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Generally, sampling is ...
+ Shannon/Nyquist

Human readable signal!
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+ Shannon/Nyquist

4

New ways to sample signals ....

World Sensing
Device Human

Signal Sensing Signal

Optimized setup: sampling rate     information/

   “Computer readable” sensing + prior information

Generally, sampling is ...

Human readable signal
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   “Computer readable” sensing + prior information

+ Shannon/Nyquist
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World Sensing
Device Human

Signal Sensing Signal

Optimized setup: sampling rate     information/

New ways to sample signals ....

Generally, sampling is ...

Human readable signal

structures, sparsity, 
low-rank, ...
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Compressed Sensing

“Forget” Dirac, forget Nyquist, 
ask few (linear) questions 
about your informative (sparse) signal, 
and recover it differently (non-linearly)”  

... in a nutshell:
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Compressed Sensing

Assumption: the probability that 
our world is totally discrete is very high ...

WORLD
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Compressed Sensing
M questions Sensing method Signal
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Sparsity
Prior

( = Id)

A signal
in this 
discrete
world

Then ...

Generalized Linear Sensing!
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yi = h',xi = '

T
x

Generalized Linear Sensing!

yi
'i

1  i  M
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Compressed Sensing

If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

kuk0 = #{j : uj 6= 0}

⇤

+ Non-linear reconstruction !
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

Compressed Sensing

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤

+ Non-linear reconstruction !
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

for all 2K sparse signals v.

p
1� � kvk2 6 k�vk2 6

p
1 + � kvk2

9 � 2 (0, 1)

Compressed Sensing

any subset of 2K columns 
is an isometry 

if                 � <
⇥

2� 1  [Candes 08]

Restricted Isometry Property

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤

Simplifying assumption
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Compressed Sensing

any subset of 2K columns 
is an isometry 

if                 � <
⇥

2� 1  [Candes 08]

Restricted Isometry Property

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

Examples: 
+ Gaussian
+ Bernoulli
+ Random Fourier
+ ....

⇤

Simplifying assumption
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

for all 2K sparse signals v.

p
1� � kvk2 6 k�vk2 6

p
1 + � kvk2

9 � 2 (0, 1)

Compressed Sensing

any subset of 2K columns 
is an isometry 

if                 � <
⇥

2� 1  [Candes 08]

Restricted Isometry Property

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

� 2 RM⇥N , �ij ⇠iid N (0, 1)

Examples: 
+ Gaussian
+ Bernoulli
+ Random Fourier
+ ....

⇤

M = O(K logN/K) ⌧ N

Simplifying assumption
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

Compressed Sensing

xLS

x = xBP

Φu = y

ℓ1-ball

ℓ2-ball

R2

e1

e2

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤

Solvers:
Linear Programming, 
Interior Point Method,
Proximal Methods, 
 ... Tons of toolboxes ...
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

Compressed Sensing

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤

Solvers:
Linear Programming, 
Interior Point Method,
Proximal Methods, 
 ... Tons of toolboxes ...

ky ��uk 6 ✏

xLS

x = xBP

Φu = y

ℓ1-ball

ℓ2-ball

R2

e1

e2✏
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

Compressed Sensing

xLS

x = xBP

Φu = y

ℓ1-ball

ℓ2-ball

R2

e1

e2

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤

Solvers:
Linear Programming, 
Interior Point Method,
Proximal Methods, 
 ... Tons of toolboxes ...

ky ��uk 6 ✏

✏

kx� x

⇤k 6 C 1p
K
kx� xKk1 + D✏

Robustness: vs sparse deviation + noise.



ICTP’14: Coherent state transforms, time-frequency and time-scale analysis, applications

Part 1
When quantization meets 

compressed sensing

18
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Outline:
1. Context 
2. Former QCS methods and performance limits 
3. Consistent Reconstructions
4. Sigma-Delta quantization in CS
5. To saturate or not? And how much?

19
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1. Context

20



ICTP’14: Coherent state transforms, time-frequency and time-scale analysis, applications

‣ Generality: 
Intuitively: “Quantization maps a bounded continuous 
domain to a set of finite elements (or codebook)” 

‣ Oldest example: rounding off

What is quantization?

bxc, dxe, . . . R ! Z

RM

codebook

q1
q2

qi

Q[x] � {q1, q2, · · · }

21

Bounded
domain
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‣ In    , on each component of M - dimensional vectors:

⇤� ⇥ R, Q[�] = qi � � ⇥ Ri , [ti, ti+1),

⇤u ⇥ RM , (Q[u])j = Q[uj ]

Example 1: scalar quantization

R
ti ti+1

�

1-D quantization cell

What is quantization? ...

RM

qi

� = {qi � R : 1 6 i 6 2B}, (levels)

T = {ti � R : 1 6 i 6 2B + 1, ti 6 ti+1} (thresholds)

22

Pulse Code Modulation - PCM
Memoryless Scalar Quantization - MSQ

other names:
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‣ In    , on each component of M - dimensional vectors:

‣ Globally:

Q[z] = q ⇥ �M � z ⇥

⇤� ⇥ R, Q[�] = qi � � ⇥ Ri , [ti, ti+1),

⇤u ⇥ RM , (Q[u])j = Q[uj ]

Example 1: scalar quantization

R
ti ti+1

�

1-D quantization cell

Ri1 �Ri2 � · · ·�RiM

M - D quantization cell

What is quantization? ...

RM

qi

:= Q�1[q]

� = {qi � R : 1 6 i 6 2B}, (levels)

T = {ti � R : 1 6 i 6 2B + 1, ti 6 ti+1} (thresholds)

23
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qk = (k + 1/2)�
tk = k�

‣ Regular uniform

Example 1: scalar quantization
What is quantization? ...

ti ti+1

↵ In

OutQ
qi

24
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qk = (k + 1/2)�
tk = k�

‣ Regular uniform

‣ Regular non-uniform

‣  ∃ Non-regular  (P. Boufounos)

Example 1: scalar quantization

In

OutQ

e.g., Lloyd-MaxZ

e.g., wrt an input distribution Z
find minimum distortion, i.e.,

What is quantization? ...

� and T optimized

argmin
T ,�

EZ⇥Z �Q[Z]⇥2

ti ti+1

↵ In

OutQ
qi

25
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(caveat: not really covered in this tutorial, ... except ΣΔ, see later)

Example 2: vector quantization

Quantization = codebook     + quantization cells

What is quantization? ...

⌦ R = {Ri � RM}

RM

(non-separable quantization)
e.g., argmin

⌦,R
EZ⇥Z �Q[Z]⇥2

q1
q2

qi

26
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Classical Sampling and Quantization

T

t

signal bitsAnti-alias 
(measurement)

Quantizer
q[n]

27

For acquisition:
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Classical Sampling and Quantization

For reconstruction:

T

t

signal bitsAnti-alias 
(measurement)

Quantizer
q[n]

Low-pass Filter
(linear reconstruction)

q[n]

28

For acquisition:
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Classical Sampling and Quantization

Sampling: discretization in time  ➱ Lossless at the Nyquist rate
Quantization: discretization in amplitude ➱ Always lossy

            Need both for digital data acquisition

For reconstruction:

T

t

signal bitsAnti-alias 
(measurement)

Quantizer
q[n]

Low-pass Filter
(linear reconstruction)

q[n]

29

For acquisition:
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Compressed sensing theory says:
   “Linearly sample a signal 

at a rate function of 
its intrinsic dimensionality”

Information theory and sensor designer say:
   “Okay, but I need to 

quantize/digitize my measurements!”
   (e.g., in ADC) 

Compressive Sampling and Quantization

01011000111

RM? �

30
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Natural questions: 

‣ How to integrate 
quantization in CS?

‣ What do we loose?

‣ Are they some theoretical limitations? 
(related to information theory? geometry?) 

‣ How to minimize quantization effects in the reconstruction?

The Quantized CS Problem (QCS)

RM?

01011000111

Q[y = �x]

31
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Decoderx CS Q x̂

RN RM ⌦ RN

scalar or vector 
quantization

codebook

e.g., basis pursuit,
greedy methods, ...

With no additional noise:

QCS: a system view

y = �x

q = Q[y]

32
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Finite codebook ) ˆ

x 6= x

Decoderx CS Q x̂

RN RM ⌦ RN

scalar or vector 
quantization

codebook

e.g., basis pursuit,
greedy methods, ...

With no additional noise:

(i.e., impossibility to encode continuous domain in a finite number of elements)

y = �x

q = Q[y]

QCS: a system view

33
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With no additional noise:

Finite codebook ) ˆ

x 6= x

Decoderx CS Q x̂

RN RM ⌦ RN

codebook

e.g., basis pursuit,
greedy methods, ...

Objective: Minimize kx̂� xk
How? 
Where to act?
Change CS, Q or decoder?           
           Some of them? all?given a certain number of: 

bits, measurements, or bits/meas.

y = �x

q = Q[y]

QCS: a system view

34
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2. Former QCS methods and 
performance limits

35
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Scalar quantization in CS

Important points:

‣ Definition of      independent of M 

‣ B bits per measurement

‣ Total bit budget: R = BM

‣ No further encoding (e.g., entropic) 

(e.g., �ij �iid N (0, 1))�
→ preserves measurement dynamic!

