Joint ICTP-TWAS School on Coherent State Transforms, Time-Frequency and

 Time-Scale Analysis, Applications2-20 June 2014

Quantizing compressed sensing:
From high resolution to 1-bit From high resolution to 1-b

L. Jacques

UCL, Louvain-La-Neuve, Belgium

Quantizing compressed sensing:

From high resolution to 1-bit quantization scheme

Laurent Jacques, UCL, Belgium
Coherent state transforms, time-frequency and time-scale analysis, applications

The Abdus Salam
International Centre for Theoretical Physics

Compressive Sampling

Highly compressed recap of what is ...
Compressive $^{\text {Sent }}$
Sensing sampling

Generally, sampling is ...

Human readable signal!

Generally, sampling is ...

New ways to sample signals
"Computer readable" sensing + prior information

Optimized setup: sampling rate \propto information

Generally, sampling is ...

New ways to sample signals structure s.onsuxt, "Computer readable" sensing prior information

Optimized setup: sampling rate \propto information

Compressed Sensing

... in a nutshell:
"Forget" Dirac, forget Nyquist, ask few (linear) questions about your informative (sparse) signal, and recover it differently (non-linearly)"

Compressed Sensing

Assumption: the probability that

 our world is totally discrete is very high ...
Compressed Sensing

M questions y

Sensing method Φ

Signal \boldsymbol{x}

Then ...

Generalized Linear Sensing!

Compressed Sensing

M questions

Sensing method Φ

Signal \boldsymbol{x}

Then ...

Sparsity Prior ($\Psi=\mathrm{Id}$)

Generalized Linear Sensing!

$$
\begin{gathered}
y_{i}=\langle\boldsymbol{\varphi}, \boldsymbol{x}\rangle=\boldsymbol{\varphi}^{T} \boldsymbol{x} \\
1 \leq i \leq M
\end{gathered}
$$

Compressed Sensing

\boldsymbol{x}

```
If \(\boldsymbol{x}\) is \(K\)-sparse and if \(\boldsymbol{\Phi}\) well "conditioned" then:
```

$$
\boldsymbol{x}^{*}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{0} \text { s.t. } \boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{u}
$$

$$
\|\boldsymbol{u}\|_{0}=\#\left\{j: u_{j} \neq 0\right\}
$$

Compressed Sensing

\boldsymbol{x}

```
If \(\boldsymbol{x}\) is \(K\)-sparse and if \(\boldsymbol{\Phi}\) well "conditioned"
then:
    (relax.)
    \(\boldsymbol{x}^{*}=\arg \min \|\boldsymbol{u}\|_{\text {暑 s.t. }} \boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{u}\)
    \(\boldsymbol{u} \in \mathbb{R}^{N}\)
                                    1
\(\|\boldsymbol{u}\|_{1}=\sum_{j}\left|u_{j}\right|\)
(Basis Pursuit) |Chen, Donoono, Saunders, 1998]
```


Compressed Sensing

Simplifying assumption

$$
\begin{aligned}
& \exists \delta \in(0,1) \quad \text { Restricted Isometry Property } \\
& \sqrt{1-\delta}\|\boldsymbol{v}\|_{2} \leqslant\|\boldsymbol{\Phi} \boldsymbol{v}\|_{2} \leqslant \sqrt{1+\delta}\|\boldsymbol{v}\|_{2} \\
& \text { for all } 2 K \text { sparse signals } \boldsymbol{v} \text {. }
\end{aligned}
$$

any subset of $2 K$ columns
is an isometry

$$
\begin{aligned}
& \text { If } \boldsymbol{x} \text { is } K \text {-sparse and if } \boldsymbol{\Phi} \text { well "conditioned" } \\
& \text { then: } \\
& \text { (relax.) } \\
& \boldsymbol{x}^{*}=\arg \min \|\boldsymbol{u}\|_{\text {暑 }} \text { s.t. } \boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{u} \\
& \begin{array}{llll}
\boldsymbol{u} \in \mathbb{R}^{N} & 1 & \text { if } \delta<\sqrt{2}-1 & \text { [Candes 08] }
\end{array} \\
& \|\boldsymbol{u}\|_{1}=\sum_{j}\left|u_{j}\right| \\
& \text { (Basis Pursuit) |Chen, Donooho, Saunders, 1988| }
\end{aligned}
$$

Compressed Sensing

Simplifying assumption

$$
\begin{aligned}
& \exists \delta \in(0,1) \quad \text { Restricted Isometry Property } \\
& \sqrt{1-\delta}\|\boldsymbol{v}\|_{2} \leqslant\|\boldsymbol{\Phi} \boldsymbol{v}\|_{2} \leqslant \sqrt{1+\delta}\|\boldsymbol{v}\|_{2} \\
& \text { for all } 2 K \text { sparse signals } \boldsymbol{v} \text {. }
\end{aligned}
$$

any subset of $2 K$ columns
is an isometry

Compressed Sensing

Simplifying assumption

$$
\begin{aligned}
& \exists \delta \in(0,1) \quad \text { Restricted Isometry Property } \\
& \sqrt{1-\delta}\|\boldsymbol{v}\|_{2} \leqslant\|\boldsymbol{\Phi} \boldsymbol{v}\|_{2} \leqslant \sqrt{1+\delta}\|\boldsymbol{v}\|_{2} \\
& \text { for all } 2 K \text { sparse signals } \boldsymbol{v} \text {. }
\end{aligned}
$$

any subset of $2 K$ columns
is an isometry
\longrightarrow Examples:

+ Gaussian
+ Bernoulli
+ Random Fourier
$+\ldots$.

Compressed Sensing

Compressed Sensing

If \boldsymbol{x} is K-sparse and if $\boldsymbol{\Phi}$ well "conditioned" then:

, (relax.)

$$
\mathfrak{e}^{*}=a \mathcal{C}^{\circ} \min \|\boldsymbol{u}\|
$$

$$
\boldsymbol{u} \in \mathbb{R}^{N}
$$

$$
\|\boldsymbol{u}\|_{1}=\sum_{j}\left|u_{j}\right|
$$

(Basis Pursuit) |Chene, Donomo, Samames, , 1988]

Compressed Sensing
 \mathbb{R}^{2}

Robustness: vs sparse deviation + noise.

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\| \leqslant C \frac{1}{\sqrt{K}}\left\|\boldsymbol{x}-\boldsymbol{x}_{K}\right\|_{1}+D \epsilon
$$

ℓ_{1}-Dall
ℓ_{2}-ball

Part 1

When quantization meets compressed sensing

Outline:

1. Context
2. Former QCS methods and performance limits
3. Consistent Reconstructions
4. Sigma-Delta quantization in CS
5. To saturate or not? And how much?

1. Context

What is quantization?

- Generality:

Intuitively: "Quantization maps a bounded continuous domain to a set of finite elements (or codebook)"

$$
\mathcal{Q}[x] \in\left\{q_{1}, q_{2}, \cdots\right\}
$$

- Oldest example: rounding off $\lfloor x\rfloor,\lceil x\rceil, \ldots \quad \mathbb{R} \rightarrow \mathbb{Z}$

What is quantization? ...

Example 1: scalar quantization

- In \mathbb{R}^{M}, on each component of M-dimensional vectors:

$$
\begin{aligned}
& \Omega=\left\{q_{i} \in \mathbb{R}: 1 \leqslant i \leqslant 2^{B}\right\}, \\
& \mathcal{T}=\left\{t_{i} \in \overline{\mathbb{R}}: 1 \leqslant i \leqslant 2^{B}+1, t_{i} \leqslant t_{i+1}\right\} \quad \text { (thresholds) } \\
& \forall \lambda \in \mathbb{R}, \quad \mathcal{Q}[\lambda]=q_{i} \Leftrightarrow \lambda \in \mathcal{R}_{i} \triangleq\left[t_{i}, t_{i+1}\right), \quad \text { 1-D quantization cell } \\
& \forall u \in \mathbb{R}^{M}, \quad(\mathcal{Q}[u])_{j}=\mathcal{Q}\left[u_{j}\right]
\end{aligned}
$$

other names:

$$
\begin{array}{|l|}
\hline \text { Pulse Code Modulation - PCM } \\
\text { Memoryless Scalar Quantization - MSQ } \\
\hline
\end{array}
$$

What is quantization? ...

Example 1: scalar quantization

- In \mathbb{R}^{M}, on each component of M-dimensional vectors:

$$
\begin{aligned}
& \Omega=\left\{q_{i} \in \mathbb{R}: 1 \leqslant i \leqslant 2^{B}\right\}, \\
& \mathcal{T}=\left\{t_{i} \in \overline{\mathbb{R}}: 1 \leqslant i \leqslant 2^{B}+1, t_{i} \leqslant t_{i+1}\right\} \quad \text { (thresholds) } \\
& \forall \lambda \in \mathbb{R}, \quad \mathcal{Q}[\lambda]=q_{i} \Leftrightarrow \lambda \in \mathcal{R}_{i} \triangleq\left[t_{i}, t_{i+1}\right), \quad \text { 1-D quantization cell } \\
& \forall u \in \mathbb{R}^{M}, \quad(\mathcal{Q}[u])_{j}=\mathcal{Q}\left[u_{j}\right]
\end{aligned}
$$

- Globally:

$$
\mathcal{Q}[\boldsymbol{z}]=\boldsymbol{q} \in \Omega^{M} \Leftrightarrow \boldsymbol{z} \in
$$

$$
\begin{aligned}
& M-\mathrm{D} \text { quantization cell } \\
& \mathcal{R}_{i_{1}} \times \mathcal{R}_{i_{2}} \times \cdots \times \mathcal{R}_{i_{M}} \\
&:=\mathcal{Q}^{-1}[\boldsymbol{q}]
\end{aligned}
$$

What is quantization? ...

Example 1: scalar quantization

$$
\begin{aligned}
& \text { Regular uniform } \\
& \qquad \begin{array}{l}
q_{k}=(k+1 / 2) \alpha \\
t_{k}=k \alpha
\end{array}
\end{aligned}
$$

What is quantization? ..

Example 1: scalar quantization

Regular uniform
$q_{k}=(k+1 / 2) \alpha$
$t_{k}=k \alpha$

Regular non-uniform
Ω and \mathcal{T} optimized
e.g., wrt an input distribution Z find minimum distortion, i.e.,

$$
\xrightarrow{Z \widehat{\sim}} \underset{\mathcal{T}, \Omega}{\operatorname{argmin}} \mathbb{E}_{Z}\|Z-\mathcal{Q}[Z]\|^{2}
$$

\exists Non-regular (P. Boufounos)

What is quantization? ...

