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Summary of part 1

@ Sparse (approximate) solution to linear equations Ku = y by solving

~ . 2
0 =argmin ;|[Ku — y|j3 + ullulls
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Summary of part 1

@ Sparse (approximate) solution to linear equations Ku = y by solving

~ . 2
0 =argmin ;|[Ku — y|j3 + ullulls

@ lterative soft-thresholding algorithm:
Unt1 = Sap |Un + aKT(y — Ku,,)]

with §,, = component-wise soft-thresholding:

u—>A u>pu
Su(u)=4 0 lul < p
u+ A u<—u
converges to U if o < 2/||K||2. .
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@ u, and U will have many components equal to zero (‘sparsity’)
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Summary of part 1

@ Sparse (approximate) solution to linear equations Ku = y by solving

~ . 2
0 =argmin ;|[Ku — y|j3 + ullulls

@ lterative soft-thresholding algorithm:

Unt1 = Sap |Un + aKT(y — Ku,,)] 0 (1/)
H 7
with §,, = component-wise soft-thresholding: ///
u—>A u>pu —L .
Su(u)=4 0 lul < u 7% iy
u+ A u<—p /a
converges to U if o < 2/||K||2.

@ u, and U will have many components equal to zero (‘sparsity’)
@ soft-thresholding is the ‘proximal operator’ of ||u||4
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Problem statement

@ Before: Sparse (approximate) solution to linear equations Ku = y by
solving
argmin 3||Ku — |3 + ululls (2)
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Problem statement

@ Before: Sparse (approximate) solution to linear equations Ku = y by
solving
argmin 3||Ku — |3 + ululls (2)

@ Now: instead of u sparse, we require Au sparse: many (Au); =0,
where A is a linear operator ('analysis style sparsity’)
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argmin 3||Ku — |3 + ululls (2)
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Problem statement

@ Before: Sparse (approximate) solution to linear equations Ku = y by
solving
argmin 3||Ku — |3 + ululls (2)

@ Now: instead of u sparse, we require Au sparse: many (Au); =0,
where A is a linear operator ('analysis style sparsity’)
@ (approximate) solution & to linear equations Ku = y with Au sparse
by solving:
0 =argmin 3[|Ku — |13 + pl| Aull4 3)

@ A is not necessarily invertible

@ (2)is a special case of (3): A = Id or change of variables if 3A~"

@ proximal operator of x|/Au|4 does not have a simple expression in
general, otherwise one could use:

Unt1 = PrOX,, A, [un +aKT(y — Kun)]
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@ Want an explicit iterative algorithm for:

argmin 3 [Ku — y 3 + X Au

@ foragenericA,i.e. no A’

@ explicit: uses only K, KT, A and AT at every step,
No equation solving at every step
No non-trivial sub-problem at every step

No smoothing of type : W

@ Guide: new algorithm should reduce to (1) if A = 1

This is a choice, not a mathematical requirement
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@ More generally: we want an explicit iterative algorithm for:
arg muin f(u) + g(Au)

where f is convex, differentiable with Lipschitz continuous gradient
(L), g is convex, A is a linear map

@ in terms of V, prox, (as before) and A, AT,
@ WITHOUT using proxy, .y,
@ and that reduces to the proximal gradient algorithm:

Unt1 = ProX,,q (un — anVit(up)) (4)

when A = Id.
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Variational equations for & = argmin, f(u) + g(Au)

@ Introducing § = ag(p~"-), we can equivalently write:
argmin af (u) + 9(BAu)
@ The variational equations are:
aVf(u) + BATw =0 with w € dg(BAu)
@ This can be expressed as:
aVFf(u)+pATw =0 and BAu= proxg(w + SAu)

Would like to write this as a fixed point equation.
@ Introduce the function proxs; = Id — prox.:
u=u—aVfu)-pATw and BAu=w + BAu — proxs-(w + SAu)
)
u=u—aVf(u)—BATw and w = proxs-(w + SAu)

@ NB: Id — prox really is the proximal operator of a convex function g*
(g* is the “convex conjugate” of g: g*(u) = sup,(u,v) — g(v)).
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Iterative algorithms

@ Variational equations are:

0 = 0—aVi@) - pATW

U =arg muin f(u)+9g(Au) < { W = proxs.(W + fAD) (5)

Need iterative algorithm for solving these equations.
@ Now: make a choice and prove convergence.
@ For example, one could set:

{ Wni1 = ProXg(wn + SAup)

and study convergence.

@ However this algorithm does not reduce to the proximal gradient
algorithm (4) when A = 1 (variable w remains).
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Generalized proximal gradient algorithm (1)

@ Choice: Use a predict-correct step on the u variable
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Generalized proximal gradient algorithm (1)

@ Choice: Use a predict-correct step on the u variable
@ By introducing up. 1:

Dn+1 - Un - an(Un) - IBATWn
Wny1 = ProXg«(wn + BAlni1)
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Generalized proximal gradient algorithm (1)

@ Choice: Use a predict-correct step on the u variable
@ By introducing up. 1:

Dn+1 - Un - an(Un) - IBATWn
Wny1 = ProXg«(wn + BAlni1)

@ Now, ifA=Idand 5 = 1:

Upy1 = Up—aVi(up) — Wpiq

Un — aVf(up) — proxXg.(Wn + ln1)

= Uup— aVif(uy) — proxz-(wWp + un — aVf(un) — wp)
Un — aVf(up) — proxz«(un — aVf(up))

proxg(un — aVf(un)) = prox,q(un — aVif(up))