Turning measurements into bits     scalar quantization    �

qi = Q[(�x)i] = Q[⇤�i,x⌅] ⇥ � � R

q = Q
⇥
�x

⇤
� ⌦ = �M ,

36
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q = Q
⇥
�x

⇤
= �x + n

‣ Quantization is like a noise

Former solution (Candès, Tao, ...)
Scalar quantization in CS ...

quantization
distortion

37
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‣ Quantization is like a noise

and CS is robust (e.g., with basis pursuit denoise)

If knk 6 ⇥ and

1p
M

� is RIP(�, 2K) with � 6
p

2� 1, then

kˆx� xk 6 C �p
M

+ D e0(K),

for some C, D > 0 and e0(K) = kx� xKk1/
p

K.

x̂ = argmin
u2RN

kuk1 s.t. k�u� qk 6 � (BPDN)

Former solution (Candès, Tao, ...)

`2 � `1 instance optimality:

Scalar quantization in CS ...

q = Q
⇥
�x

⇤
= �x + n

38
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‣ Quantization is like a noise

and CS is robust (e.g., with basis pursuit denoise)

Former solution (Candès, Tao, ...)

`2 � `1 instance optimality:

Scalar quantization in CS ...

How to find it?

q = Q
⇥
�x

⇤
= �x + n

If knk 6 ⇥ and

1p
M

� is RIP(�, 2K) with � 6
p

2� 1, then

kˆx� xk 6 C �p
M

+ D e0(K),

for some C, D > 0 and e0(K) = kx� xKk1/
p

K.

x̂ = argmin
u2RN

kuk1 s.t. k�u� qk 6 � (BPDN)

39



ICTP’14: Coherent state transforms, time-frequency and time-scale analysis, applications

1. For uniform quantization, by construction:

ni = Q[(�x)i]� (�x)i

⌅ qki �Rki = [��/2,�/2]

⇤ ⇧n⇧1 ⇥ �/2

Former solution (Candès, Tao, ...)

15

Scalar quantization in CS ...

) knk2 6 Mknk21 6 M�2/4

and plug this upper bound in BPDN

ti ti+1

↵ In

OutQ
qi

qk = (k + 1/2)�
tk = k�

✏?

40
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1. For uniform quantization, by construction:

Former solution (Candès, Tao, ...)
Scalar quantization in CS ...

) knk2 6 Mknk21 6 M�2/4

and plug this upper bound in BPDN

can be improved!

ti ti+1

↵ In

OutQ
qi

qk = (k + 1/2)�
tk = k�

ni = Q[(�x)i]� (�x)i

⌅ qki �Rki = [��/2,�/2]

⇤ ⇧n⇧1 ⇥ �/2

✏?

41
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2. For uniform quantization, uniform model!

Former solution (Candès, Tao, ...)

��/2 �/2

Scalar quantization in CS ...

(HRA - high resolution assumption)

ni = Q[(�x)i]� (�x)i

⇤ qki �Rki = [��/2, �/2]

⇥iid Uniform([��/2, �/2])

ti ti+1

↵ In

OutQ
qi

qk = (k + 1/2)�
tk = k�

✏?

42
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2. For uniform quantization, uniform model!

Former solution (Candès, Tao, ...)

� E|ni|2 = �2/12

) knk2 6 Eknk2 + �
p

Varknk2

6 M ↵2

12 + �
p

M ↵2

6
p

5

with Pr > 1� e�22

= �22 ' M ↵2

12

Scalar quantization in CS ...

(Chernoff-Hoeffding, bounded RVs)

ni = Q[(�x)i]� (�x)i

⇤ qki �Rki = [��/2, �/2]

⇥iid Uniform([��/2, �/2])

��/2 �/2

(HRA - high resolution assumption)

and plug this upper bound in BPDN

ti ti+1

↵ In

OutQ
qi

qk = (k + 1/2)�
tk = k�

✏?

43
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kx̂� xk . C � + D e0(K),

‣ Therefore,

Former solution (Candès, Tao, ...)

(for BPDN with ✏2, under prev. cond.)

Scalar quantization in CS ...

from BPDN `2 � `1 instance optimality:

for C,D > 0

44
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kx̂� xk . C � + D e0(K),

‣ Therefore,

‣ Assuming :
‣  
‣ B bits per measurements

‣ Equivalently: 

Former solution (Candès, Tao, ...)

(for BPDN with ✏2, under prev. cond.)

Scalar quantization in CS ...

from BPDN `2 � `1 instance optimality:

bounded dynamics:

as soon as RIP holds: M = O(K log N/K)

(e.g., by discarding saturation) 
(see later)

BPDN RMSE ' O(2�R/M ) + e0(K)

for C,D > 0

for C’,D > 0

45

��x�1 = max

j
|(�x)i| 6 ⇢

) BPDN RMSE . C 0 2�B + D e0(K)

for a rate R = BM bits (total ”bid budget” for all meas.)

) ↵ ' 2⇢
2B
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‣ Let a fixed K-sparse
RMSE Lower bound?

Scalar quantization in CS ...

x 2 RN

46
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‣ Let a fixed K-sparse
‣ Oracle: you know

RMSE Lower bound?
Scalar quantization in CS ...

T = suppx

x 2 RN

47
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E nnT = �2IdM⇥M

‣ Let a fixed K-sparse
‣ Oracle: you know 
‣ Noisy measurements (random noise):

‣ Assume:
‣ Compute LS solution:

‣ Then:

‣ for QCS:

RMSE Lower bound?
Scalar quantization in CS ...

y = �T x + n,

1p
M

� is RIP(K, �K) and RIP(1, �1)

Given � 2 RM⇥N with �ij ⇠iid N(0, 1)

with

x̂T = �†
T y = (�⇥

T �T )�1�⇥
T y

x̂T c = 0

for oversampling factor 

x 2 RN

pseudo-inverse 

T = suppx

from [Needell, Tropp, 08]
MSE 6 1

1��K
�2&

&

(as for BPDN)

r = M/K

MSE = Enkx� x̂k2 > r�1 �2 ( 1��1
1+�K

)

) RMSE = �(r�1/2 2�B) RMSE = O(2�B)

48
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3. Consistent Reconstructions

49
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‣ Problem in previous case: if     solution of BPDN,

‣ no Quantization Consistency (QC):

‣     constraint ≈ Gaussian distribution (MAP - cond. log. lik.)

Consistent reconstructions in CS?

�2

; Q[�x̂] = Q[�x]⇥�x̂�Q[�x]⇥ 6 ✏2
(from BPDN constraint)

    sensing information is fully not exploited!)

x̂

Q[�x̂] �= Q[�x]

50
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But why looking for consistency?

51

V. K Goyal, M. Vetterli, N. T. Thao, “Quantized Overcomplete Expansions in RN: 
Analysis, Synthesis, and Algorithms” , IEEE Tran. IT, 44(1), 1998

Proposition (Goyal, Vetterli, Thao, 98) If T is known (with |T | = K), the best

decoder Dec() provides a x̂ = Dec(y,�) such that:

RMSE = (E⌅x� x̂⌅2)1/2 & r�1�,

where E is wrt a probability measure on xT in a bounded set S ⇥ RK
.

This bound is achieved, at least, for �T = DFT ⇤ RM⇥K
, when Dec() is consistent.

First,
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But why looking for consistency?

52

If � 2 RM⇥N
is a (random) frame in RN

(M > N),

Then, for Q(y) = y + n with ni ⇠ U([�1
2↵, 1

2↵]), and

ˆ

x consistent,

(E�,nkx� ˆ

xk2)1/2 . r�1↵,

and

kx� ˆ

xk . r�1↵ · O(log M, log N, log ⌘),

with Pr > 1� ⌘.

[Powell, Whitehouse, 2013]

[LJ 2014]

or                                           in K sparse case       K
M ↵ · O(log K, log M, log N, log ⌘)

(Gaussian frame)

(unit norm frame)

Second,
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‣ Modify BPDN [W. Dai, O. Milenkovic, 09]

x̂ = argmin
u2RN

�u�1 s.t. Q[�u] = q

In quest of consistency...

convex set in RM

y+ modified greedy algo: 
“subspace pursuit”

9 numerical methods

� �u ⇥ Q�1[q]

`2 ! `1

, k�u� qk1  �/2
(if uniform quant.)

53
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‣ Modify BPDN [W. Dai, O. Milenkovic, 09]

In quest of consistency...