Example 2: vector quantization

(caveat: not really covered in this tutorial, ... except $\Sigma \Delta$, see later)
Quantization $=$ codebook $\boldsymbol{\Omega}+$ quantization cells $\mathcal{R}=\left\{\mathcal{R}_{i} \subset \mathbb{R}^{M}\right\}$

(non-separable quantization)

$$
\text { e.g., } \underset{\boldsymbol{\Omega}, \mathcal{R}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{Z}}\|\boldsymbol{Z}-\mathcal{Q}[\boldsymbol{Z}]\|^{2}
$$

Classical Sampling and Quantization

For acquisition:

Classical Sampling and Quantization

For acquisition:

For reconstruction:

Classical Sampling and Quantization

For acquisition:

For reconstruction:

Sampling: discretization in time \Rightarrow Lossless at the Nyquist rate
Quantization: discretization in amplitude \Rightarrow Always lossy
Need both for digital data acquisition

Compressive Sampling and Quantization

Compressed sensing theory says:
"Linearly sample a signal
at a rate function of
its intrinsic dimensionality"

Information theory and sensor designer say:
"Okay, but I need to
quantize/digitize my measurements!"

$$
\text { (e.g., in } A D C \text {) }
$$

The Quantized CS Problem (QCS)

Natural questions:

- How to integrate quantization in CS ?
- What do we loose?

- Are they some theoretical limitations? (related to information theory? geometry?)
- How to minimize quantization effects in the reconstruction?

QCS: a system view

With no additional noise:
e.g., basis pursuit,
greedy methods, ...

QCS: a system view

With no additional noise:
e.g., basis pursuit,
greedy methods, ...

Finite codebook $\Rightarrow \hat{\boldsymbol{x}} \neq \boldsymbol{x}$
(i.e., impossibility to encode continuous domain in a finite number of elements)

QCS: a system view

With no additional noise:
e.g., basis pursuit,
greedy methods, ...

Finite codebook $\Rightarrow \hat{\boldsymbol{x}} \neq \boldsymbol{x}$

Objective: Minimize $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|$ given a certain number of:
bits, measurements, or bits/meas.

How?
Where to act?
Change CS, Q or decoder?
Some of them? all?

2. Former QCS methods and performance limits

Scalar quantization in CS

Turning measurements into bits \rightarrow scalar quantization

$$
\begin{gathered}
q_{i}=\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]=\mathcal{Q}\left[\left\langle\boldsymbol{\phi}_{i}, \boldsymbol{x}\right\rangle\right] \in \Omega \subset \mathbb{R} \\
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}] \in \boldsymbol{\Omega}=\Omega^{M}
\end{gathered}
$$

Important points:

- Definition of $\boldsymbol{\Phi}$ independent of M (e.g., $\left.\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)\right)$ \rightarrow preserves measurement dynamic!
- B bits per measurement
- Total bit budget: $R=B M$
- No further encoding (e.g., entropic)

Scalar quantization in CS ...

Former solution (Candès, Tao, ...)

- Quantization is like a noise
quantization

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}
$$

Former solution (Candès, Tao, ...)

- Quantization is like a noise

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}
$$

and CS is robust (e.g., with basis pursuit denoise)

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{q}\| \leqslant \epsilon \quad(\mathrm{BPDN})
$$

$\ell_{2}-\ell_{1}$ instance optimality:
If $\|\boldsymbol{n}\| \leqslant \epsilon$ and $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ is $\operatorname{RIP}(\delta, 2 K)$ with $\delta \leqslant \sqrt{2}-1$, then

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \leqslant C \frac{\sqrt{2}}{\sqrt{2}}+D e_{0}(K),
$$

for some $C, D>0$ and $e_{0}(K)=\left\|\boldsymbol{x}-\boldsymbol{x}_{K}\right\|_{1} / \sqrt{K}$.

Former solution (Candès, Tao, ...)

- Quantization is like a noise

$$
q=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}
$$

Scalar quantization in CS

Former solution (Candès, Tao, ...)

1. For uniform quantization, by construction:

$$
\begin{aligned}
& \epsilon \text { ? } \\
& n_{i}=\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]-(\boldsymbol{\Phi} \boldsymbol{x})_{i} \\
& \in q_{k_{i}}-\mathcal{R}_{k_{i}}=[-\alpha / 2, \alpha / 2] \\
& \Rightarrow\|\boldsymbol{n}\|_{\infty} \leq \alpha / 2 \\
& \Rightarrow\|\boldsymbol{n}\|^{2} \leqslant M\|\boldsymbol{n}\|_{\infty}^{2} \leqslant M \alpha^{2} / 4 \\
& \text { and plug this upper bound in BPDN }
\end{aligned}
$$

Scalar quantization in CS

Former solution (Candès, Tao, ...)

1. For uniform quantization, by construction:

ϵ ?

$$
\begin{aligned}
n_{i} & =\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]-(\boldsymbol{\Phi} \boldsymbol{x})_{i} \\
& \in q_{k_{i}}-\mathcal{R}_{k_{i}}=[-\alpha / 2, \alpha / 2] \\
& \Rightarrow\|\boldsymbol{n}\|_{\infty} \leq \alpha / 2
\end{aligned}
$$

$\Rightarrow\|\boldsymbol{n}\|^{2} \leqslant M\|\boldsymbol{n}\|_{\infty}^{2} \leqslant M \alpha^{2 \cdot} / 4$
and plug this upper bound in BPDN
can be improved!

Scalar quantization in CS

Former solution (Candès, Tao, ...)

2. For uniform quantization, uniform model!

$$
\begin{aligned}
& n_{i}=\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]-(\boldsymbol{\Phi} \boldsymbol{x})_{i} \\
& \in q_{k_{i}}-\mathcal{R}_{k_{i}}=[-\alpha / 2, \alpha / 2] \\
& \sim_{\text {iid }} \text { Uniform }([-\alpha / 2, \alpha / 2]) \\
& \quad(\text { HRA }- \text { high resolution assumption })
\end{aligned}
$$

Scalar quantization in CS

Former solution (Candès, Tao, ...)

2. For uniform quantization, uniform model!

$$
n_{i}=\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]-(\boldsymbol{\Phi} \boldsymbol{x})_{i}
$$

$$
\in q_{k_{i}}-\mathcal{R}_{k_{i}}=[-\alpha / 2, \alpha / 2]
$$

$\sim_{\text {iid }}$ Uniform $([-\alpha / 2, \alpha / 2])$
(HRA - high resolution assumption)

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left|n_{i}\right|^{2}=\alpha^{2} / 12 \\
& \Rightarrow\|\boldsymbol{n}\|^{2} \leq \mathbb{E}\|\boldsymbol{n}\|^{2}+\kappa \sqrt{\operatorname{Var}\|\boldsymbol{n}\|^{2}} \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\text { with } \operatorname{Pr}>1-e^{-2 \kappa^{2}}
$$

and plug this upper bound in BPDN

Scalar quantization in CS .

Former solution (Candès, Tao, ...)

Therefore, from BPDN $\ell_{2}-\ell_{1}$ instance optimality:

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \lesssim C \alpha+D e_{0}(K), \quad \text { for } C, D>0
$$

(for BPDN with ϵ_{2}, under prev. cond.)

Scalar quantization in CS

Former solution (Candès, Tao, ...)

- Therefore, from BPDN $\ell_{2}-\ell_{1}$ instance optimality:

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \lesssim C \alpha+D e_{0}(K), \quad \text { for } C, D>0
$$

(for BPDN with ϵ_{2}, under prev. cond.)

- Assuming :
- bounded dynamics: $\|\boldsymbol{\Phi} \boldsymbol{x}\|_{\infty}=\max \left|(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right| \leqslant \rho \quad$ (e.g., by discarding saturation) (see later)
, B bits per measurements $\Rightarrow \alpha \simeq \frac{2 \rho}{2^{B}}$

$$
\Rightarrow \mathrm{BPDN} \mathrm{RMSE} \lesssim C^{\prime} 2^{-B}+D e_{0}(K) \quad \text { for } C^{\prime}, D>0
$$

as soon as RIP holds: $M=O(K \log N / K)$

- Equivalently: BPDN RMSE $\simeq O\left(2^{-R / M}\right)+e_{0}(K)$
for a rate $R=B M$ bits (total "bid budget" for all meas.)

Scalar quantization in CS ...

RMSE Lower bound?

- Let a fixed K-sparse $\boldsymbol{x} \in \mathbb{R}^{N}$

Scalar quantization in CS ...

RMSE Lower bound?

- Let a fixed K-sparse $\boldsymbol{x} \in \mathbb{R}^{N}$
- Oracle: you know $T=\operatorname{supp} \boldsymbol{x}$

Scalar quantization in CS ...

RMSE Lower bound?

- Let a fixed K-sparse $\boldsymbol{x} \in \mathbb{R}^{N}$
- Oracle: you know $T=\operatorname{supp} \boldsymbol{x}$
- Noisy measurements (random noise):

Given $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ with $\Phi_{i j} \sim_{\text {iid }} N(0,1)$

$$
\boldsymbol{y}=\mathbf{\Phi}_{T} \boldsymbol{x}+\boldsymbol{n}, \text { with } \mathbb{E} \boldsymbol{n} \boldsymbol{n}^{T}=\sigma^{2} \mathbf{I} \mathbf{d}_{M \times M}
$$

- Assume: $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ is $\operatorname{RIP}\left(K, \delta_{K}\right)$ and $\operatorname{RIP}\left(1, \delta_{1}\right)$
- Compute LS solution: $\begin{array}{ll} & \hat{\boldsymbol{x}}_{T}=\boldsymbol{\Phi}_{T}^{\dagger} \boldsymbol{y}=\underset{\text { pseudo-inverse }}{\left(\boldsymbol{\Phi}_{T}^{*} \boldsymbol{\Phi}_{T}\right)^{-1}} \boldsymbol{\Phi}_{T}^{*} \boldsymbol{y} \\ & \hat{\boldsymbol{x}}_{T^{c}}=0\end{array}$
, Then: MSE $=\mathbb{E}_{\boldsymbol{n}}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2} \geqslant r^{-1} \sigma^{2}\left(\frac{1-\delta_{1}}{1+\delta_{K}}\right)$
(as for BPDN)
$\& \operatorname{MSE} \leqslant \frac{1}{1-\delta_{K}} \sigma^{2}$ for oversampling factor $r=M / K$
, for $\mathrm{QCS}: \Rightarrow \mathrm{RMSE}=\Omega\left(r^{-1 / 2} 2^{-B}\right) \quad \& \operatorname{RMSE}=O\left(2^{-B}\right)$

3. Consistent Reconstructions

Consistent reconstructions in CS?

