac{\pi}{2}} \epsilon$.

+ Robust to noise: noise (bit flip)

noise power

Let $\mathbf{q}_{\mathrm{n}} = \mathrm{diag}(\mathbf{\eta}) \mathbf{q}$ with $\eta_i \in \{\pm 1\}^M$, and assume $d_H(\mathbf{q}, \mathbf{q}_{\mathrm{n}}) \leqslant p$

(under the same conditions)
$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|^2 \leqslant \epsilon \sqrt{\log e/\epsilon} + 11 p \sqrt{\log e/p}$$

Note: if $M = O(\epsilon^{-2}(p - 1/2)^{-2}K \log N/K)$ this term disappears if $\eta_i = \pm 1$ are iid RVs (with $P(\eta_i = 1) = p$)

5. Playing with thresholds in 1-bit CS

Thresholds?

Given $\boldsymbol{x} \in \mathbb{R}^N$ (e.g., sparse) Is there an interest in sensing

$$sign\left(\langle \boldsymbol{\varphi}, \boldsymbol{x} \rangle - \tau\right)$$

for some (random) φ and $\tau \in \mathbb{R}$?

Thresholds?

Given $\boldsymbol{x} \in \mathbb{R}^N$ (e.g., sparse) Is there an interest in sensing

$$sign\left(\langle \boldsymbol{\varphi}, \boldsymbol{x} \rangle - \tau\right)$$

for some (random) φ and $\tau \in \mathbb{R}$?

- adaptive thresholds [Kamilov, Bourquard, Amini, Unser, 12]
- bridging 1-bit and B-bits QCS [LJ, Degraux, De Vleeschouwer, 13]

Non-adaptive 1-bit CS $(\tau = 0)$

Reminder

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]

Given a decoder Rec()

adapted from prev. meas.

$$q_k = \mathrm{sign}\left(\langle oldsymbol{arphi}_k, oldsymbol{x}
angle - au_k
ight) \ \begin{cases} \hat{oldsymbol{x}}_k := \mathrm{Rec}(y_1, \cdots, y_k, oldsymbol{arphi}_1, \cdots, oldsymbol{arphi}_k, au_1, \cdots, au_k) \ au_{k+1} \ \mathrm{s.t.} \ \langle oldsymbol{arphi}_{k+1}, \hat{oldsymbol{x}}_k
angle - au_{k+1} = 0 \end{cases}$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]

Given a decoder Rec()

adapted from prev. meas.

$$q_k = \operatorname{sign}\left(\langle \boldsymbol{\varphi}_k, \boldsymbol{x} \rangle - \tau_k\right)$$

$$\begin{cases} \hat{\boldsymbol{x}}_k := \operatorname{Rec}(y_1, \cdots, y_k, \boldsymbol{\varphi}_1, \cdots, \boldsymbol{\varphi}_k, \tau_1, \cdots, \tau_k) \\ \tau_{k+1} \text{ s.t. } \langle \boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_k \rangle - \tau_{k+1} = 0 \end{cases}$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]

Given a decoder Rec()

adapted from prev. meas.

$$q_k = \operatorname{sign} (\langle \boldsymbol{\varphi}_k, \boldsymbol{x} \rangle - \tau_k)$$

$$\begin{cases} \hat{\boldsymbol{x}}_k := \operatorname{Rec}(y_1, \cdots, y_k, \boldsymbol{\varphi}_1, \cdots, \boldsymbol{\varphi}_k, \tau_1, \cdots, \tau_k) \\ \tau_{k+1} \text{ s.t. } \langle \boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_k \rangle - \tau_{k+1} = 0 \end{cases}$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]

Given a decoder Rec()

adapted from prev. meas.

$$q_k = \operatorname{sign} (\langle \boldsymbol{\varphi}_k, \boldsymbol{x} \rangle - \tau_k)$$

$$\begin{cases} \hat{\boldsymbol{x}}_k := \operatorname{Rec}(y_1, \dots, y_k, \boldsymbol{\varphi}_1, \dots, \boldsymbol{\varphi}_k, \tau_1, \dots, \tau_k) \\ \tau_{k+1} \text{ s.t. } \langle \boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_k \rangle - \tau_{k+1} = 0 \end{cases}$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]

Given a decoder Rec()

adapted from prev. meas.

$$q_k = \operatorname{sign}\left(\langle \boldsymbol{\varphi}_k, \boldsymbol{x} \rangle - \tau_k\right)$$

$$\begin{cases} \hat{\boldsymbol{x}}_k := \operatorname{Rec}(y_1, \cdots, y_k, \boldsymbol{\varphi}_1, \cdots, \boldsymbol{\varphi}_k, \tau_1, \cdots, \tau_k) \\ \tau_{k+1} \text{ s.t. } \langle \boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_k \rangle - \tau_{k+1} = 0 \end{cases}$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,

System view:

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,

System view:

Kind of $\Sigma\Delta$ loop

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,

B-bit quantizer defined with thresholds:

$$\lambda \in \mathcal{R}_i = [t_i, t_{i+1}) \Leftrightarrow \operatorname{sign}(\lambda - t_i) = +1 \& \operatorname{sign}(\lambda - t_{i+1}) = -1$$

Can we combine multiple thresholds in 1-bit CS?