W. Dai, H. V. Pham, and O. Milenkovic, “Quantized Compressive Sensing”, preprint, 2009

BPDN

SP

unif
non-unif Mod. BPDN

Mod. SP

Simulations: M = 128, N = 256, K = 6, 1000 trials ) � ' 20

x̂ = argmin
u2RN

�u�1 s.t. Q[�u] = q

l
o
g

R
M

S
E

l
o
g

R
M

S
E

`2 ! `1

BPDN

54
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x̂ = argmin
u2RN

kuk1 s.t. kq ��ukp  �p

‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

k�x� qk1  �/2

q = Q[�x] = �x+ n, ni ⇥ U(��
2 ,

�
2 )

�

Q

Towards
Related to GGD MAP 

p =1

[LJ, Hammond, Fadili, 2009, 2011]
Dequantizing CS? �2 ! �p (p � 2)

↵
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How to find it? again, uniform model:

x̂ = argmin
u2RN

kuk1 s.t. kq ��ukp  �p

‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

k�x� qk1  �/2

q = Q[�x] = �x+ n, ni ⇥ U(��
2 ,

�
2 )

�

Q

Towards
Related to GGD MAP 

p =1

[LJ, Hammond, Fadili, 2009, 2011]
Dequantizing CS? �2 ! �p (p � 2)

↵
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How to find it? again, uniform model:

x̂ = argmin
u2RN

kuk1 s.t. kq ��ukp  �p

‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

k�x� qk1  �/2

q = Q[�x] = �x+ n, ni ⇥ U(��
2 ,

�
2 )

�

Q

Towards
Related to GGD MAP 

p =1

[LJ, Hammond, Fadili, 2009, 2011]
Dequantizing CS? �2 ! �p (p � 2)

↵

⇥p(�) �⇥
p�⇥

�
2 = QC !Note:

ni = Q[(�x)i]� (�x)i

⇤ qki �Rki = [��/2, �/2]

⇥iid Uniform([��/2, �/2])

��/2 �/2

Estimating pth moment:
⇥p(�) =

�
2(p+1)1/p

�
M + ⇤(p+ 1)

p
M

�1/p

works with Pr � 1� e�22
)
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‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

�

Q

Towards
Related to GGD MAP 

p =1

�2 ! �p (p � 2)Dequantizing CS?
[LJ, Hammond, Fadili, 2009, 2011]

x̂ = argmin
u2RN

kuk1 s.t. kq ��ukp  �p

k�x� qk1  �/2

q = Q[�x] = �x+ n, ni ⇥ U(��
2 ,

�
2 )

↵

BPDQ Stability ?
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‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

�

Q

⇥ µp > 0, � � (0, 1),
p
1� � kvk2 6 1

µp
k�vkp 6

p
1 + � kvk2,

for all K sparse signals v.

Ok, if     is RIPp of order K, i.e., �

Towards
Related to GGD MAP 

p =1

�2 ! �p (p � 2)Dequantizing CS?
[LJ, Hammond, Fadili, 2009, 2011]

x̂ = argmin
u2RN

kuk1 s.t. kq ��ukp  �p

k�x� qk1  �/2

q = Q[�x] = �x+ n, ni ⇥ U(��
2 ,

�
2 )

↵

BPDQ Stability ?
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‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

) kx� x̂k = O(�/
p
p+ 1)

�

Q

⇒	  Another reading: limited range of valid p for a given M (and K)!

Towards
Related to GGD MAP 

p =1

�2 ! �p (p � 2)Dequantizing CS?
[LJ, Hammond, Fadili, 2009, 2011]

x̂ = argmin
u2RN

kuk1 s.t. kq ��ukp  �p

k�x� qk1  �/2

q = Q[�x] = �x+ n, ni ⇥ U(��
2 ,

�
2 )

↵

But no free lunch: for � Gaussian

60

Gain over BPDN (for tight          )⇥p(�,M)

) kx� x̂k = O(�p/µp)
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Dequantizing CS?

BPDN

p = 3

p = 4

p = 10

S
N

R
(d

B
)

m/K

24

28

32

36

10 15 20 25 30 35 40

✴ N=1024, K=16, Gaussian  
✴ 500 K-sparse (canonical basis) 
✴ Non-zero components follow 
✴ Quantiz. bin width 

0 0.5 1-0.5-1

BPDN

0 0.5 1-0.5-1

BPDQ10

M

N (0, 1)

[LJ, Hammond, Fadili, 2009, 2011]

Histograms of
↵�1(q ��x̂)i

�

� = k�xk1/40

LJ, D. Hammond, J. Fadili “Dequantizing compressed sensing: When oversampling and non-gaussian 
constraints combine.” Information Theory, IEEE Transactions on, 57(1), 559-571.
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Dequantizing CS?

✴ N=1024, K=16, Gaussian  
✴ 500 K-sparse (canonical basis) 
✴ Non-zero components follow 
✴ Quantiz. bin width 

BPDN

p = 3

p = 4

p = 10

S
N

R
(d

B
)

m/K

24

28

32

36

10 15 20 25 30 35 40
M

N (0, 1)

[LJ, Hammond, Fadili, 2009, 2011]

Histograms of
↵�1(q ��x̂)i

�

� = k�xk1/40

M → 2M, α cst.
⇔

α → α/2, M cst.
0 0.5 1-0.5-1

BPDN

0 0.5 1-0.5-1

BPDQ10

LJ, D. Hammond, J. Fadili “Dequantizing compressed sensing: When oversampling and non-gaussian 
constraints combine.” Information Theory, IEEE Transactions on, 57(1), 559-571.
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BPDN-TV

BPDQ10 -TV

SNR: 8.96 dB

SNR: 12.03 dB

✴ Synthetic Angiogram [Michael Lustig 07, SPARCO],
✴    : Random Fourier Ensemble
✴ N/M = 8
✴ Decoder:
✴ Quantiz. bin width = 50 (i.e. 12 bins)

�TV,p(y, �p)

A bit outside the theory...

Dequantizing CS?
[LJ, Hammond, Fadili, 2009, 2011]

�

LJ, D. Hammond, J. Fadili “Dequantizing compressed sensing: When oversampling and non-gaussian 
constraints combine.” Information Theory, IEEE Transactions on, 57(1), 559-571.
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4. Sigma-Delta quantization in CS
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Context:
‣ Former attempts: (see prev. slides)

CS + uniform scalar quantization (or pulse code modulation - PCM) 

‣ No (real) improvement if M increases!  
‣ Can we do better? 

For K-sparse signals: ⇤Q↵[�x]��x⇤2 6 c
⌅

M� ⇥ ⇤x⇤ � x⇤ 6 C�

and for high ⇥, ⇤Q�[�x]��x⇤p 6 cM1/p� ⇥ ⇤x⇤ � x⇤ 6 C�/
⌅

p + 1

(with RIP)

(with RIPp)
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Context:
‣ Former attempts: (see prev. slides)

CS + uniform scalar quantization (or pulse code modulation - PCM) 

‣ No (real) improvement if M increases!  
‣ Can we do better? 

‣ Staying with PCM, 
‣ Solution: replacing PCM by ΣΔ quantization!

For K-sparse signals: ⇤Q↵[�x]��x⇤2 6 c
⌅

M� ⇥ ⇤x⇤ � x⇤ 6 C�

and for high ⇥, ⇤Q�[�x]��x⇤p 6 cM1/p� ⇥ ⇤x⇤ � x⇤ 6 C�/
⌅

p + 1

(with RIP)

(with RIPp)

(Goyal-Vetterli-Thao lower bound)

[S. Güntürk, A. Powell, R. Saab, Ö. Yılmaz]

66

Can we have kx⇤ � xk 6 O(r�s�) for some s > 0 ?

s 6 1
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‣ PCM: Signal sensing + unif. quantization

‣ In CS, this could be used if signal support was known
(see before)

ΣΔ quantization (reminder)

(step ↵)

qk = QPCM[yk] := argmin
u2�Z

|yk � u|, 1 6 k 6 M

q = QPCM[y] with

x 2 RK
y = Ax 2 RM

67

Let A#
, a left inverse of A, i.e., A#A = Id.

(or canonical dual of the frame A)
Taking (Moore-Penrose) pseudo-inverse: A#

= A†
= (A⇥A)

�1A⇥

x̂ := A

#
q ) kx� x̂k = kA#(y � q)k

quant. noise

minimize kA#(y � q)k!
A#A = Id.

Goal: 

Then,
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ΣΔ quantization (reminder)

‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

2 ↵ZM

68

A#
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ΣΔ quantization (reminder)

‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ 1st order ΣΔ: (in 1-D) Quantizing the sequence {yj : j > 0}

�
�+ �

+

+

z�1

Q
yj qj with:

bigger than � but still O(�)

2 ↵ZM

69

A#

Use of state variables {�j} (1-step memory):

find qj : qj = Q(1)
⇥�[yj ] := argminu2�Z |�j�1 + yj � u|

find �j : (��)j = �j � �j�1 = yj � qj (di⇥erence eq.)