- Problem in previous case: if $\hat{\boldsymbol{x}}$ solution of BPDN,
- no Quantization Consistency (QC): $\mathcal{Q}[\boldsymbol{\Phi} \hat{\boldsymbol{x}}] \neq Q[\mathbf{\Phi} \boldsymbol{x}]$

$$
\|\boldsymbol{\Phi} \hat{\boldsymbol{x}}-\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]\| \leqslant \epsilon_{2} \nRightarrow \mathcal{Q}[\mathbf{\Phi} \hat{\boldsymbol{x}}]=Q[\mathbf{\Phi} \boldsymbol{x}]
$$

(from BPDN constraint)
\Rightarrow sensing information is fully not exploited!

- $\quad \ell_{2}$ constraint \approx Gaussian distribution (MAP - cond. log. lik.)

But why looking for consistency?

First,
Proposition (Goyal, Vetterli, Thao, 98) If T is known (with $|T|=K$), the best decoder $\operatorname{Dec}()$ provides a $\hat{\boldsymbol{x}}=\operatorname{Dec}(\boldsymbol{y}, \boldsymbol{\Phi})$ such that:

$$
\operatorname{RMSE}=\left(\mathbb{E}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2}\right)^{1 / 2} \gtrsim r^{-1} \alpha,
$$

where \mathbb{E} is wrt a probability measure on \boldsymbol{x}_{T} in a bounded set $\mathcal{S} \subset \mathbb{R}^{K}$.

This bound is achieved, at least, for $\boldsymbol{\Phi}_{T}=\mathrm{DFT} \in \mathbb{R}^{M \times K}$, when $\operatorname{Dec}()$ is consistent.

[^0]
But why looking for consistency?

Second,

If $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ is a (random) frame in $\mathbb{R}^{N}(M \geqslant N)$,
Then, for $\mathcal{Q}(\boldsymbol{y})=\boldsymbol{y}+\boldsymbol{n}$ with $n_{i} \sim \mathcal{U}\left(\left[-\frac{1}{2} \alpha, \frac{1}{2} \alpha\right]\right)$, and $\hat{\boldsymbol{x}}$ consistent,

$$
\left(\mathbb{E}_{\boldsymbol{\Phi}, \boldsymbol{n}}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2}\right)^{1 / 2} \lesssim r^{-1} \alpha
$$

[Powell, Whitehouse, 2013]
and

$$
\|\boldsymbol{x}-\hat{\boldsymbol{x}}\| \lesssim r^{-1} \alpha \cdot O(\log M, \log N, \log \eta)
$$

[LJ 2014]
(Gaussian frame)
or $\frac{K}{M} \alpha \cdot O(\log K, \log M, \log N, \log \eta)$ in K sparse case

In quest of consistency... $\ell_{2} \rightarrow \ell_{\infty}$

- Modify BPDN [W. Dai, O. Milenkovic, 09]

$$
\begin{array}{ll}
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{1} \text { s.t. } \mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{u}]=\boldsymbol{q} \\
\text { greedy algo: } & \Leftrightarrow \boldsymbol{\Phi} \boldsymbol{u} \in \underset{\text { convex set in } \mathbb{R}^{M}}{\mathcal{Q}^{-1}[\boldsymbol{q}]} \\
\text { pursuit" } &
\end{array}
$$

+ modified greedy algo:
"subspace pursuit"

$$
\Leftrightarrow\|\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{q}\|_{\text {(if uniform quant.) }} \leq \alpha / 2
$$

\exists numerical methods

In quest of consistency... $\quad \ell_{2} \rightarrow \ell_{\infty}$

- Modify BPDN [w. Dai, O. Milenkovic, 09]

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{1} \text { s.t. } \mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{u}]=\boldsymbol{q}
$$

Simulations: $M=128, N=256, K=6,1000$ trials $\Rightarrow \lambda \simeq 20$

W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

- Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p} \leq \epsilon_{p}
$$

Towards $p=\infty$
Related to GGD MAP

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

- Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p}\left(\underline{\epsilon_{p}} \quad \begin{array}{l}
\text { Towards } p=\infty \\
\text { Related to GGD MAP }
\end{array}\right.
$$

How to find it? again, uniform model:

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

, Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p} \leq \epsilon_{p} \quad \begin{aligned}
& \text { Towards } p=\infty \\
& \text { Related to GGD MAP }
\end{aligned}
$$

How to find it? again, uniform model:

$$
\begin{aligned}
& n_{i}=\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]-(\boldsymbol{\Phi} \boldsymbol{x})_{i} \\
& \in q_{k_{i}}-\mathcal{R}_{k_{i}}=[-\alpha / 2, \alpha / 2] \quad \Rightarrow \\
& \sim_{\text {iid }} \operatorname{Uniform}([-\alpha / 2, \alpha / 2]) \\
& \text { Estimating } p^{\text {th }} \text { moment: } \\
& \epsilon_{p}(\alpha)=\frac{\alpha}{2(p+1)^{1 / p}}(M+\kappa(p+1) \sqrt{M})^{1 / p} \\
& \text { works with } \operatorname{Pr} \geq 1-e^{-2 \kappa^{2}}
\end{aligned}
$$

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

- Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\begin{gathered}
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p} \leq \epsilon_{p} \\
\geq \text { BPDQ Stability ? }
\end{gathered}
$$

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

, Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p} \leq \epsilon_{p}
$$

BPDQ Stability?
Ok, if $\boldsymbol{\Phi}$ is RIP_{p} of order K, i.e.,

$$
\begin{aligned}
& \exists \mu_{p}>0, \delta \in(0,1) \\
& \quad \sqrt{1-\delta}\|\boldsymbol{v}\|_{2} \leqslant \frac{1}{\mu_{p}}\|\boldsymbol{\Phi} \boldsymbol{v}\|_{p} \leqslant \sqrt{1+\delta}\|\boldsymbol{v}\|_{2}
\end{aligned}
$$

for all K sparse signals \boldsymbol{v}.

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

, Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p} \leq \epsilon_{p}
$$

Towards $p=\infty$
Related to GGD MAP

Gain over BPDN (for $\operatorname{tight} \epsilon_{p}(\alpha, M)$)

$$
\Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=O\left(\epsilon_{p} / \mu_{p}\right)
$$

$\Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=O(\alpha / \sqrt{p+1})$
But no free lunch: for $\boldsymbol{\Phi}$ Gaussian

$$
M=O\left((K \log N / K)^{\underline{p / 2}}\right)
$$

\Rightarrow Another reading: limited range of valid p for a given $M($ and $K)$!

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

* $N=1024, K=16$, Gaussian $\boldsymbol{\Phi}$
* $500 K$-sparse (canonical basis)
* Non-zero components follow $\mathcal{N}(0,1)$
* Quantiz. bin width $\alpha=\|\boldsymbol{\Phi} \boldsymbol{x}\|_{\infty} / 40$

Histograms of

$$
\alpha^{-1}(\boldsymbol{q}-\boldsymbol{\Phi} \hat{\boldsymbol{x}})_{i}
$$

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

* $N=1024, K=16$, Gaussian $\boldsymbol{\Phi}$
* $500 K$-sparse (canonical basis)
* Non-zero components follow $\mathcal{N}(0,1)$
* Quantiz. bin width $\alpha=\|\boldsymbol{\Phi} \boldsymbol{x}\|_{\infty} / 40$

Histograms of

$$
\alpha^{-1}(\boldsymbol{q}-\boldsymbol{\Phi} \hat{\boldsymbol{x}})_{i}
$$

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]
A bit outside the theory...

* Synthetic Angiogram [Michael Lustig 07, SPArcol,

$\mathrm{BPDQ}_{10}-\mathrm{TV}$
SNR: 12.03 dB
* $\boldsymbol{\Phi}$: Random Fourier Ensemble
* $N / M=8$
* Decoder: $\Delta_{T V, p}\left(y, \epsilon_{p}\right)$
* Quantiz. bin width $=50$ (i.e. 12 bins)

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian
constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

4. Sigma-Delta quantization in CS

Context:

- Former attempts: (see prev. slides)
$\mathrm{CS}+$ uniform scalar quantization (or pulse code modulation - PCM)
For K-sparse signals: $\left\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi} \boldsymbol{x}]-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{2} \leqslant c \sqrt{M} \alpha \Rightarrow\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant C \alpha \quad$ (with RIP) and for high $\lambda,\left\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi} x]-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{p} \leqslant c M^{1 / p} \alpha \Rightarrow\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant C \alpha / \sqrt{p+1}$ (with RIP ${ }_{p}$)
- No (real) improvement if M increases!
, Can we do better?

Context:

- Former attempts: (see prev. slides)
$\mathrm{CS}+$ uniform scalar quantization (or pulse code modulation - PCM)
For K-sparse signals: $\left\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi} \boldsymbol{x}]-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{2} \leqslant c \sqrt{M} \alpha \Rightarrow\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant C \alpha$ (with RIP) and for high $\lambda,\left\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi} \boldsymbol{x}]-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{p} \leqslant c M^{1 / p} \alpha \Rightarrow\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant C \alpha / \sqrt{p+1}$
- No (real) improvement if M increases!
- Can we do better?

$$
\text { Can we have }\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant O\left(r^{-s} \alpha\right) \text { for some } s>0 \text { ? }
$$

Staying with $\mathbf{P C M}, s \leqslant 1$ (Goyal-Vetterli-Thao lower bound)

- Solution: replacing PCM by $\Sigma \Delta$ quantization! [S. Güntürk, A. Powell, R. Saab, Ö. Yılmaz]

$\Sigma \Delta$ quantization (reminder)

- PCM: Signal sensing + unif. quantization $(\operatorname{step} \alpha)$

$$
\begin{aligned}
& \boldsymbol{x} \in \mathbb{R}^{K} \quad \rightarrow \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \mathbb{R}^{M} \\
& \boldsymbol{q}=\mathcal{Q}_{\mathrm{PCM}}[\boldsymbol{y}] \text { with }
\end{aligned}
$$

$$
q_{k}=\mathcal{Q}_{\mathrm{PCM}}\left[y_{k}\right]:=\underset{u \in \alpha \mathbb{Z}}{\operatorname{argmin}}\left|y_{k}-u\right|, \quad 1 \leqslant k \leqslant M
$$