Given
$$\mathcal{T} = \{\tau_j\}$$
 and $\Omega = \{q_j\}$ ($|\mathcal{T}| = 2^B + 1 = |\Omega| + 1$), let's define

$$J(\nu, \lambda) = \sum_{j=2}^{2^{B}} w_j \left| \left(\text{sign} \left(\lambda - \tau_j \right) \left(\nu - \tau_j \right) \right)_{-} \right|,$$

with $w_j = q_j - q_{j-1}$.

<u>Illustration:</u> $\lambda \in [\tau_{j-1}, \tau_j), \ \nu \in [\tau_j, \tau_{j+1})$

"delocalized" BIHT ℓ_1 -sided norm

BIF
$$J(\nu, \lambda) = |\left(\operatorname{sign}(\lambda - \tau_j)(\nu - \tau_j)\right)_{-}|$$

$$= (\nu - \tau_j)$$

$$\tau_{j-1} \qquad \tau_j \qquad \tau_{j+1}$$

$$(\text{for } w_j = 1)$$

Given $\mathcal{T} = \{\tau_j\}$ and $\Omega = \{q_j\}$ ($|\mathcal{T}| = 2^B + 1 = |\Omega| + 1$), let's define

$$J(\nu, \lambda) = \sum_{j=2}^{2^{B}} w_j \left| \left(\text{sign} \left(\lambda - \tau_j \right) \left(\nu - \tau_j \right) \right)_{-} \right|,$$

with $w_{i} = q_{i} - q_{i-1}$.

Illustration: $\lambda \in [\tau_{i-1}, \tau_i), \ \nu \in [\tau_{i+1}, \tau_{i+2})$

Given $\mathcal{T} = \{\tau_j\}$ and $\Omega = \{q_j\}$ ($|\mathcal{T}| = 2^B + 1 = |\Omega| + 1$), let's define

$$J(\nu, \lambda) = \sum_{j=2}^{2^{B}} w_j \left| \left(\text{sign} \left(\lambda - \tau_j \right) \left(\nu - \tau_j \right) \right)_{-} \right|,$$

with $w_j = q_j - q_{j-1}$.

<u>Illustration:</u>

Given $\mathcal{T} = \{\tau_j\}$ and $\Omega = \{q_j\}$ ($|\mathcal{T}| = 2^B + 1 = |\Omega| + 1$), let's define

$$J(\nu, \lambda) = \sum_{j=2}^{2^{B}} w_j \left| \left(\text{sign} \left(\lambda - \tau_j \right) \left(\nu - \tau_j \right) \right)_{-} \right|,$$

with $w_j = q_j - q_{j-1}$.

Illustration: more bins

Given $\mathcal{T} = \{\tau_j\}$ and $\Omega = \{q_j\}$ ($|\mathcal{T}| = 2^B + 1 = |\Omega| + 1$), let's define

$$J(\nu, \lambda) = \sum_{j=2}^{2^{B}} w_j \left| \left(\text{sign} \left(\lambda - \tau_j \right) \left(\nu - \tau_j \right) \right)_{-} \right|,$$

with $w_{i} = q_{i} - q_{i-1}$.

For
$$\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^M$$
: $\mathcal{J}(\boldsymbol{u}, \boldsymbol{v}) := \sum_{k=1}^M J(u_k, v_k)$

Remarks:

- J is convex in ν
- For $B = 1 \ (j = 2 \text{ only})$: $\mathcal{J}(\boldsymbol{u},\boldsymbol{v}) \propto \|(\operatorname{sign}(\boldsymbol{v}) \odot \boldsymbol{u})_{-}\|_{1} \rightarrow \ell_{1}\text{-sided 1-bit energy}$
- For $B \gg 1$: $J(\nu,\lambda) \to \frac{1}{2}(\nu-\lambda)^2$ and $\mathcal{J}(\boldsymbol{u},\boldsymbol{v}) \to \frac{1}{2}\|\boldsymbol{u}-\boldsymbol{v}\|^2$ (quadratic energy)