= QPCM[�j�1 + yj ]

yj + �j�1

⇢j�1

⇢j

|⇥j | 6 �

|yj � qj | 6 2�
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ΣΔ quantization (reminder)

‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s 
th order ΣΔ: (in 1-D) Quantizing the sequence {yj : j > 0}

�
�+ �

+

+

z�1

Q
yj qj with:

bigger than � but still O(�)

yj + � · · ·

PCM is
0th order ⇥�

Remark:

2 ↵ZM

70

A#

Use of state variables {�j} (s-step memory):

find qj : qj = Q(s)
⇥�[yj ] := argminu2�Z |

Ps
i=1(�1)i�1

�s
i

�
�j�n + yj � u|

find �j : (�s�)j = yj � qj (sth order di⇥erence eq.)

|⇥j | 6 �

|yj � qj | 6 2s�1�
⇢j�1

⇢j
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ΣΔ quantization (reminder)

‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s 
th order ΣΔ:

2 ↵ZM

71

A#

Most important fact: (�s�)j = yj � qj , Ds� = y � q
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ΣΔ quantization (reminder)

‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s 
th order ΣΔ:

2 ↵ZM

72

A#

Most important fact: (�s�)j = yj � qj , Ds� = y � q

x̂ := A

#
q ) kx� x̂k = kA#

D

s(y � q)k
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ΣΔ quantization (reminder)

‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s 
th order ΣΔ:

Pseudo-inverse

A† = (A⇥A)�1A⇥
Sobolev duals

2 ↵ZM

73

A#

Most important fact: (�s�)j = yj � qj , Ds� = y � q

x̂ := A

#
q ) kx� x̂k = kA#

D

s(y � q)k

minimize kA#Ds(y � q)k!

A
sob,s = (D�sA)†D�s
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ΣΔ quantization (reminder)

‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s 
th order ΣΔ:

2 ↵ZM

74

A#

Most important fact: (�s�)j = yj � qj , Ds� = y � q

A
sob,s = (D�sA)†D�s

x̂ = A

sob,sq

Proposition Let A ⇤ RM⇥K
with Aij ⇥iid N (0, 1).

For any ⇥ ⇤ (0, 1), if r := M/K > c(log M)

1/(1��)
, then with Pr > 1�e�c0M/r

,

⌅ˆx� x⌅ 6 Cs r��(s� 1
2 )�,

for some c, c0, Cs > 0.

proof: show that

�min(D�sA) > C 0
s r�(s� 1

2 )
p

M



ICTP’14: Coherent state transforms, time-frequency and time-scale analysis, applications

ΣΔ quantization in CS

Two-steps procedure:
1. find the support T of x : coarse approx. with BPDN

2. compute

y = �x 2 RM
x 2 ⌃K ⇢ RN

proof: Union bound on any

K-column subset of �
+ proba having good support.

75

q = Q(s)
⇥�[y]

ky � qk 6 2s�1 �
p

M

x̂ := (�T )
sob,sq = (D�s�T )†D�s

q

Proposition Let � ⇤ RM⇥K
with ⇥ij ⇥iid N (0, 1). Suppose ⇥ ⇤ (0, 1) and

r := M/K > c(log M)1/(1��)
for c > 0. Then, ⌅ c0, C, Cs > 0 such that, with

Pr > 1� e�c0M/r

, for all x ⇤ �K s.t. mini2supp x

|xi| > C�,

⇧x̂� x⇧ 6 Cs r��(s� 1
2 )�.

remark: Recent dev. don’t require these!
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ΣΔ quantization in CS (Simulations)

Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., & Yılmaz, Ö. (2013). Sobolev duals for random frames and ΣΔ 
quantization of compressed sensing measurements. Foundations of Computational Mathematics, 13(1), 1-36.

M ⇥ {100, 200, · · · , 1000}, K = 10 and 1000 trials (xi ⇥ {0,±1/
⌅

K}, ⇤x⇤ � 1, � = 10�2)

l
o
g

R
M

S
E BPDN

s = 1
s = 0

s = 2better than
expected!

76

r

- - - : c r�s, s � {0.5, 1, 2}
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5. To saturate or not? 
And how much?

77
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Uniform quantization:
‣     quantization interval
‣ error per measurement bounded:

Saturation phenomenon:
...

...

↵ 2↵ 3↵

�/2

3�/2

5�/2

�

Q↵[�]

|⇥�Q↵[⇥]| 6 �/2

↵
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Uniform quantization:
‣     quantization interval
‣ error per measurement bounded:

Saturation phenomenon:
...

...

↵ 2↵ 3↵

�/2

3�/2

5�/2

�

Q↵[�]

|⇥�Q↵[⇥]| 6 �/2

↵

but all practical quantizers 
have finite dynamic range!
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Uniform quantization:
‣     quantization interval
‣ error per measurement bounded:

Saturation phenomenon:

Finite Dynamic Range Quantization:
‣ G “saturation level”
‣ B bit rate (bits per measurement)
‣ quantization interval is
‣ measurements above G saturate
‣ saturation error is unbounded

CS guarantees are for 
bounded errors only!

...

...

↵ 2↵ 3↵

�/2

3�/2

5�/2

�

Q↵[�]

...

↵ 2↵

�/2

3�/2

�

Q↵[�]
G� �/2

...

G· · ·

...

�G

�G + �/2

· · ·

|⇥�Q↵[⇥]| 6 �/2

↵

but all practical quantizers 
have finite dynamic range!

80

� = 2�B+1G
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Democracy in Action
(i) Saturation Rejection:

Simply discard saturated 
measurements and 
corresponding rows of 

discard
saturated 
measurements

discard
row of Φ 

“democratic measurements”
each measurement has roughly same amount of information

xy

RIP holds on row subsets of Φ

81

[Laska, Boufounos, Davenport, Baraniuk 12]
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Democracy in Action
(i) Saturation Rejection:

Simply discard saturated 
measurements and 
corresponding rows of 

discard
saturated 
measurements

discard
row of Φ 

“democratic measurements”
each measurement has roughly same amount of information

[Laska, Boufounos, Davenport, Baraniuk 12]

(ii) Saturation Consistency:
Include saturated measurements as inequality constraint

xy

Measurement error 
term (quantization)

Saturation consistency
constraint

RIP holds on row subsets of Φ

82
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Experimental Results
SN

R

Sa
tu

ra
tio

n 
R

at
e

Threshold G

83

J.N.  Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk,  “Democracy in action: Quantization, saturation, and compressive sensing”. Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)
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Experimental Results

Note: optimal performance requires 10% saturation

15dB

SN
R

Sa
tu

ra
tio

n 
R

at
e

Threshold G

84

J.N.  Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk,  “Democracy in action: Quantization, saturation, and compressive sensing”. Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)
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Experimental Results

‣  Majority of measurements saturate

The “saturation gap”

SN
R

Sa
tu

ra
tio

n 
R

at
e

Threshold G
‣  Recovery fails

85

J.N.  Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk,  “Democracy in action: Quantization, saturation, and compressive sensing”. Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)
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Experimental Results

Is recovery possible in 
high saturation regimes?
→ yes! 1-bit analysis!

‣  Majority of measurements saturate

The “saturation gap”

SN
R

Sa
tu

ra
tio

n 
R

at
e

Threshold G
‣  Recovery fails

86

J.N.  Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk,  “Democracy in action: Quantization, saturation, and compressive sensing”. Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)
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Part 2
Extreme quantization:

1-bit compressed sensing

88
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Outline:
1. Context
2. Theoretical performance limits
3. Stable embeddings: angles are preserved
4. Generalized Embeddings
5. 1-bit CS Reconstructions? 
6. Playing with thresholds in 1-bit CS

89
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1. Context

90
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Central question: 1-bit sampling?

Signal

t

s(t)

91
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Signal Sampling

t n�t

s(t) sn

92

Central question: 1-bit sampling?
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�
+ + + + + + + +

� � �� � � � � � �
+

Signal Sampling

1-bit quantization

t n�t

s(t) sn

n�t

sign (sn)> 0

6 0
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�
+ + + + + + + +

� � �� � � � � � �
+

Signal Sampling

‣ Doable? 

‣ For which 
“Sampling”?

‣ Which accuracy? 

t n�t

n�t

s(t) sn

1-bit quantization
sign (sn)> 0

6 0
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Reconstruction?
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The pipelined structure and unknown structure have the
best overall performance, so that they are best suited for
applications with high performance requirements, such as
wireless transceiver applications and military use [3]. SAR
ADCs have widely ranging sampling rates, though they are
not the fastest devices. Still, these devices are popular for
their range of speeds and resolutions as well as low cost and
power dissipation. It can be seen that there is a borderline of
sampling rate at around 30 Ms/s separating the sigma-delta
and flash ADCs. Sigma-delta ADCs have the highest resolu-
tion with relatively low sampling rates from kilosamples per
second to megasamples per second, while flash ADCs have
the highest sampling rates up to
Gsps due to their parallel structure
but with a resolution limited to no
more than 8 b due to nonlinearity.
Between these two structures are
unknown structures compromising
speed and resolution. 

We are also interested in the
envelope of the sample distributions
in this plot since such an envelope
indicates the performance limita-
tions. It is reasonable to extract the
envelope information based on the
ADCs with the highest performance
to postulate the design challenges
and technology trends.