Let $\boldsymbol{A}^{\#}$, a left inverse of \boldsymbol{A}, i.e., $\boldsymbol{A}^{\#} \boldsymbol{A}=\mathbf{I d}$.
Then, $\quad \hat{\boldsymbol{x}}:=\boldsymbol{A}^{\#} \boldsymbol{q} \Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=\| \boldsymbol{A}_{\underset{\text { quant. noise }}{\#}(\boldsymbol{y}-\boldsymbol{q})}$
\rightarrow Goal: $\underset{A^{\#} A=\text { Id. }}{\operatorname{minimize}}\left\|A^{\#}(\boldsymbol{y}-\boldsymbol{q})\right\|!$
\rightarrow Taking (Moore-Penrose) pseudo-inverse: $\boldsymbol{A}^{\#}=\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{*}$ (or canonical dual of the frame \boldsymbol{A})

- In CS, this could be used if signal support was known (see before)

$\Sigma \Delta$ quantization (reminder)

$\Sigma \Delta \equiv$ noise shaping! Enjoy of:
, freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$

- freedom to take another left inverse $\boldsymbol{A}^{\#}$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
- $1^{\text {st }}$ order $\Sigma \Delta$: (in 1-D) Quantizing the sequence $\left\{y_{j}: j \geqslant 0\right\}$

Use of state variables $\left\{\rho_{j}\right\}$ (1-step memory):

$$
\begin{array}{ll}
\text { find } q_{j}: & q_{j}=\mathcal{Q}_{\Sigma \Delta}^{(1)}\left[y_{j}\right]:=\operatorname{argmin}_{u \in \alpha \mathbb{Z}}\left(\widehat{\rho_{j-1}}\right)+y_{j}-u \mid \\
\text { find } \rho_{j}: & (\Delta \rho)_{j}=\rho_{j}-\rho_{j-1}=y_{j}-q_{j} \text { (difference eq.) }
\end{array}
$$

bigger than α but still $O(\alpha)$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
$s^{\text {th }}$ order $\Sigma \Delta$: (in 1-D) Quantizing the sequence $\left\{y_{j}: j \geqslant 0\right\}$ Use of state variables $\left\{\rho_{j}\right\}$ (s-step memory):

Remark:
PCM is
$0^{\text {th }}$ order $\Sigma \Delta$
find $q_{j}: \quad q_{j}=\mathcal{Q}_{\Sigma \Delta}^{(s)}\left[y_{j}\right]:=\operatorname{argmin}_{u \in \alpha \mathbb{Z}}\left|\sum \sum_{i=1}^{s}(-1)^{i-1}\binom{s}{i} \rho_{j-n}+y_{j}-u\right|$ find $\rho_{j}: \quad\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \quad\left(s^{\text {th }}\right.$ order difference eq.)

with: $\quad\left|\rho_{j}\right| \leqslant \alpha$
$\left|y_{j}-q_{j}\right| \leqslant 2^{s-1} \alpha$
bigger than α but still $O(\alpha)$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
$s^{\text {th }}$ order $\Sigma \Delta$:
Most important fact: $\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \Leftrightarrow \boldsymbol{D}^{s} \boldsymbol{\rho}=\boldsymbol{y}-\boldsymbol{q}$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
$s^{\text {th }}$ order $\Sigma \Delta$:
Most important fact: $\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \Leftrightarrow \boldsymbol{D}^{s} \boldsymbol{\rho}=\boldsymbol{y}-\boldsymbol{q}$

$$
\hat{\boldsymbol{x}}:=\boldsymbol{A}^{\#} \boldsymbol{q} \Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=\left\|\boldsymbol{A}^{\#} \boldsymbol{D}^{s}(\boldsymbol{y}-\boldsymbol{q})\right\|
$$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$ $s^{\text {th }}$ order $\Sigma \Delta$:

Most important fact: $\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \Leftrightarrow \boldsymbol{D}^{s} \boldsymbol{\rho}=\boldsymbol{y}-\boldsymbol{q}$

$$
\begin{gathered}
\hat{x}:=\boldsymbol{A}^{\#} \boldsymbol{q} \Rightarrow\|x-\hat{\boldsymbol{x}}\|=\left\|\boldsymbol{A}^{\#} \boldsymbol{D}^{s}(\boldsymbol{y}-\boldsymbol{q})\right\| \\
\quad \text { minimize }\left\|\boldsymbol{A}^{\#} \boldsymbol{D}^{s}(\boldsymbol{y}-\boldsymbol{q})\right\|!
\end{gathered}
$$

Sobolev duals

$$
\boldsymbol{A}_{\mathrm{sob}, s}=\left(\boldsymbol{D}^{-s} \boldsymbol{A}\right)^{\dagger} \boldsymbol{D}^{-s}
$$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
- $s^{\text {th }}$ order $\Sigma \Delta$:

Most important fact: $\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \Leftrightarrow \boldsymbol{D}^{s} \boldsymbol{\rho}=\boldsymbol{y}-\boldsymbol{q}$

$$
\hat{\boldsymbol{x}=\boldsymbol{A}_{\text {sob }, s} \boldsymbol{q}} \quad \boldsymbol{A}_{\mathrm{sob}, s}=\left(\boldsymbol{D}^{-s} \boldsymbol{A}\right)^{\dagger} \boldsymbol{D}^{-s}
$$

Proposition Let $\boldsymbol{A} \in \mathbb{R}^{M \times K}$ with $A_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$.
For any $\kappa \in(0,1)$, if $r:=M / K \geqslant c(\log M)^{1 /(1-\kappa)}$, then with $\operatorname{Pr}>1-e^{-c^{\prime} M / r^{\kappa}}$,

for some $c, c^{\prime}, C_{s}>0$.

$\Sigma \Delta$ quantization in CS

$$
\boldsymbol{x} \in \Sigma_{K} \subset \mathbb{R}^{N} \rightarrow \boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x} \in \mathbb{R}^{M} \underset{\|\boldsymbol{y}-\boldsymbol{q}\| \leqslant 2^{s-1} \alpha \sqrt{M}}{\boldsymbol{\rightarrow}}
$$

Two-steps procedure:

remark: Recent dev. don't require these!

1. find the support T of \boldsymbol{x} : coarse approx. with BPDN
2. compute $\hat{\boldsymbol{x}}:=\left(\boldsymbol{\Phi}_{T}\right)_{\text {sob }, s} \boldsymbol{q}=\left(\boldsymbol{D}^{-s} \boldsymbol{\Phi}_{T}\right)^{\dagger} \boldsymbol{D}^{-s} \boldsymbol{q}$

Proposition Let $\boldsymbol{\Phi} \in \mathbb{R}^{M \times K}$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$. Suppose $\kappa \in(0,1)$ and $r:=M / K \geqslant c(\log M)^{1 /(1-\kappa)}$ for $c>0$. Then, $\exists c^{\prime}, C, C_{s}>0$ such that, with $\operatorname{Pr}>1-e^{-c^{\prime} M / r^{\kappa}}$, for all $\boldsymbol{x} \in \Sigma_{K}$ s.t. $\min _{i \in \operatorname{supp} \boldsymbol{x}}\left|x_{i}\right| \geqslant C \alpha$,

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \leqslant C_{s} r^{-\kappa\left(s-\frac{1}{2}\right)} \alpha .
$$

> proof: Union bound on any
> \bar{K}-column subset of Φ
> + proba having good support.

$\Sigma \Delta$ quantization in CS

$M \in\{100,200, \cdots, 1000\}, K=10$ and 1000 trials $\left(x_{i} \in\{0, \pm 1 / \sqrt{K}\},\|\boldsymbol{x}\| \simeq 1, \alpha=10^{-2}\right)$

Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., \& Yılmaz, Ö. (2013). Sobolev duals for random frames and $\boldsymbol{\Sigma} \boldsymbol{\Delta}$ quantization of compressed sensing measurements. Foundations of Computational Mathematics, 13(1), 1-36.

5. To saturate or not? And how much?

Saturation phenomenon:

Uniform quantization:

- α quantization interval
- error per measurement bounded:

$$
\left|\lambda-\mathcal{Q}_{\alpha}[\lambda]\right| \leqslant \alpha / 2
$$

Saturation phenomenon:

Uniform quantization:

- α quantization interval
- error per measurement bounded:

$$
\left|\lambda-\mathcal{Q}_{\alpha}[\lambda]\right| \leqslant \alpha / 2
$$

Saturation phenomenon:

Uniform quantization:

- α quantization interval
- error per measurement bounded:

$$
\left|\lambda-\mathcal{Q}_{\alpha}[\lambda]\right| \leqslant \alpha / 2
$$

Finite Dynamic Range Quantization:

- G "saturation level"
- B bit rate (bits per measurement)
- quantization interval is $\alpha=2^{-B+1} G$
- measurements above G saturate
- saturation error is unbounded

CS guarantees are for

bounded errors only!

 [Laska, Boufounos, Davenport, Baraniuk 12]

(i) Saturation Rejection:

Simply discard saturated measurements and corresponding rows of Φ
 measurements
"democratic measurements" each measurement has roughly same amount of information

RIP holds on row subsets of Φ

Democracy in Action
 [Laska, Boufounos, Davenport, Baraniuk 12]

(i) Saturation Rejection:

Simply discard saturated measurements and corresponding rows of Φ

"democratic measurements"
each measurement has roughly same amount of information
(ii) Saturation Consistency:

RIP holds on row subsets of Φ
Include saturated measurements as inequality constraint

$$
\begin{gathered}
\widehat{\mathbf{x}}=\operatorname{argmin}_{\mathbf{x}}\|\mathbf{x}\|_{1} \text { s.t. }\|\widetilde{\Phi} \mathbf{x}-\widetilde{\mathbf{y}}\|_{2}<\epsilon \\
\begin{array}{c}
\text { Measurement error } \\
\text { term (quantization) }
\end{array} \text { and } \bar{\Phi} \mathbf{x} \geq G \cdot \mathbf{1} \\
\begin{array}{c}
\text { Saturation consistency } \\
\text { constraint }
\end{array}
\end{gathered}
$$

Experimental Results

Experimental Results

Note: optimal performance requires 10% saturation

J.N. Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk, "Democracy in action: Quantization, saturation, and compressive sensing". Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)

Experimental Results The "saturation gap"

Experimental Results The "saturation gap"

- Majority of measurements saturate • Recovery fails

Further Reading

- V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in RN: Analysis, Synthesis, and Algorithms", IEEE Trans. Info. Theory, 44(1), 1998
- P. T. Boufounos and R. G. Baraniuk, "Quantization of sparse representations," Rice University ECE Department Technical Report 0701. Summary appears in Proc. Data Compression Conference (DCC), Snowbird, UT, March 27-29, 2007
- W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009
- L. Jacques, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." IEEE Transactions on Information Theory, 57(1), 559-571, 2011
- J.N. Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk, "Democracy in action: Quantization, saturation, and compressive sensing". Applied and Computational Harmonic Analysis, 31(3), 429-443, 2011
- L. Jacques, D. Hammond, J. Fadili, "Stabilizing Nonuniformly Quantized Compressed Sensing with Scalar Companders", arXiv:1206.6003, 2012
- Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., \& Yılmaz, Ö. "Sobolev duals for random frames and $\Sigma \Delta$ quantization of compressed sensing measurements". Foundations of Computational Mathematics, 13(1), 1-36, 2013
- A. M. Powell, J.T. Whitehouse, "Error bounds for consistent reconstruction: random polytopes and coverage processes", arXiv:1405.7094, 2013
- L Jacques, "Error Decay of (almost) Consistent Signal Estimations from Quantized Random Gaussian Projections", arXiv:1406.0022, 2014
- P. T. Boufounos, L. Jacques, F. Krahmer, R. Saab, "Quantization and Compressive Sensing", arXiv:1405.1194

Part 2
 Extreme quantization:
 1-bit compressed sensing

Outline:

1. Context
2. Theoretical performance limits
3. Stable embeddings: angles are preserved
4. Generalized Embeddings
5. 1-bit CS Reconstructions?
6. Playing with thresholds in 1-bit CS

1. Context

Central question: 1-bit sampling?