Let's define an *inconsistency* energy:

$$\mathcal{E}_B(\boldsymbol{u}) := \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{u}, \boldsymbol{q}) \text{ with } \boldsymbol{q} = \mathcal{Q}_B[\boldsymbol{\Phi}\boldsymbol{x}] \text{ and } \mathcal{E}_-B(\boldsymbol{x}) = 0$$

Idea: Minimize it in Σ_K (as for Iterative Hard Thresholding)

[Blumensath, Davies, 08]

$$\min_{\boldsymbol{u}\in\mathbb{R}^N} \mathcal{E}_B(\boldsymbol{u}) \text{ s.t. } \|\boldsymbol{u}\|_0 \leqslant K,$$

T. Blumensath, M.E. Davies, "Iterative thresholding for sparse approximations". Journal of Fourier Analysis and Applications, 14(5-6), 629-654. (2008).

Let's define an *inconsistency* energy:

$$\mathcal{E}_B(\boldsymbol{u}) := \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{u}, \boldsymbol{q}) \text{ with } \boldsymbol{q} = \mathcal{Q}_B[\boldsymbol{\Phi}\boldsymbol{x}] \text{ and } \mathcal{E}_-B(\boldsymbol{x}) = 0$$

Idea: Minimize it in Σ_K (as for Iterative Hard Thresholding)

[Blumensath, Davies, 08]

$$\min_{\boldsymbol{u}\in\mathbb{R}^N} \mathcal{E}_B(\boldsymbol{u}) \text{ s.t. } \|\boldsymbol{u}\|_0 \leqslant K,$$

NP Hard but greedy solution (as for IHT):

$$m{x}^{(n+1)} = \mathcal{H}_K[m{x}^{(n)} - \mu \, \partial \, \mathcal{E}_B(m{x}^{(n)})] ext{ and } m{x}^{(0)} = 0.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \Phi^*(m{\Phi}m{u}) - m{g}(m{\Phi}m{u}) - m{g}(m{h})$$

$$\Phi^*(\operatorname{sign}(\Phi \boldsymbol{u}) - \operatorname{sign}(\Phi \boldsymbol{x})) \longleftarrow \partial \mathcal{E}_B(\boldsymbol{u}) = \Phi^*(\mathcal{Q}_B(\Phi \boldsymbol{u}) - \boldsymbol{q}) \longrightarrow \Phi^*(\Phi \boldsymbol{u} - \boldsymbol{q})$$
BIHT!
$$Quantized \text{ IHT } (QIHT)$$

$$IHT!$$

T. Blumensath, M.E. Davies, "Iterative thresholding for sparse approximations". *Journal of Fourier Analysis and Applications*, 14(5-6), 629-654. (2008).

LJ, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", <u>SAMPTA2013</u>

 $N = 1024, K = 16, R = BM \in \{64, 128, \cdots, 1280\}, 100 \text{ trials } (+ \text{Lloyd-Max Gauss. Q.})$

R: total bit budget (BM)

*: almost "6dB per bit" gain

$$\mu = \frac{1}{M}(1 - \sqrt{2K/M})$$

Adjusted by limit case analysis: BIHT and IHT

Note: entropy could be computed instead of B (e.g., for further efficient coding)

LJ, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013

 $N = 1024, K = 16, R = BM \in \{64, 128, \dots, 1280\}, 100 \text{ trials}$

J. N. Laska, R. G. Baraniuk, 'Regime change: Bit-depth versus measurement-rate in compressive sensing', Signal Processing, IEEE Transactions on, 60(7), 3496-3505. (2012)

Further Reading

- T. Blumensath, M.E. Davies, "Iterative thresholding for sparse approximations". *Journal of Fourier Analysis and Applications*, 14(5-6), pp. 629-654, 2008
- P. T. Boufounos and R. G. Baraniuk, "1-Bit compressive sensing," *Proc. Conf. Inform. Science and Systems (CISS)*, Princeton, NJ, March 19-21, 2008.
- ▶ Boufounos, P. T. (2009, November). "Greedy sparse signal reconstruction from sign measurements". In Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009
- Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", arXiv:1111.4452, 2011.
- Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", *IEEE Trans. Info. Theory*, arXiv:1202.1212, 2012.
- J. N. Laska, R. G. Baraniuk, 'Regime change: Bit-depth versus measurement-rate in compressive sensing', *IEEE Trans. Signal Processing*, 60(7), pp. 3496-3505, 2012.
- U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, "One-bit measurements with adaptive thresholds". *IEEE Signal Processing Letters*, 19(10), pp. 607-610, 2012
- L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors," *IEEE Trans. Info. Theory*, 59(4), 2013.
- L. Jacques, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA 2013, to appear.

Thank you!