In Figure 1, if Walden’s claim that P
is relatively constant is true, according
to (1), the envelope line should show
that a 3 dBs/s increment in fs corre-
sponds to a 1-b reduction in resolution.
However, Figure 1 shows that the real
tradeoff is 1 b/2.3 dBs/s. Compared to
the 1 b/3 dBs/s slope hypothesis, there
is an improvement in P at low sam-
pling rates and degradation at high
sampling rates. This trend indicates
that the ADC performance boundary is
varying with sampling rate, as illustrat-
ed by Figure 2 where ENOB is plotted
versus the sampling rate.

As stated previously, noise and dis-
tortion cause most of the performance
degradation in practical ADCs. The
internal sample-hold-quantize signal
operations are nonlinear, and those
effects are represented as equivalent
noise effects so that they can be unified
into noise-based equations to simplify
the performance analysis. Therefore,
besides thermal noise, we have two
additional noise sources, quantization
noise [2] and aperture-jitter noise [1].

THERMAL NOISE
Thermal noise by itself [1] has a 1 b/6 dBs/s relationship to sam-
pling frequency assuming Nyquist sampling [2]. However, it is
usually overwhelmed by the capacitance noise since the S/H stage,
as the input stage of an ADC, shows strong capacitive characteris-
tics. Therefore, the capacitance noise (modeled as kT/C noise [4],
where k is Boltzmann’s constant, T is the temperature, and C is
the capacitance) is usually assumed as the input noise floor.

QUANTIZATION NOISE
The signal distortion in quantization is modeled as quantization
noise with a signal-to-quantization-noise ratio (SQNR) definition of

[FIG1] Stated number of bits versus sampling rate.
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The pipelined structure and unknown structure have the
best overall performance, so that they are best suited for
applications with high performance requirements, such as
wireless transceiver applications and military use [3]. SAR
ADCs have widely ranging sampling rates, though they are
not the fastest devices. Still, these devices are popular for
their range of speeds and resolutions as well as low cost and
power dissipation. It can be seen that there is a borderline of
sampling rate at around 30 Ms/s separating the sigma-delta
and flash ADCs. Sigma-delta ADCs have the highest resolu-
tion with relatively low sampling rates from kilosamples per
second to megasamples per second, while flash ADCs have
the highest sampling rates up to
Gsps due to their parallel structure
but with a resolution limited to no
more than 8 b due to nonlinearity.
Between these two structures are
unknown structures compromising
speed and resolution. 

We are also interested in the
envelope of the sample distributions
in this plot since such an envelope
indicates the performance limita-
tions. It is reasonable to extract the
envelope information based on the
ADCs with the highest performance
to postulate the design challenges
and technology trends.

In Figure 1, if Walden’s claim that P
is relatively constant is true, according
to (1), the envelope line should show
that a 3 dBs/s increment in fs corre-
sponds to a 1-b reduction in resolution.
However, Figure 1 shows that the real
tradeoff is 1 b/2.3 dBs/s. Compared to
the 1 b/3 dBs/s slope hypothesis, there
is an improvement in P at low sam-
pling rates and degradation at high
sampling rates. This trend indicates
that the ADC performance boundary is
varying with sampling rate, as illustrat-
ed by Figure 2 where ENOB is plotted
versus the sampling rate.

As stated previously, noise and dis-
tortion cause most of the performance
degradation in practical ADCs. The
internal sample-hold-quantize signal
operations are nonlinear, and those
effects are represented as equivalent
noise effects so that they can be unified
into noise-based equations to simplify
the performance analysis. Therefore,
besides thermal noise, we have two
additional noise sources, quantization
noise [2] and aperture-jitter noise [1].

THERMAL NOISE
Thermal noise by itself [1] has a 1 b/6 dBs/s relationship to sam-
pling frequency assuming Nyquist sampling [2]. However, it is
usually overwhelmed by the capacitance noise since the S/H stage,
as the input stage of an ADC, shows strong capacitive characteris-
tics. Therefore, the capacitance noise (modeled as kT/C noise [4],
where k is Boltzmann’s constant, T is the temperature, and C is
the capacitance) is usually assumed as the input noise floor.

QUANTIZATION NOISE
The signal distortion in quantization is modeled as quantization
noise with a signal-to-quantization-noise ratio (SQNR) definition of
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� x

=

M M ⇥N

N

1-bit Compressed Sensing
y
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1-bit Compressed Sensing

= sign

� x

M M ⇥N

N

sign t =

(
1 if t > 0
�1 if t 6 0 component-wisewith:

q
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1-bit Compressed Sensing

= sign

� x

M M ⇥N
N

O
ve

rs
am

pl
in

g
in

M
⇢

But, which information inside q ?M -bits!

q
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1-bit Compressed Sensing

= sign

� x

M M ⇥N
N

O
ve

rs
am

pl
in

g
in

M
⇢

M -bits!

Computational
bits matter!

q
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1-bit Compressed SensingComputational
bits matter!

= sign

� x

M M ⇥N
N

O
ve

rs
am

pl
in

g
in

M
q

Warning 1: signal amplitude is lost!

q = sign (�(�x)) = sign (�x), 8� > 0

) Amplitude is arbitrarily fixed

Examples : kxk = 1 or k�xk1 = 1
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1-bit Compressed SensingComputational
bits matter!

= sign

� x

M M ⇥N
N

O
ve

rs
am

pl
in

g
in

M
q

Warning 2: ∃forbidden sensing!       
Let x� := (1, �, 0, · · · , 0)

T ⇤ RN

and � ⇤ {±1}M⇥N
(e.g., Bernoulli).

We have ⇧x0 � x�⇧ = �

but q = sign (�x0) = sign (�x�), ⌅|�| < 1

⇥ No hope to distinguish them by increasing M !

[Plan, Vershynin, 11]
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2. Theoretical performance limits
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Lower bound: cell intersection viewpoint
Measurement  
Space  

�3 
+ =

Not all quantization cells intersected! 
2K

✓
N

K

◆✓
M

K

◆
no more than C =

⇢ �⌃K
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Lower bound: cell intersection viewpoint
Measurement  
Space  

�3 
+ =

Not all quantization cells intersected! 
2K

✓
N

K

◆✓
M

K

◆
no more than C =

⇢ �⌃K

2✏

→ Lower bound on any 1-bit reconstruction error

) � = �(K/M)

Most e⇥cient �-covering of SN�1 \ �K with �-caps
) lower bound on C by “vol(SN�1 \ �K)/vol(�-cap)”
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Reaching this bound ?
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Reaching this bound ?
Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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Reaching this bound ?
Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com

x

x on S2

M vectors:

{�i : 1 6 i 6 M}
iid Gaussian
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'1

x

h'1,xi > 0

{u
: h'

1
,u

i >
0}

{u
: h'

1
,u

i 6
0}

1-bit Measurements

x on S2

M vectors:

{�i : 1 6 i 6 M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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'1

'2

x

h'1,xi > 0
h'2,xi > 0

1-bit Measurements

x on S2

M vectors:

{�i : 1 6 i 6 M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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'1

'2

'3

x

h'1,xi > 0
h'2,xi > 0
h'3,xi 6 0

1-bit Measurements

x on S2

M vectors:

{�i : 1 6 i 6 M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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h'1,xi > 0
h'2,xi > 0
h'3,xi 6 0

'1

'2

'3

x

'4

h'4,xi > 0

1-bit Measurements

x on S2

M vectors:

{�i : 1 6 i 6 M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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h'1,xi > 0
h'2,xi > 0
h'3,xi 6 0
h'4,xi > 0

'1

'2

'3

x

'4

'5

h'5,xi > 0

1-bit Measurements

x on S2

M vectors:

{�i : 1 6 i 6 M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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h'1,xi > 0
h'2,xi > 0
h'3,xi 6 0
h'4,xi > 0
h'5,xi > 0

Smaller and smaller 
when M increases

1-bit Measurements

...

{u : sign (�u) = sign (�x)}

'1

'2

'3

x

'4

'5

x on S2

M vectors:

{�i : 1 6 i 6 M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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h'1,xi > 0
h'2,xi > 0
h'3,xi 6 0
h'4,xi > 0
h'5,xi > 0

1-bit Measurements

... Lower bound on 
this width?

Smaller and smaller 
when M increases

{u : sign (�u) = sign (�x)}

'1

'2

'3

x

'4

'5

x on S2

M vectors:

{�i : 1 6 i 6 M}

Reaching this bound ?

iid Gaussian

⌃K

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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Reaching this bound ?

Let A(·) := sign (� ·) with � � NM⇥N (0, 1).

for any two unit K-sparse vectors x and s,

A(x) = A(s) ) kx� sk  �

, � = O
�
K
M log

MN
K

�

If M = O(��1K logN ), then, w.h.p,
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Reaching this bound ?

Let A(·) := sign (� ·) with � � NM⇥N (0, 1).

for any two unit K-sparse vectors x and s,

A(x) = A(s) ) kx� sk  �

, � = O
�
K
M log

MN
K

�

If M = O(��1K logN ), then, w.h.p,

almost optimal
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Reaching this bound ?