Central question: 1-bit sampling?

Central question: 1-bit sampling?

Sampling

Central question: 1-bit sampling?

- Doable?
- For which "Sampling"?
- Which accuracy?

Reconstruction?
$\{ \pm 1\}^{N}$

Sampling

Why 1-bit? Very Fast Quantizers!

[FIG1] Stated number of bits versus sampling rate.
[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

Why 1-bit? Very Fast Quantizers!

[FIG1] Stated number of bits versus sampling rate.

[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

Compressed Sensing

1-bit Compressed Sensing

with: $\quad \operatorname{sign} t=\left\{\begin{array}{ll}1 & \text { if } t>0 \\ -1 & \text { if } t \leqslant 0\end{array} \quad\right.$ component-wise

1-bit Compressed Sensing

M-bits! But, which information inside \boldsymbol{q} ?

1. Computational

1-bit Computatissed Sensing

M-bits! But, which information inside \boldsymbol{q} ?
anntational
1-bit Computatiossed Sensing bits matter!

Warning 1: signal amplitude is lost!
$\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi}(\lambda \boldsymbol{x}))=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x}), \quad \forall \lambda>0$
\Rightarrow Amplitude is arbitrarily fixed
Examples : $\|\boldsymbol{x}\|=1$ or $\|\boldsymbol{\Phi} \boldsymbol{x}\|_{1}=1$

....nutational

1-bit Computessed Sensing bits matter!

[Plan, Vershynin, 11]
Warning 2: \exists forbidden sensing!
Let $\boldsymbol{x}_{\lambda}:=(1, \lambda, 0, \cdots, 0)^{T} \in \mathbb{R}^{N}$
and $\boldsymbol{\Phi} \in\{ \pm 1\}^{M \times N}$ (e.g., Bernoulli).
We have $\left\|\boldsymbol{x}_{0}-\boldsymbol{x}_{\lambda}\right\|=\lambda$ but $\boldsymbol{q}=\operatorname{sign}\left(\boldsymbol{\Phi} \boldsymbol{x}_{0}\right)=\operatorname{sign}\left(\boldsymbol{\Phi} \boldsymbol{x}_{\lambda}\right), \forall|\lambda|<1$
\Rightarrow No hope to distinguish them by increasing M !

2. Theoretical performance limits

ICTP'14: Coherent state transforms, time-frequency and time-scale analysis, applications

Lower bound: cell intersection viewpoint

Not all quantization cells intersected! no more than $C=2^{K}\binom{N}{K}\binom{M}{K}$

Lower bound: cell intersection viewpoint

Not all quantization cells intersected! no more than $C=2^{K}\binom{N}{K}\binom{M}{K}$
Most efficient ϵ-covering of $S^{N-1} \cap \Sigma_{K}$ with ϵ-caps

$$
\Rightarrow \epsilon=\Omega(K / M)
$$

\rightarrow Lower bound on any 1-bit reconstruction error

Reaching this bound ?

Reaching this bound?

Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly
slicing my orange!"
http://www.gaussfacts.com

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:

Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly slicing my orange!"
http://www.gaussfacts.com
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\varphi_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

$\left\langle\boldsymbol{\varphi}_{1}, \boldsymbol{x}\right\rangle>0$

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

Reaching this bound?
\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound ?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements
$\left\{\begin{array}{l}\left\langle\boldsymbol{\varphi}_{1}, \boldsymbol{x}\right\rangle>0 \\ \left\langle\varphi_{2}, \boldsymbol{x}\right\rangle>0 \\ \left\langle\varphi_{3}, \boldsymbol{x}\right\rangle \leqslant 0 \\ \left\langle\boldsymbol{\varphi}_{4}, \boldsymbol{x}\right\rangle>0 \\ \left\langle\boldsymbol{\varphi}_{5}, \boldsymbol{x}\right\rangle>0 \\ \ldots, \ldots \ldots\end{array}\right.$

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

$\left\langle\boldsymbol{\varphi}_{1}, \boldsymbol{x}\right\rangle$	$\rangle>0$
$\left\langle\varphi_{2}, \boldsymbol{x}\right\rangle$	$\rangle>0$
$\left\langle\varphi_{3}, \boldsymbol{x}\right\rangle$	$\rangle \leqslant 0$
$\left\langle\varphi_{4}, \boldsymbol{x}\right\rangle$	$\rangle>0$
$\left\langle\varphi_{5}, \boldsymbol{x}\right\rangle$	$\rangle>0$

\qquad

Reaching this bound?

Let $A(\cdot):=\operatorname{sign}(\boldsymbol{\Phi} \cdot)$ with $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$.
If $M=O\left(\epsilon^{-1} K \log N\right)$, then, w.h.p,
for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s},

$$
\begin{aligned}
A(\boldsymbol{x}) & =A(\boldsymbol{s}) \quad \Rightarrow \quad\|\boldsymbol{x}-\boldsymbol{s}\| \leq \epsilon \\
& \Leftrightarrow \epsilon=O\left(\frac{K}{M} \log \frac{M N}{K}\right)
\end{aligned}
$$

Reaching this bound?

Let $A(\cdot):=\operatorname{sign}(\boldsymbol{\Phi} \cdot)$ with $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$.
If $M=O\left(\epsilon^{-1} K \log N\right)$, then, w.h.p,
for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s},

$$
\begin{aligned}
A(\boldsymbol{x}) & =A(\boldsymbol{s}) \quad \Rightarrow \quad\|\boldsymbol{x}-\boldsymbol{s}\| \leq \epsilon \\
& \Leftrightarrow \epsilon=O\left(\frac{K}{M} \log \frac{M \bar{N}}{K_{0}}\right)
\end{aligned}
$$

almost optimal

Reaching this bound?

Let $A(\cdot):=\operatorname{sign}(\boldsymbol{\Phi} \cdot)$ with $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$.
If $M=O\left(\epsilon^{-1} K \log N\right)$, then, w.h.p, for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s},

$$
\begin{aligned}
A(\boldsymbol{x}) & =A(\boldsymbol{s}) \quad \Rightarrow \quad\|\boldsymbol{x}-\boldsymbol{s}\| \leq \epsilon \\
& \Leftrightarrow \epsilon=O\left(\frac{K}{M}{ }^{1} \log \frac{M \bar{N}}{K_{0}}\right)
\end{aligned}
$$

almost optimal
Note: You can even afford a small error, i.e.,
if only b bits are different between $A(\boldsymbol{x})$ and $A(\boldsymbol{s})$

$$
\Rightarrow\|\boldsymbol{x}-\boldsymbol{s}\| \leqslant \frac{K+b}{K} \epsilon
$$

3. Stable embeddings:

 angles are preserved
What's known?

- Let's define

$$
A(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow A_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\}
$$

What's known?

- Let's define

$$
A(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow A_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\}
$$

What's known?

- Let's define

$$
A(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow A_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\}
$$

Starting point: Hamming/Angle Concentration

- Metrics of interest:

$$
\begin{aligned}
d_{H}(\boldsymbol{u}, \boldsymbol{v}) & =\frac{1}{M} \sum_{i}\left(u_{i} \oplus v_{i}\right) \quad \text { (norm. Hamming) } \\
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) & =\frac{1}{\pi} \arccos (\langle\boldsymbol{x}, \boldsymbol{s}\rangle) \quad \text { (norm. angle) }
\end{aligned}
$$

Starting point: Hamming/Angle Concentration

- Metrics of interest:

$$
\begin{aligned}
d_{H}(\boldsymbol{u}, \boldsymbol{v}) & =\frac{1}{M} \sum_{i}\left(u_{i} \oplus v_{i}\right) \quad \text { (norm. Hamming) } \\
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) & =\frac{1}{\pi} \arccos (\langle\boldsymbol{x}, \boldsymbol{s}\rangle) \quad \text { (norm. angle) }
\end{aligned}
$$

- Known fact: if $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1) \quad$ [e.g., Goemans, Williamson 1995]

Binary ϵ Stable Embedding (B $\epsilon \mathrm{SE}$)

A mapping $A: \mathbb{R}^{N} \rightarrow\{ \pm 1\}^{M}$ is a binary ϵ-stable embedding ($\mathrm{B} \epsilon \mathrm{SE}$) of order K for sparse vectors if

$$
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon \leq d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s})) \leq d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})+\epsilon
$$

for all $\boldsymbol{x}, \boldsymbol{s} \in S^{N-1}$ with $\boldsymbol{x} \pm \boldsymbol{s} K$-sparse.
kind of "binary restricted (quasi) isometry"

Binary ϵ Stable Embedding (B $\epsilon \mathrm{SE}$)

A mapping $A: \mathbb{R}^{N} \rightarrow\{ \pm 1\}^{M}$ is a binary ϵ-stable embedding ($\mathrm{B} \epsilon \mathrm{SE}$) of order K for sparse vectors if

$$
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon \leq d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s})) \leq d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})+\epsilon
$$

for all $\boldsymbol{x}, \boldsymbol{s} \in S^{N-1}$ with $\boldsymbol{x} \pm \boldsymbol{s} K$-sparse.
kind of "binary restricted (quasi) isometry"

- Corollary: for any algorithm with output \boldsymbol{x}^{*} jointly K-sparse and consistent (i.e., $A\left(\boldsymbol{x}^{*}\right)=A(\boldsymbol{x})$),

$$
d_{\mathrm{ang}}\left(\boldsymbol{x}, \boldsymbol{x}^{*}\right) \leqslant 2 \epsilon!
$$

- If limited binary noise, $d_{\text {ang }}$ still bounded
- If not exactly sparse signals (but almost), $d_{\text {ang }}$ still bounded

$\mathrm{B} \epsilon \mathrm{SE}$ existence? Yes!

Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leqslant \eta \leqslant 1$ and $\epsilon>0$. If

$$
M \geqslant \frac{4}{\epsilon^{2}}\left(K \log (N)+2 K \log \left(\frac{50}{\epsilon}\right)+\log \left(\frac{2}{\eta}\right)\right),
$$

then $\boldsymbol{\Phi}$ is a $\mathrm{B} \epsilon \mathrm{SE}$ with $\operatorname{Pr}>1-\eta$.

$$
M=O\left(\epsilon^{-2} K \log N\right)
$$

$\mathrm{B} \epsilon \mathrm{SE}$ existence? Yes!

Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leqslant \eta \leqslant 1$ and $\epsilon>0$. If

$$
M \geqslant \frac{4}{\epsilon^{2}}\left(K \log (N)+2 K \log \left(\frac{50}{\epsilon}\right)+\log \left(\frac{2}{\eta}\right)\right),
$$

then $\boldsymbol{\Phi}$ is a $\mathrm{B} \epsilon \mathrm{SE}$ with $\operatorname{Pr}>1-\eta$.

$$
M=O\left(\epsilon^{-2} K \log N\right)
$$

Proof sketch:

1) Generalize

$$
\mathbb{P}_{\boldsymbol{\Phi}}\left[\left|d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s}))-d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})\right| \leqslant \epsilon\right] \geqslant 1-2 e^{-2 \epsilon^{2} M}
$$

to

$$
\mathbb{P}_{\boldsymbol{\Phi}}\left[\left|d_{H}(A(\boldsymbol{u}), A(\boldsymbol{v}))-d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})\right| \leqslant \epsilon+\left(\frac{\pi}{2} D\right)^{1 / 2} \delta\right] \geqslant 1-2 e^{-2 \epsilon^{2} M}
$$

for $\boldsymbol{u}, \boldsymbol{v}$ in a D-dimensional neighborhood of width δ around \boldsymbol{x} and \boldsymbol{s} resp.

2) Covers the space of " K-sparse signal pairs" in \mathbb{R}^{N} by

$$
O\left(\binom{N}{K} \delta^{-2 K}\right)=O\left(\left(\frac{e N}{K \delta^{2}}\right)^{K}\right) \text { neighborhoods. }
$$

3) Apply Point 1 with union bound, and "stir until the proof thickens"

$\mathrm{B} \epsilon \mathrm{SE}$ existence? Yes!

Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leqslant \eta \leqslant 1$ and $\epsilon>0$. If

$$
M \geqslant \frac{4}{\epsilon^{2}}\left(K \log (N)+2 K \log \left(\frac{50}{\epsilon}\right)+\log \left(\frac{2}{\eta}\right)\right)
$$

then $\boldsymbol{\Phi}$ is a $\mathrm{B} \epsilon \mathrm{SE}$ with $\operatorname{Pr}>1-\eta$.

$$
M=O\left(\epsilon^{-2} K \log N\right)
$$

B ϵ SE existence? Yes!

Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leqslant \eta \leqslant 1$ and $\epsilon>0$. If

$$
M \geqslant \frac{4}{\epsilon^{2}}\left(K \log (N)+2 K \log \left(\frac{50}{\epsilon}\right)+\log \left(\frac{2}{\eta}\right)\right)
$$

then $\boldsymbol{\Phi}$ is a $\mathrm{B} \epsilon \mathrm{SE}$ with $\operatorname{Pr}>1-\eta$.

$$
M=O\left(\epsilon^{-2} K \log N\right)
$$

$\mathrm{B} \epsilon \mathrm{SE}$ consistency "width":
$\epsilon=O\left(\left(\frac{K}{M} \log \frac{M N}{K}\right)^{1 / 2}\right)$
not as optimal but stronger result!

$$
d_{H} \leftrightarrow d_{\text {ang }}
$$

4. Generalized Embeddings

Beyond strict sparsity ... [Plan, Vershynin]

Let $\mathcal{K} \subset S^{N-1}\left(e . g .\right.$, compressible signals s.t. $\left.\|\boldsymbol{x}\|_{2} /\|\boldsymbol{x}\|_{1} \leqslant \sqrt{K}\right)$ $\neq \Sigma_{K}$

What can we say on $d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s}))$ for $\boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}$?

Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Beyond strict sparsity ... [Plan, Vershynin]

Let $\mathcal{K} \subset S^{N-1}$ (e.g., compressible signals s.t. $\left.\|\boldsymbol{x}\|_{2} /\|\boldsymbol{x}\|_{1} \leqslant \sqrt{K}\right)$ $\neq \Sigma_{K}$

What can we say on $d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s}))$ for $\boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}$?
Uniform tesselation: [Plan, Vershynin, 11]
$\mathrm{P}\left(\#\right.$ random hyperplanes btw \boldsymbol{x} and $\left.\boldsymbol{s} \propto d_{\text {ang }}(\boldsymbol{x}, \boldsymbol{s})\right) ?$
$d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s}))$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Beyond strict sparsity ... [Plan, Vershynin]

Measuring the "dimension" of $\mathcal{K} \rightarrow$ Gaussian mean width:

$$
w(\mathcal{K}):=\mathbb{E} \sup _{\boldsymbol{u} \in \mathcal{K}-\mathcal{K}}\langle\boldsymbol{g}, \boldsymbol{u}\rangle, \text { with } g_{k} \sim_{\mathrm{iid}} \mathcal{N}(0,1)
$$

width in direction $\boldsymbol{\eta}$
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Beyond strict sparsity ... [Plan, Vershynin]

Measuring the "dimension" of $\mathcal{K} \rightarrow$ Gaussian mean width:

$$
w(\mathcal{K}):=\mathbb{E} \sup _{\boldsymbol{u} \in \mathcal{K}-\mathcal{K}}\langle\boldsymbol{g}, \boldsymbol{u}\rangle, \text { with } g_{k} \sim_{\text {iid }} \mathcal{N}(0,1)
$$

width in direction $\boldsymbol{\eta}$

Examples:
$w^{2}\left(\mathcal{S}^{N-1}\right) \leqslant 4 N$
$w^{2}(\mathcal{K}) \leqslant C \log |\mathcal{K}| \quad$ (for finite sets)
$w^{2}(\mathcal{K}) \leqslant L \quad$ if subspace with $\operatorname{dim} \mathcal{K}=L$
$w^{2}\left(\Sigma_{K}\right) \simeq K \log (2 N / K)$

Beyond strict sparsity ... [Plan, Vershynin]

Proposition Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^{N}$. Then, for some $C, c>0$, if

$$
M \geqslant C \epsilon^{-6} w^{2}(\mathcal{K}),
$$

then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have

$$
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon \leqslant d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K} .
$$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Beyond strict sparsity ... [Plan, Vershynin]

Proposition Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^{N}$. Then, for some $C, c>0$, if

$$
M \geqslant C \epsilon^{-6}-\omega^{2}(\mathcal{K}), \quad \text { not as optimal but }
$$

then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have stronger result!

$$
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon \leqslant d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K} .
$$

Generalize $\mathrm{B} \in \mathrm{SE}$ to more general sets.
In particular, to

$$
\begin{aligned}
& \mathcal{C}_{K}=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{2} /\|\boldsymbol{u}\|_{1} \leqslant \sqrt{K}\right\} \supset \Sigma_{K} \\
& \text { with } w^{2}\left(\mathcal{C}_{K}\right) \leqslant c K \log N / K
\end{aligned}
$$

Beyond strict sparsity ... [Plan, Vershynin]

Proposition Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^{N}$. Then, for some $C, c>0$, if

$$
M \geqslant C \epsilon^{2} w^{2}(\mathcal{K}), \quad \text { not as optimal but }
$$

then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have
stronger result!

$$
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon \leqslant d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K} .
$$

Generalize $\mathrm{B} \in \mathrm{SE}$ to more general sets.
In particular, to

$$
\begin{aligned}
& \mathcal{C}_{K}=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{2} /\|\boldsymbol{u}\|_{1} \leqslant \sqrt{K}\right\} \supset \Sigma_{K} \\
& \text { with } w^{2}\left(\mathcal{C}_{K}\right) \leqslant c K \log N / K
\end{aligned}
$$

\Rightarrow Extension to "1-bit Matrix Completion" possible! i.e., $w^{2}\left(r\right.$-rank $N_{1} \times N_{2}$ matrix $) \leqslant c r\left(N_{1}+N_{2}\right)$!
Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212

5. 1-bit CS Reconstructions?

Dumbest 1-bit reconstruction

$$
\begin{aligned}
& \text { Fact: } \left.\quad \text { If } M=O\left(\epsilon^{-2} K \log N / K\right) \text { (for } \boldsymbol{x} \in \Sigma_{K} \text { fixed, } \forall \boldsymbol{s} \in \Sigma_{K}\right) \\
& \text { or, if } M=O\left(\epsilon^{-6} K \log N / K\right)\left(\forall \boldsymbol{x}, \boldsymbol{s} \in \Sigma_{K}\right) \text {, then, w.h.p, } \\
& \\
& \quad\left|\frac{\sqrt{\pi} / 2}{M}\langle\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x}), \boldsymbol{\Phi} \boldsymbol{s}\rangle-\langle\boldsymbol{x}, \boldsymbol{s}\rangle\right| \leq \epsilon \quad \text { [Plan, Vershynin, 12] }
\end{aligned}
$$

Dumbest 1-bit reconstruction

$$
\begin{aligned}
& \text { Fact: If } M=O\left(\epsilon^{-2} K \log N / K\right) \text { (for } \boldsymbol{x} \in \Sigma_{K} \text { fixed, } \forall s \in \Sigma_{K} \text {) } \\
& \text { or, if } M=O\left(\epsilon^{-6} K \log N / K\right)\left(\forall \boldsymbol{x}, \boldsymbol{s} \in \Sigma_{K}\right) \text {, then, w.h.p, } \\
& \left|\frac{\sqrt{\pi} / 2}{M}\langle\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x}), \boldsymbol{\Phi} \boldsymbol{s}\rangle-\langle\boldsymbol{x}, \boldsymbol{s}\rangle\right| \leq \epsilon \quad \text { [Plan, Vershynin, 12] }
\end{aligned}
$$

- Implication? [LJ, Degraux, De Vleeschouwer, 13]

Let $\boldsymbol{x} \in \Sigma_{K} \cap S^{N-1}$ and $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$. Compute

$$
\hat{\boldsymbol{x}=\frac{\pi}{2 M} \mathcal{H}_{K}\left(\boldsymbol{\Phi}^{*} \boldsymbol{q}\right), ~}
$$