Let A(·) := sign (� ·) with � � NM⇥N (0, 1).

for any two unit K-sparse vectors x and s,

A(x) = A(s) ) kx� sk  �

, � = O
�
K
M log

MN
K

�

If M = O(��1K logN ), then, w.h.p,

almost optimal
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Carl Friedrich Gauss:
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Note: You can even afford a small error, i.e.,
if only b bits are different              ) kx� sk 6 K+b

K ✏between A(x) and A(s)
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3. Stable embeddings: 
angles are preserved

119



ELEN ICCHA5, Vanderbilt Univ.

A(u) := sign (�u) , Aj(u) = sign ('j · u) 2 {±1}
‣ Let’s define

What’s known?

120

random plane
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v
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j 
th row 

of �
Let u,v 2 SN�1

(wlog)

P[Aj(u) 6= Aj(v)] = ?
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‣ Let’s define

121

j 
th row 

of �

random plane

+�
u

v
'j

✓uv

Let u,v 2 SN�1
(wlog)

What’s known?

A(u) := sign (�u) , Aj(u) = sign ('j · u) 2 {±1}

P[Aj(u) 6= Aj(v)] = 1
⇡ angle(u,v)

= 1
⇡ ✓uv
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‣ Let’s define
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j 
th row 

of �

random plane

+�
u

v
'j

✓uv

Let u,v 2 SN�1
(wlog)

What’s known?

A(u) := sign (�u) , Aj(u) = sign ('j · u) 2 {±1}

P[Aj(u) 6= Aj(v)] = 1
⇡ angle(u,v)

= 1
⇡ ✓uv

Xj =
1
2 |Aj(u)�Aj(v)| ⇠ Bernoulli(

✓uv
⇡ ) 2 {0, 1})

Aj(u)�Aj(v)⇢ (XOR)

iid
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‣ Metrics of interest:

Starting point: Hamming/Angle Concentration

123

dH(u,v) = 1
M

P
i(ui � vi) (norm. Hamming)

dang(x, s) = 1
⇡ arccos(hx, si) (norm. angle)
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‣ Metrics of interest:

‣ Known fact: if 

Starting point: Hamming/Angle Concentration

� ⇠ NM⇥N (0, 1)

dH(u,v) = 1
M

P
i(ui � vi) (norm. Hamming)

dang(x, s) = 1
⇡ arccos(hx, si) (norm. angle)

Let � ⇠ NM⇥N
(0, 1), A(·) = sign (� ·) 2 {�1, 1}M

and ✏ > 0.

For any x, s 2 SN�1
, we have

P�

⇥ �� dH

�
A(x), A(s)

�
� dang(x, s)

�� 6 ✏
⇤

> 1� 2 e�2✏2M .

[e.g., Goemans, Williamson 1995]

Thanks to A(.), Hamming distance 
concentrates around vector angles!  

x

s

random plane

'
+�
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Binary    Stable Embedding✏ (B✏SE)

A mapping A : RN ⇥ {±1}M
is a binary �-stable embedding (B�SE) of

order K for sparse vectors if

dang(x, s)� � 6 dH(A(x), A(s)) 6 dang(x, s) + �

for all x, s ⇤ SN�1
with x± s K-sparse.

kind of “binary restricted (quasi) isometry”

125

dang(x, s)� ✏  dH(A(x), A(s))  dang(x, s) + ✏
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Binary    Stable Embedding

‣ Corollary : for any algorithm with output      
jointly K-sparse and consistent                       ,  

‣ If limited binary noise, d ang still bounded
‣ If not exactly sparse signals (but almost), d ang still bounded

✏ (B✏SE)

x

⇤

(i.e., A(x⇤) = A(x))

dang(x,x⇤) 6 2✏!

A mapping A : RN ⇥ {±1}M
is a binary �-stable embedding (B�SE) of

order K for sparse vectors if

dang(x, s)� � 6 dH(A(x), A(s)) 6 dang(x, s) + �

for all x, s ⇤ SN�1
with x± s K-sparse.

kind of “binary restricted (quasi) isometry”
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B✏SE existence? Yes! 

                              

Let � ⇥ NM⇥N
(0, 1), fix 0 6 ⇥ 6 1 and � > 0. If

M > 4
�2

�
K log(N) + 2K log(

50
� ) + log(

2
⇥ )

�
,

then � is a B�SE with Pr > 1� ⇥.

M = O(��2K log N)
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B✏SE existence? Yes! 

Proof sketch:

1) Generalize

P�

⇥ �� dH

�
A(x), A(s)

�
� dang(x, s)

�� 6 ✏
⇤

> 1� 2 e�2✏2M .

to

P�

h �� dH

�
A(u), A(v)

�
� dang(x, s)

�� 6 ✏ + (

⇡
2 D)

1/2 �
i

> 1� 2 e�2✏2M .

for u,v in a D-dimensional neighborhood of width � around x and s resp.

2) Covers the space of ”K-sparse signal pairs” in RN
by

O
��

N
K

�
��2K

�
= O((

eN
K�2 )

K
) neighborhoods.

3) Apply Point 1 with union bound, and “stir until the proof thickens”

x

s

random plane

'
+�

�

                              

Let � ⇥ NM⇥N
(0, 1), fix 0 6 ⇥ 6 1 and � > 0. If

M > 4
�2

�
K log(N) + 2K log(

50
� ) + log(

2
⇥ )

�
,

then � is a B�SE with Pr > 1� ⇥.

M = O(��2K log N)
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B✏SE existence? Yes! 

B�SE consistency “width”:

� = O
�
(

K
M log

MN
K )

1/2
�)

                              

Let � ⇥ NM⇥N
(0, 1), fix 0 6 ⇥ 6 1 and � > 0. If

M > 4
�2

�
K log(N) + 2K log(

50
� ) + log(

2
⇥ )

�
,

then � is a B�SE with Pr > 1� ⇥.

M = O(��2K log N)
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B✏SE existence? Yes! 

B�SE consistency “width”:

� = O
�
(

K
M log

MN
K )

1/2
�)

not as optimal but
stronger result!

                              

Let � ⇥ NM⇥N
(0, 1), fix 0 6 ⇥ 6 1 and � > 0. If

M > 4
�2

�
K log(N) + 2K log(

50
� ) + log(

2
⇥ )

�
,

then � is a B�SE with Pr > 1� ⇥.

M = O(��2K log N)
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4. Generalized Embeddings
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Beyond strict sparsity ...

Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Let K � SN�1
(e.g., compressible signals s.t. ⇥x⇥2/⇥x⇥1 6

⇤
K)

6= �K

What can we say on dH(A(x), A(s)) for x, s � K?

132
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Let K � SN�1
(e.g., compressible signals s.t. ⇥x⇥2/⇥x⇥1 6

⇤
K)

6= �K

What can we say on dH(A(x), A(s)) for x, s � K?

Uniform tesselation: [Plan, Vershynin, 11]

P

�
# random hyperplanes btw x and s / dang(x, s)

�

dH(A(x), A(s))
?

K
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Measuring the “dimension” of K � Gaussian mean width:

w(K) := E sup
u⇥K�K

⇥g,u⇤, with gk �iid N (0, 1)

K

⌘

width in direction ⌘
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Examples:

Measuring the “dimension” of K � Gaussian mean width:

w(K) := E sup
u⇥K�K

⇥g,u⇤, with gk �iid N (0, 1)

w2
(SN�1

) 6 4N

w2
(K) 6 Clog |K| (for finite sets)

w2(K) 6 L if subspace with dimK = L

w2(�K) � K log(2N/K)

K

⌘

width in direction ⌘
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Proposition Let � ⇥ NM⇥N (0, 1) and K ⇤ RN
. Then, for some C, c > 0, if

M > C��6w2(K),

then, with Pr > 1� e�c�2M
, we have

dang(x, s)� � 6 dH(A(x), A(s)) 6 dang(x, s)� �, ⇧x, s ⌅ K.
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Proposition Let � ⇥ NM⇥N (0, 1) and K ⇤ RN
. Then, for some C, c > 0, if

M > C��6w2(K),

then, with Pr > 1� e�c�2M
, we have

dang(x, s)� � 6 dH(A(x), A(s)) 6 dang(x, s)� �, ⇧x, s ⌅ K.

not as optimal but
stronger result!

Generalize BεSE to more general sets.
In particular, to  

CK = {u ⇥ RN : ⇤u⇤2/⇤u⇤1 6
⌅

K} � �K

with w2(CK) 6 cK log N/K.
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Proposition Let � ⇥ NM⇥N (0, 1) and K ⇤ RN
. Then, for some C, c > 0, if

M > C��6w2(K),

then, with Pr > 1� e�c�2M
, we have

dang(x, s)� � 6 dH(A(x), A(s)) 6 dang(x, s)� �, ⇧x, s ⌅ K.

not as optimal but
stronger result!

Generalize BεSE to more general sets.
In particular, to  

CK = {u ⇥ RN : ⇤u⇤2/⇤u⇤1 6
⌅

K} � �K

with w2(CK) 6 cK log N/K.