Then, if previous property holds,

$$
\|\boldsymbol{x}-\hat{\boldsymbol{x}}\| \leq 2 \epsilon
$$

Non-uniform case (\boldsymbol{x} given): $\Rightarrow \epsilon=O\left(\left(\frac{K}{M} \log \frac{M N}{K}\right)^{1 / 2}\right)$
Uniform case:

$$
\Rightarrow \epsilon=O\left(\left(\frac{K}{M} \log \frac{M N}{K}\right)^{1 / 6}\right)
$$

Initial approach

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})=: A(\boldsymbol{x})$

- Initially: [Boufounos, Baraniuk 2008]

$$
\hat{\boldsymbol{x}}=\arg \min \|\boldsymbol{u}\|_{1} \quad \text { s.t. } \quad \operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u}>0 \quad \text { and }\|\boldsymbol{u}\|_{2}=1
$$

Non-convex! 2 numerical choices :

1. relax + projection on S^{N-1}
2. "trust region methods"
\rightarrow Restricted-Step Shrinkage (RSS)

Consistency constraint:

$$
\begin{aligned}
& \left\{\boldsymbol{u} \in \mathbb{R}^{N} \cap S^{N-1}: \boldsymbol{q}=A(\boldsymbol{u})\right\} \\
& \Leftrightarrow\left\{\boldsymbol{u} \in \mathbb{R}^{N} \cap S^{N-1}: \operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u}>0\right\} \\
& \ni \boldsymbol{x}
\end{aligned}
$$

Initial approach

- Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})=: A(\boldsymbol{x})$
- Initially: [Boufounos, Baraniuk 2008]
(e.g., take the $1^{\text {st }}$ choice)

$$
\hat{\boldsymbol{x}}=\arg \min \|\boldsymbol{u}\|_{1} \quad \text { s.t. } \quad \operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u}>0 \quad \text { and } \quad\|\boldsymbol{u}\|_{2}=1
$$

$$
\mathbb{V}_{(\text {relaxed })} \quad \hat{\boldsymbol{x}}=\underset{\boldsymbol{u}}{\arg \min }\|\boldsymbol{u}\|_{1}+\lambda\left\|(\operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u})_{-}\right\|^{2} \text { s.t. }\|\boldsymbol{u}\|_{2}=1
$$

\rightarrow Solved by projected gradient descent

Initial approach

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})=: A(\boldsymbol{x})$

- Initially: [Boufounos, Baraniuk 2008]
(e.g., take the $1^{\text {st }}$ choice)

$$
\hat{\boldsymbol{x}}=\arg \min \|\boldsymbol{u}\|_{1} \quad \text { s.t. } \quad \operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u}>0 \quad \text { and } \quad\|\boldsymbol{u}\|_{2}=1
$$

${ }^{-1}($ relaxed $) \quad \hat{\boldsymbol{x}}=\underset{\boldsymbol{u}}{\arg \min }\|\boldsymbol{u}\|_{1}+\lambda\left\|(\operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u})_{-}\right\|^{2}$ s.t. $\|\boldsymbol{u}\|_{2}=1$
\rightarrow Solved by projected gradient descent

Other methods:

V. Matching Sign Pursuit [Boufounos]

- Restricted-Step Shrinkage (RSS) [Laska, We, Yin, Baraniuk]

Binary Iterative Hard Thresholding [Jacques, Laska, Boufounos, Baraniuk] Convex Optimization [Plan, Vershynin]

Matching Sign Pursuit (MSP)

- Iterative greedy algorithm, similar to CoSaMP [Needell, Tropp, 08]
- Maintains running signal estimate and its support T.
- MSP iteration:
, Identify sign violations $\rightarrow \boldsymbol{r}=(\operatorname{diag}(\boldsymbol{y}) \boldsymbol{\Phi} \widehat{\boldsymbol{x}})_{-}$
Compute proxy $\quad \rightarrow \boldsymbol{p}=\boldsymbol{\Phi}^{T} \boldsymbol{r}$
Identify support

$$
\rightarrow \Omega=\left.\operatorname{supp} \boldsymbol{p}\right|_{2 K} \cup T
$$

Consistent Reconstruction over support estimate:

$$
\left.\boldsymbol{b}\right|_{\Omega}=\arg \min _{\boldsymbol{u} \in \mathbb{R}^{N}}\left\|(\operatorname{diag}(\boldsymbol{y}) \boldsymbol{\Phi} \boldsymbol{u})_{-}\right\|_{2}^{2} \text { s.t }\|\boldsymbol{u}\|_{2}=1 \text { and }\left.\boldsymbol{u}\right|_{T^{c}}=0
$$

Truncate, normalize, and update estimate: $\left.\quad \widehat{\boldsymbol{x}} \leftarrow \boldsymbol{b}\right|_{K} /\left\|\left.\boldsymbol{b}\right|_{K}\right\|_{2}$

Matching Sign Pursuit (MSP)

(b) MSP Reconstruction Improvement

Boufounos, P. T. (2009, November). "Greedy sparse signal reconstruction from sign measurements".
In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on (pp. 1305-1309). IEEE.

ICTP'14: Coherent state transforms, time-frequency and time-scale analysis, applications

Binary Iterative Hard Thresholding

Given $\boldsymbol{q}=A(\boldsymbol{x})$ and K, set $l=0, \boldsymbol{x}^{0}=0$:

("gradient" towards consistency)
($\tau>0$ controls gradient descent) (proj. K-sparse signal set)
with $\mathcal{H}_{K}(\boldsymbol{u})=K$-term hard thresholding
Stop when $d_{H}\left(\boldsymbol{q}, A\left(\boldsymbol{x}^{l+1}\right)\right)=0$ or $l=\max$. iter.
minimizes $\mathcal{J}\left(\boldsymbol{x}^{\prime}\right)=\left\|\left[\operatorname{diag}(\boldsymbol{q})\left(\boldsymbol{\Phi} \boldsymbol{x}^{\prime}\right)\right]_{-}\right\|_{1}$ with $(\lambda)_{-}=(\lambda-|\lambda|) / 2$

$$
\mathcal{J}\left(\boldsymbol{x}^{\prime}\right)=\sum_{j=1}^{M} \mid(\overbrace{\operatorname{sign}\left(\left\langle\boldsymbol{\varphi}_{j}, \boldsymbol{x}\right\rangle\right.}^{q_{j}})\left\langle\boldsymbol{\varphi}_{j}, \boldsymbol{x}^{\prime}\right\rangle)_{-} \mid
$$

(connections with ML hinge loss, 1-bit classification)

Binary Iterative Hard Thresholding

$N=1000, K=10$
Bernoulli-Gaussian model normalized signals 1000 trials

Matching Sign pursuit (MSP)
Restricted-Step Shrinkage (RSS)
Binary Iterative Hard Thresholding (BIHT)

Binary Iterative Hard Thresholding

, Testing $\mathrm{B} \epsilon \mathrm{SE}: d_{\mathrm{ang}}\left(\boldsymbol{x}, \boldsymbol{x}^{*}\right) \leqslant d_{H}\left(A(\boldsymbol{x}), A\left(\boldsymbol{x}^{*}\right)\right)+\epsilon(M)$

$$
M / N=0.7
$$

$$
M / N=1.5
$$

Remark: CS vs bits/meas.

$N=2000, K=20$
Bernoulli-Gaussian model normalized signals
B bits/measurement
$B=1, \ldots, 12$
$M=$ Total Bits $/ B$

1000 trials

Sonvex Optinnization [Plan, Vershynin, 12]

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$ for some signal $\boldsymbol{x} \in \xrightarrow{\mathcal{K} \subset B_{2}^{N}}$
e.g., sparse, compressible,
Compute $\hat{\boldsymbol{x}}=\arg \max _{\boldsymbol{u} \in \mathbb{R}^{N}} \frac{\boldsymbol{q}^{T} \boldsymbol{\Phi} \boldsymbol{u}}{\longrightarrow}$ m.t. $\quad \boldsymbol{u} \in \mathcal{K}$ low-rank matrix

Convex problem if \mathcal{K} convex!
No ambiguous amplitude definition ($\boldsymbol{u}=0$ avoided)

Convex Optimization [Pan, Vessynyin, 12$]$

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$ for some signal $\boldsymbol{x} \in \xrightarrow{\mathcal{K} \subset B_{2}^{N}}$
e.g., sparse, compressible,
Compute $\mid \hat{\boldsymbol{x}}=\arg \max _{\boldsymbol{u} \in \mathbb{R}^{N}} \underline{\boldsymbol{q}}^{T} \boldsymbol{\Phi} \boldsymbol{u}$ maximize $\quad \boldsymbol{u} \in \mathcal{K}$ low-rank matrix

Convex problem if \mathcal{K} convex!
No ambiguous amplitude definition ($\boldsymbol{u}=0$ avoided)

Remark: (PV-L0 problem) [Bahmani, Boufounos, Raj, 13]

$$
\hat{\boldsymbol{x}}=\frac{1}{\left\|\mathcal{H}_{K}\left(\boldsymbol{\Phi}^{*} \boldsymbol{q}\right)\right\|} \mathcal{H}_{K}\left(\boldsymbol{\Phi}^{*} \boldsymbol{q}\right) \text { if } \mathcal{K}=\Sigma_{K}!!
$$

Sonvex Optinnization [Plan, Vershynin, 12]

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$ for some signal $\boldsymbol{x} \in \xrightarrow{\mathcal{K} \subset B_{2}^{N}}$
e.g., sparse, compressible,
Compute $\hat{\boldsymbol{x}}=\arg \max \boldsymbol{q}^{T} \boldsymbol{\Phi} \boldsymbol{u} \quad$ s.t. $\quad \boldsymbol{u} \in \mathcal{K} \quad$ low-rank matrix $\underset{u \in \mathbb{R}^{N}}{\longrightarrow}{ }_{\text {maximize }}$

Proposition (assuming $\|\boldsymbol{x}\|=1$) For some $C, c>0$, if $M \geqslant C \epsilon^{6}-w^{6}(\mathcal{K})$, then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|^{2} \leqslant \sqrt{\frac{\pi}{2}} \epsilon$.

Sonvex Optinnization [Plan, Vershynin, 12]

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$ for some signal $\boldsymbol{x} \in \mathcal{K} \subset B_{2}^{N}$
Compute $\hat{\boldsymbol{x}}=\arg \max _{\boldsymbol{u} \in \mathbb{R}^{N}} \boldsymbol{q}^{T} \boldsymbol{\Phi} \boldsymbol{u}$ s.t. $\boldsymbol{u} \in \mathcal{K}$

Proposition (assuming $\|\boldsymbol{x}\|=1$) For some $C, c>0$, if $M \geqslant C \epsilon^{-6} w^{2}(\mathcal{K})$, then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|^{2} \leqslant \sqrt{\frac{\pi}{2}} \epsilon$.

+ Robust to noise:
noise (bit flip)
noise power
Let $\boldsymbol{q}_{\mathrm{n}}=\operatorname{diag}(\boldsymbol{\eta}), \boldsymbol{q}$ with $\eta_{i} \in\{ \pm 1\}^{M}$, and assume $d_{H}\left(\boldsymbol{q}, \boldsymbol{q}_{\mathrm{n}}\right) \leqslant$
(under the same conditions)

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|^{2} \leqslant \epsilon \sqrt{\log e / \epsilon}+11 p \sqrt{\log e / p}
$$

$$
\text { Note: if } M=O\left(\epsilon^{-2}(p-1 / 2)^{-2} K \log N / K\right)
$$

$$
\text { this term disappears if } \eta_{i}= \pm 1 \text { are iid RVs (with } P\left(\eta_{i}=1\right)=p \text {) }
$$

5. Playing with thresholds in 1-bit CS

Thresholds?

Given $\boldsymbol{x} \in \mathbb{R}^{N}$ (e.g., sparse)

Is there an interest in sensing

$$
\operatorname{sign}(\langle\boldsymbol{\varphi}, \boldsymbol{x}\rangle-\tau)
$$

for some (random) φ and $\tau \in \mathbb{R}$?

Thresholds?

- Given $\boldsymbol{x} \in \mathbb{R}^{N}$ (e.g., sparse)

Is there an interest in sensing

$$
\operatorname{sign}(\langle\boldsymbol{\varphi}, \boldsymbol{x}\rangle-\tau)
$$

for some (random) φ and $\tau \in \mathbb{R}$?
Two recent applications:

- adaptive thresholds [Kamilov, Bourquard, Amini, Unser, 12]
- bridging 1-bit and B-bits QCS [LJ, Degraux, De Vleeschouwer, 13]

1-bit CS with adaptive thresholds Non-adaptive 1-bit CS $(\tau=0)$

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder $\operatorname{Rec}()$
adapted from prev. meas.

$$
\begin{aligned}
& q_{k}=\operatorname{sign}\left(\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{x}\right\rangle\right. \\
& \left\{\begin{array}{l}
\hat{\boldsymbol{x}}_{k}:=\operatorname{Rec}\left(y_{1}, \cdots, y_{k}, \boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{k}, \tau_{1}, \cdots, \tau_{k}\right) \\
\tau_{k+1} \text { s.t. }\left\langle\boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_{k}\right\rangle-\tau_{k+1}=0
\end{array}\right.
\end{aligned}
$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder $\operatorname{Rec}()$
adapted from prev. meas.

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder Rec()
adapted from prev. meas.

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder Rec()
adapted from prev. meas.

$$
\begin{aligned}
& q_{k}=\operatorname{sign}\left(\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{x}\right\rangle\right. \\
& \left\{\begin{array}{l}
\hat{\boldsymbol{x}}_{k}:=\operatorname{Rec}\left(y_{1}, \cdots, y_{k}, \boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{k}, \tau_{1}, \cdots, \tau_{k}\right) \\
\tau_{k+1} \text { s.t. }\left\langle\boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_{k}\right\rangle-\tau_{k+1}=0
\end{array}\right.
\end{aligned}
$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]

Given a decoder Rec()

adapted from prev. meas.

$$
\begin{aligned}
& q_{k}=\operatorname{sign}\left(\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{x}\right\rangle\right. \\
& \left\{\begin{array}{l}
\hat{\boldsymbol{x}}_{k}:=\operatorname{Rec}\left(y_{1}, \cdots, y_{k}, \boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{k}, \tau_{1}, \cdots, \tau_{k}\right) \\
\tau_{k+1} \text { s.t. }\left\langle\boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_{k}\right\rangle-\tau_{k+1}=0
\end{array}\right.
\end{aligned}
$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds System view:

Kind of
$\Sigma \Delta$ loop
U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds System view:

Kind of
$\Sigma \Delta$ loop

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

Bridging 1-bit \& B-bit CS?

Bridging 1-bit \& B-bit CS?

- B-bit quantizer defined with thresholds:

Can we combine multiple thresholds in 1-bit CS?

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration: $\lambda \in\left[\tau_{j-1}, \tau_{j}\right), \nu \in\left[\tau_{j}, \tau_{j+1}\right)$
"delocalized"

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration: $\lambda \in\left[\tau_{j-1}, \tau_{j}\right), \nu \in\left[\tau_{j+1}, \tau_{j+2}\right)$

$$
\begin{aligned}
& \left(\text { for } w_{j}=1\right)
\end{aligned}
$$

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration:

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration: more bins

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{M}: \mathcal{J}(\boldsymbol{u}, \boldsymbol{v}):=\sum_{k=1}^{M} J\left(u_{k}, v_{k}\right)$
Remarks:

- J is convex in ν
- For $B=1$ ($j=2$ only):
$\mathcal{J}(\boldsymbol{u}, \boldsymbol{v}) \propto\left\|(\operatorname{sign}(\boldsymbol{v}) \odot \boldsymbol{u})_{-}\right\|_{1} \rightarrow \ell_{1}$-sided 1-bit energy
- For $B \gg 1$:

$$
J(\nu, \lambda) \rightarrow \frac{1}{2}(\nu-\lambda)^{2} \text { and } \mathcal{J}(\boldsymbol{u}, \boldsymbol{v}) \rightarrow \frac{1}{2}\|\boldsymbol{u}-\boldsymbol{v}\|^{2} \text { (quadratic energy) }
$$

Bridging 1-bit \& B-bit CS?

- Let's define an inconsistency energy:

$$
\mathcal{E}_{B}(\boldsymbol{u}):=\mathcal{J}(\boldsymbol{\Phi} \boldsymbol{u}, \boldsymbol{q}) \text { with } \boldsymbol{q}=\mathcal{Q}_{B}[\boldsymbol{\Phi} \boldsymbol{x}] \text { and } \mathcal{E}_{-} B(\boldsymbol{x})=0
$$

, Idea: Minimize it in Σ_{K} (as for Iterative Hard Thresholding)
[Blumensath, Davies, 08]

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{N}} \mathcal{E}_{B}(\boldsymbol{u}) \text { s.t. }\|\boldsymbol{u}\|_{0} \leqslant K
$$

Bridging 1-bit \& B-bit CS?

- Let's define an inconsistency energy:

$$
\mathcal{E}_{B}(\boldsymbol{u}):=\mathcal{J}(\boldsymbol{\Phi} \boldsymbol{u}, \boldsymbol{q}) \text { with } \boldsymbol{q}=\mathcal{Q}_{B}[\boldsymbol{\Phi} \boldsymbol{x}] \text { and } \mathcal{E}_{-} B(\boldsymbol{x})=0
$$

- Idea: Minimize it in Σ_{K} (as for Iterative Hard Thresholding)
[Blumensath, Davies, 08]

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{N}} \mathcal{E}_{B}(\boldsymbol{u}) \text { s.t. }\|\boldsymbol{u}\|_{0} \leqslant K
$$

- NP Hard but greedy solution (as for IHT):

$$
\boldsymbol{x}^{(n+1)}=\mathcal{H}_{K}\left[\boldsymbol{x}^{(n)}-\mu \underset{(\text { sub) gradient }}{\left.\partial \mathcal{E}_{B}\left(\boldsymbol{x}^{(n)}\right)\right]} \text { and } \boldsymbol{x}^{(0)}=0\right.
$$

$$
\begin{gathered}
\boldsymbol{\Phi}^{*}(\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u})-\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})) \\
\text { BIHT! } \\
B=1 \\
\hline \text { Quantized IHT (QIHT) }
\end{gathered} \frac{\partial \mathcal{E}_{B}(\boldsymbol{u})=\boldsymbol{\Phi}^{*}\left(\mathcal{Q}_{B}(\boldsymbol{\Phi} \boldsymbol{u})-\boldsymbol{q}\right)}{\stackrel{>}{B>1} \boldsymbol{\Phi}^{*}(\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{q})} \text { IHT! }
$$

T. Blumensath, M.E. Davies, "Iterative thresholding for sparse approximations". Journal of Fourier Analysis and Applications, 14(5-6), 629-654. (2008).

LJ, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013

Bridging 1-bit \& B-bit CS?

$$
N=1024, K=16, R=B M \in\{64,128, \cdots, 1280\}, 100 \text { trials (+ Lloyd-Max Gauss. Q.) }
$$

R : total bit budget $(B M)$
*: almost " 6 dB per bit" gain

$\mu=\frac{1}{M}(1-\sqrt{2 K / M})$
Adjusted by limit case
analysis: BIHT and IHT

Note: entropy could be computed instead of B (e.g., for further efficient coding)

Bridging 1-bit \& B-bit CS?

$$
N=1024, K=16, R=B M \in\{64,128, \cdots, 1280\}, 100 \text { trials }
$$

J. N. Laska, R. G. Baraniuk, 'Regime change: Bit-depth versus measurement-rate in compressive sensing’, Signal Processing, IEEE Transactions on, 60(7), 3496-3505. (2012)

Further Reading

- T. Blumensath, M.E. Davies, "Iterative thresholding for sparse approximations". Journal of Fourier Analysis and Applications, 14(5-6), pp. 629-654, 2008
- P. T. Boufounos and R. G. Baraniuk, "1-Bit compressive sensing," Proc. Conf. Inform. Science and Systems (CISS), Princeton, NJ, March 19-21, 2008.
- Boufounos, P. T. (2009, November). "Greedy sparse signal reconstruction from sign measurements". In Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009
- Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", arXiv:1111.4452, 2011.
- Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE Trans. Info. Theory, arXiv:1202.1212, 2012.
- J. N. Laska, R. G. Baraniuk, 'Regime change: Bit-depth versus measurement-rate in compressive sensing", IEEE Trans. Signal Processing, 60(7), pp. 3496-3505, 2012.
- U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, "One-bit measurements with adaptive thresholds". IEEE Signal Processing Letters, 19(10), pp. 607-610, 2012
- L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors," IEEE Trans. Info. Theory, 59(4), 2013.
- L. Jacques, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and HighResolution Quantized Compressed Sensing", SAMPTA 2013, to appear.

Thank you!

[^0]: V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in R ${ }^{\text {N: }}$

 Analysis, Synthesis, and Algorithms", IEEE Tran. IT, 44(1), 1998