) Extension to “1-bit Matrix Completion” possible!

i.e., w2
(r-rank N1 ⇥N2 matrix) 6 c r(N1 + N2)!
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5. 1-bit CS Reconstructions?
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Dumbest 1-bit reconstruction

Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.
LJ, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013 

|
p
�/2
M ⇤sign (�x),�s⌅ � ⇤x, s⌅| ⇥ � [Plan, Vershynin, 12]

If M = O(��2K logN/K) (for x 2 �K fixed, 8 s 2 �K)

or, if M = O(��6K logN/K) (8x, s 2 �K), then, w.h.p,

Fact:
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Dumbest 1-bit reconstruction

‣ Implication? 

Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.
LJ, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013

Let x ⇤ �K ⌅ SN�1 and q = sign(�x).
Compute

x̂ = �
2M HK(�⇤

q)

Then, if previous property holds,

⇧x� x̂⇧ ⇥ 2�.

[LJ, Degraux, De Vleeschouwer, 13]

Non-uniform case (x given):

) � = O
�
(

K
M log

MN
K )

1/2
�

Uniform case:

) � = O
�
(

K
M log

MN
K )

1/6
�

|
p
�/2
M ⇤sign (�x),�s⌅ � ⇤x, s⌅| ⇥ � [Plan, Vershynin, 12]

If M = O(��2K logN/K) (for x 2 �K fixed, 8 s 2 �K)

or, if M = O(��6K logN/K) (8x, s 2 �K), then, w.h.p,

Fact:
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‣ Let 
‣ Initially: [Boufounos, Baraniuk 2008] 

Initial approach

'1

'2

'3

x

'4

'5

Non-convex! 2 numerical choices :
1. relax + projection on S N-1

2. “trust region methods” 
→ Restricted-Step Shrinkage (RSS)

x̂ = arg min
u

kuk1 s.t. diag(q)�u > 0 and kuk2 = 1

q = sign (�x) =: A(x)

{u ⇥ RN ⌅ SN�1 : q = A(u)}
� {u ⇥ RN ⌅ SN�1 : diag(q)�u > 0}
⇤ x

Consistency constraint:
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‣ Let 
‣ Initially: [Boufounos, Baraniuk 2008] 

(relaxed) x̂ = arg min
u

kuk1 + �k(diag(q)�u)�k2 s.t. kuk2 = 1

→ Solved by projected gradient descent

M
SE

 (
dB

)

M0 1000 2000

0

-10

-20

3000

Classical CS

1-bit CS

K=16

gain brought
by 
(almost)consiste
ncy 

x̂ = arg min
u

kuk1 s.t. diag(q)�u > 0 and kuk2 = 1

q = sign (�x) =: A(x)

Initial approach

(e.g., take 
the 1st choice)
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‣ Let 
‣ Initially: [Boufounos, Baraniuk 2008] 

(relaxed) x̂ = arg min
u

kuk1 + �k(diag(q)�u)�k2 s.t. kuk2 = 1

→ Solved by projected gradient descent

M
SE

 (
dB

)

M0 1000 2000

0

-10

-20

3000

Classical CS

1-bit CS

K=16

gain brought
by 
(almost)consiste
ncy 

Can we do better?

x̂ = arg min
u

kuk1 s.t. diag(q)�u > 0 and kuk2 = 1

q = sign (�x) =: A(x)

Initial approach

(e.g., take 
the 1st choice)
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Other methods:
‣ Matching Sign Pursuit [Boufounos]

‣ Restricted-Step Shrinkage (RSS) [Laska, We, Yin, Baraniuk]

‣ Binary Iterative Hard Thresholding [Jacques, Laska, Boufounos, Baraniuk]

‣ Convex Optimization [Plan, Vershynin]

‣ ... 
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‣ Iterative greedy algorithm, similar to CoSaMP [Needell, Tropp, 08]

‣ Maintains running signal estimate and its support T.
‣ MSP iteration:
‣ Identify sign violations
‣ Compute proxy  
‣ Identify support  
‣ Consistent Reconstruction over support estimate: 

‣ Truncate, normalize, and update estimate:

!
!
!

r = (diag(y)�b
x)�

p = �T r

� = suppp|2K � T

b|� = arg min
u2RN

�(diag(y)�u)��2
2 s.t �u�2 = 1 and u|T c = 0

b
x � b|K / ⇥b|K⇥2

Matching Sign Pursuit (MSP)
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Matching Sign Pursuit (MSP)

Boufounos, P. T. (2009, November). “Greedy sparse signal reconstruction from sign measurements”. 
In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on (pp. 1305-1309). IEEE.

147



ICTP’14: Coherent state transforms, time-frequency and time-scale analysis, applications

Given q = A(x) and K, set l = 0, x

0 = 0:

a

l+1 = x

l + �
2�

T �
q �A(xl)

�
,

x

l+1 = HK(al+1), l⇥ l + 1

Stop when dH(q, A(x

l+1
)) = 0 or l = max. iter.

Binary Iterative Hard Thresholding

(proj. K-sparse signal set)

(“gradient” towards consistency)

minimizes

(⌧ > 0 controls gradient descent)

(connections with ML hinge loss, 1-bit classification)

with HK(u) = K-term hard thresholding

qk �A(xl)k = 0

qj �A(xl)j > 0q

'j

'k

x

l

148

J (x0) =
MX

j=1

���sign (��j ,x⇥) ��j ,x
0⇥
�
�

��

J (x0) = �[ diag(q)(�x

0)]��1 with (�)� = (�� |�|)/2
qj ⇢
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N = 1000, K = 10
Bernoulli-Gaussian model
normalized signals
1000 trials

Matching Sign pursuit (MSP) 
Restricted-Step Shrinkage (RSS)
Binary Iterative Hard Thresholding (BIHT)

Binary Iterative Hard Thresholding
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‣ Testing         : 
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Binary Iterative Hard Thresholding
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Remark: CS vs bits/meas.
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normalized signals
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B = 1, ..., 12
M = Total Bits/B

1000 trials
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Convex Optimization   [Plan, Vershynin, 12]

ˆ

x = arg max

u2RN
q

T �u s.t. u � K

Let q = sign (�x) for some signal x ⇥ K � BN
2

Compute

e.g., sparse, 
compressible, 
low-rank matrix

maximize
consistency

152

Convex problem if K convex!

No ambiguous amplitude definition

(u = 0 avoided)

S. Bahmani, P.T. Boufounos, B. Raj, “Robust 1-bit Compressive Sensing via Gradient Support Pursuit”, arxiv:1304.6626
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Convex Optimization   [Plan, Vershynin, 12]

ˆ

x = arg max

u2RN
q

T �u s.t. u � K

Let q = sign (�x) for some signal x ⇥ K � BN
2

Compute

e.g., sparse, 
compressible, 
low-rank matrix

maximize
consistency
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Convex problem if K convex!

No ambiguous amplitude definition

(u = 0 avoided)

[Bahmani, Boufounos, Raj, 13]

S. Bahmani, P.T. Boufounos, B. Raj, “Robust 1-bit Compressive Sensing via Gradient Support Pursuit”, arxiv:1304.6626

(PV-L0 problem)

x̂ = 1
⇥HK(�⇤q)⇥ HK(��

q) if K = �K !!

Remark:
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Proposition (assuming ⇥x⇥ = 1) For some C, c > 0, if M > C��6w2(K),
then, with Pr > 1� e�c�2M

, we have ⇥x̂� x⇥2 6
p

⇥
2 �.

Convex Optimization   [Plan, Vershynin, 12]

ˆ

x = arg max

u2RN
q

T �u s.t. u � K

Let q = sign (�x) for some signal x ⇥ K � BN
2

Compute
�2 if x is fixed

e.g., sparse, 
compressible, 
low-rank matrix

maximize
consistency
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ˆ

x = arg max

u2RN
q

T �u s.t. u � K

Let q = sign (�x) for some signal x ⇥ K � BN
2

Compute

+ Robust to noise:

(under the same conditions)

kˆ

x� xk2 6 �
p

log e/� + 11 p
p

log e/p

Convex Optimization   [Plan, Vershynin, 12]

noise powernoise (bit flip)

Let qn = diag(�) q with �i � {±1}M , and assume dH(q, qn) 6 p

Proposition (assuming ⇥x⇥ = 1) For some C, c > 0, if M > C��6w2(K),
then, with Pr > 1� e�c�2M

, we have ⇥x̂� x⇥2 6
p

⇥
2 �.
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Note: if M = O(✏�2
(p� 1/2)

�2K log N/K)

this term disappears if ⌘i = ±1 are iid RVs (with P (⌘i = 1) = p)
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5. Playing with thresholds 
in 1-bit CS
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Thresholds?

157

‣

Is there an interest in sensing 

sign (h�, xi � �)

for some (random) ' and ⌧ 2 R?

Given x 2 RN (e.g., sparse)

O

'⌧

x
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Thresholds?

158

‣

Is there an interest in sensing 

‣ Two recent applications:
‣ adaptive thresholds
‣ bridging 1-bit and B -bits QCS

sign (h�, xi � �)

for some (random) ' and ⌧ 2 R?

Given x 2 RN (e.g., sparse)

O

'⌧

x

[Kamilov, Bourquard, Amini, Unser, 12]

[LJ, Degraux, De Vleeschouwer, 13]
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1-bit CS with adaptive thresholds

qk = sign (h�k,xi)

Non-adaptive 1-bit CS

'1

'2

O

'3

x

O(

K
M log

NM
K )

159

(⌧ = 0)

Reminder
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,�1, · · · ,�k, �1, · · · , �k)
�k+1 s.t. h�k+1, x̂ki � �k+1 = 0

⇢

adapted from prev. meas.Given a decoder Rec()

x

'1

O

⌧1 = 0

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
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U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.

qk = sign (h�k,xi � �k)
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,�1, · · · ,�k, �1, · · · , �k)
�k+1 s.t. h�k+1, x̂ki � �k+1 = 0

⇢

adapted from prev. meas.Given a decoder Rec()

x

'1

O

x̂1

⌧1 = 0

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
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U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.

qk = sign (h�k,xi � �k)
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,�1, · · · ,�k, �1, · · · , �k)
�k+1 s.t. h�k+1, x̂ki � �k+1 = 0

⇢

adapted from prev. meas.Given a decoder Rec()

x

'1

O

x̂1

⌧1 = 0

⌧2

'2

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
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U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.

qk = sign (h�k,xi � �k)



ICTP’14: Coherent state transforms, time-frequency and time-scale analysis, applications

1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,�1, · · · ,�k, �1, · · · , �k)
�k+1 s.t. h�k+1, x̂ki � �k+1 = 0

⇢

adapted from prev. meas.Given a decoder Rec()

x

'1

O

x̂1

⌧1 = 0

⌧2

x̂2

⌧3

'2
'3

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
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qk = sign (h�k,xi � �k)
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,�1, · · · ,�k, �1, · · · , �k)
�k+1 s.t. h�k+1, x̂ki � �k+1 = 0

⇢

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
adapted from prev. meas.Given a decoder Rec()

x

'1

O

x̂1

⌧1 = 0

⌧2

x̂2

⌧3

'2
'3

x̂3

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.
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qk = sign (h�k,xi � �k)
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1-bit CS with adaptive thresholds

�
q {±1}My M

M

N

Kind of 
ΣΔ loop

System view:

165

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.
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1-bit CS with adaptive thresholds

�
q {±1}My M

M

N

Rec() set to  
Generalized 
Approximate 
Message 
Passing

Kind of 
ΣΔ loop

System view:

⌧ = 0

⌧ = adapt.

166

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.
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Bridging 1-bit & B -bit CS?
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Bridging 1-bit & B -bit CS?
‣ B-bit quantizer defined with thresholds:

‣ Can we combine multiple thresholds in 1-bit CS?

168

R
ti ti+1

� qi

� ⇤ Ri = [ti, ti+1) ⇥ sign (�� ti) = +1 & sign (�� ti+1) = �1
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with wj = qj � qj�1.

Given T = {�j} and � = {qj} (|T | = 2B + 1 = |�| + 1), let’s define

J(⇥, �) =
2BX

j=2

wj

���sign (�� ⇤j) (⇥ � ⇤j)
�
�

��,

�

⌧j⌧j�1

(for wj = 1)

⌫

⌧j+1

“delocalized”
BIHT `1-sided norm

Illustration:

J(⇥,�) = |
�
sign (�� ⇤j) (⇥ � ⇤j)

�
�|

= (⇥ � ⇤j)

� 2 [⇤j�1, ⇤j), ⇥ 2 [⇤j , ⇤j+1)

Bridging 1-bit & B -bit CS?
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with wj = qj � qj�1.

Given T = {�j} and � = {qj} (|T | = 2B + 1 = |�| + 1), let’s define

J(⇥, �) =
2BX

j=2

wj

���sign (�� ⇤j) (⇥ � ⇤j)
�
�

��,

⌧j⌧j�1 ⌧j+1

(⌫ � ⌧j)

(for wj = 1)

� ⌫

Illustration:

(⌫ � ⌧j+1)

� 2 [⇤j�1, ⇤j), ⇥ 2 [⇤j+1, ⇤j+2)

J(⇥,�)

= (⇥ � ⇤j) + (⇥ � ⇤j+1)

Bridging 1-bit & B -bit CS?
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with wj = qj � qj�1.

Given T = {�j} and � = {qj} (|T | = 2B + 1 = |�| + 1), let’s define

J(⇥, �) =
2BX

j=2

wj

���sign (�� ⇤j) (⇥ � ⇤j)
�
�

��,

⌧j⌧j�1 ⌧j+1

(for wj = 1)

�
(⌫ � ⌧j)

(⌫ � ⌧j) + (⌫ � ⌧j+1)
Illustration:

Bridging 1-bit & B -bit CS?
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with wj = qj � qj�1.

Given T = {�j} and � = {qj} (|T | = 2B + 1 = |�| + 1), let’s define

J(⇥, �) =
2BX

j=2

wj

���sign (�� ⇤j) (⇥ � ⇤j)
�
�

��,

q5

� � R5

1
2 (�� ⌫)2

J(�, ⇥)J(⇥, �) =
2BX

j=2

wj

���sign (�� ⇤j) (⇥ � ⇤j)
�
�

��,

Illustration: more bins

Bridging 1-bit & B -bit CS?
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Remarks:
‣ J  is convex in ν  
‣

 
‣

173

with wj = qj � qj�1.

For u,v � RM
: J (u,v) :=

PM
k=1 J(uk, vk)

(quadratic energy)

Given T = {�j} and � = {qj} (|T | = 2B + 1 = |�| + 1), let’s define

J(⇥, �) =
2BX

j=2

wj

���sign (�� ⇤j) (⇥ � ⇤j)
�
�

��,

For B = 1 (j = 2 only):

J (u,v) ⇤ ⌅(sign (v)� u)�⌅1 ⇥ �1-sided 1-bit energy

For B ⇥ 1:

J(⇥, �)⇤ 1
2 (⇥ � �)

2
and J (u,v)⇤ 1

2⌅u� v⌅2

Bridging 1-bit & B -bit CS?
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‣ Let’s define an inconsistency energy:

‣ Idea: Minimize it in

174

�K (as for Iterative Hard Thresholding)
[Blumensath, Davies, 08]

T. Blumensath, M.E. Davies, “Iterative thresholding for sparse approximations”. Journal of Fourier Analysis and Applications, 14(5-6), 629-654. (2008).

EB(u) := J (�u, q) with q = QB [�x] and E�B(x) = 0

minu2RN EB(u) s.t. �u�0 6 K,

Bridging 1-bit & B -bit CS?
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‣ Let’s define an inconsistency energy:

‣ Idea: Minimize it in

‣ NP Hard but greedy solution (as for IHT):

175

�K (as for Iterative Hard Thresholding)

T. Blumensath, M.E. Davies, “Iterative thresholding for sparse approximations”. Journal of Fourier Analysis and Applications, 14(5-6), 629-654. (2008).

(sub) gradient

�⇤(�u� q)�⇤(sign (�u)� sign (�x))

BIHT! IHT!Quantized IHT (QIHT)

[Blumensath, Davies, 08]

LJ, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013 

EB(u) := J (�u, q) with q = QB [�x] and E�B(x) = 0

minu2RN EB(u) s.t. �u�0 6 K,

x

(n+1) = HK [x(n) � µ � EB(x(n))] and x

(0) = 0.

B = 1 B � 1
@ EB(u) = �⇤(QB(�u)� q)

Bridging 1-bit & B -bit CS?

http://www.jacobs-university.de/sampta/
http://www.jacobs-university.de/sampta/
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µ = 1
M (1�

p
2K/M)

*

almost “6dB per bit” gain*:

*

*

“Dumbest algo”

Adjusted by limit case 
analysis: BIHT and IHT

Note: entropy could be computed instead of B (e.g., for further efficient coding) 

Boosting
at low b

(+ Lloyd-Max Gauss. Q.)

LJ, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013 

N = 1024, K = 16, R = BM � {64, 128, · · · , 1280}, 100 trials

R R R

R: total bit budget (BM)

Bridging 1-bit & B -bit CS?

http://www.jacobs-university.de/sampta/
http://www.jacobs-university.de/sampta/
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“Dumbest algo”

Interesting 
transition at

J. N. Laska, R. G. Baraniuk, ‘Regime change: Bit-depth versus measurement-rate in compressive sensing”, Signal Processing, IEEE Transactions on, 60(7), 3496-3505. (2012)

“Regime Change?”
[Laska, Baraniuk, 12]

R0 could increase with 
input noise power. 

Quantization
Compression
Regime

Measurement
Compression
Regime

N = 1024, K = 16, R = BM � {64, 128, · · · , 1280}, 100 trials

R0 ' 375

R=BM

Bridging 1-bit & B -bit CS?
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Thank you!
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