(Qz

where we used Id — proxgz. = proxg = prox,q

@ Similar reduction in case A orthogonal.
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Generalized proximal gradient algorithm (2)

@ lterative algorithm with variable step lengths:

Dn+1 — Un - anvf(Un) - 5nATWn
Wni1 = ProXg: [Wp + BnAln1]
Uni1 = Up—anVF(Up) — BnAT W1

where §n(-) = ang(57 ")
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Generalized proximal gradient algorithm (2)

@ lterative algorithm with variable step lengths:

Dn+1 — Un - anvf(Un) - 5nATWn
Wni1 = ProXg: [Wp + BnAln1]
Uni1 = Up—anVF(Up) — BnAT W1

where gn(-) = ang(5; )
@ We will study convergence of:

Upy1 = Un— anVi(up) — BpATwy
Wniq = Proxg [Whn + BnAln1]

Upy1 = Up— anVi(up) — 5nATV~Vn+1
Wni1 = (1= Anp)Wn + \gWpp

Upgr = (1= Xn)un + Aplingq
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Generalized proximal gradient algorithm

Theorem (generalized proximal gradient algorithm [ , , ])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),
g: RY — Ris convex, proper, lower semi-continuous,

A RY — R s a linear map, and a minimizer of F (u) = f(u) + g(Au)
exists, THEN the iterative algorithm:

Un+1 =
Wn+1 =
[/n+1 =
Wni1 =

Upy1 =

Up — anVE(un) — BaATwy,

Proxg: [Wh + BnAln 1]

Un — anVi(up) — ﬂnATVNVn+1 (6)
(1= X\)Whn + AW 1

(1 = )\n)Un aF )\nEIn+1

with ug = arbitrary, e < ap <2/L —¢, e < 1 < B < ... < 1/||A|| — e and
e < Ap < 1 converges to a minimizer of F (u).
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Proof of convergence

Let & € argmin, f(u) + g(Au), i.e.:

{

for some «, 8 > 0 and where §(-) = ag(p~"-).

= 0—aVf(l) - pATW
proxg (W + BAU)

> O

Convexity of |[w — w||3 and Wp1 = (1 — A\p)Wp + A\nWp 1 implies:
Wit = W[5 < (1= n)[Wp — W[5+ An|[Wpy1 — W3 (7)
Convexity of ||u — 0|2 and up1 = (1 — Ap)up + Anlini1 implies:

lun1 = 8lZ = (1= An)llun — U1 +Anll8n41 = UlZ —An(1 = An)lltn — Tn1 13

(8)
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Recall property of proximal operators

If t+ = prox,(t~ + A) then:
It —tI3 < It 7 — t" — 15 +2(t" —t, ) +2g(t) — 29(t") (9)

for all t.
We will use this property on the (iteration) relation:

Wpiq = proxg: [Wn + BnAlni1]
with t+ = Wy, q,t~ = wy, t = W, A = 3,Alp, and for g} instead of g
and on the fixed-point relation:
W = proxg. W + Al

with tt = w,t~ = w,t = W, 1, A = B,Al, and for g} instead of g.
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Proof of convergence

It follows from Wi, 1 = proxg: [W,, + BnAlp11] and eq. (9) with
t+ — Wn+1,t_ — Wn,t - W A ﬁnAUn that

W1~ W3 < [Wn— WI3 ~ W1 — Wall3 + 2(Wnst — W, fpAllne)
+295(W) — 295(Wn1)
It follows from W = proxg. [W + 8,Al] and eq. (9) with
tt =w,t- =w,t = Wy q, A = BRAU that:

W —Wrlls < || —Warql5 — [W=d[Z + 2(W — W1, BpAD)
+285(Wn11) — 2g5(W)
Together (and using Ty 1 = Gpy1 — BnAT (Wn — Winyt)):

st~ WG < o~ WIE — Womis —wal3
+28n(Wny1 — W, A(Uns1 — U))

= |lwp — VAVHZ — [[Wniq — WnHz

+28n(Wny1 — W, A(Uny1 — 0 — /BnAT( — Wny1)))
0
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Proof of convergence

It follows from {ipyq = Up — anVF(Up) — BnAT Wpiq that:

e~ 013 < o — 013~ |G — ol ~
+2<Un+1 — U, _Oéan(Un) — /BnATWn+1>

It follows from & = & — o, V(&) — BrAT W that:

A = .
10 = niall3 < 10— Tpyall3 — 10— D13

+2(U — Upy1, —anVF(U) - BnATVAV>
Together:
[Gin+1 — )3 < lun — 03 - Hf’njﬂ —NunHé \
+2an (0 — Upy1, VF(un) — V(D))
—26n(Un11 — 0, AT (Wpyq — W)
(see part 1) o112 . 9 L . )
< |un — 0|5 — [|Uny1 — Unll5 + 2ang||un — Uny|l5
—2Bn(lins1 — 0, AT (Wng1 — W)

(11)
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Proof of convergence

Adding inequalities (10) and (11) yields:

[8n41 = Ol + [Wnp1 = W[5 < lup — 05 + [[wa — |3
—(1— 25 [n g1 — Unll3 — IWni1 — wall3
—2035(AT (W1 — W), AT (W — Wy 1))
The inner product 2(AT (Wp1 — vT/) AT(W, — Wpy1)) equals
AT (W — )3 — AT (W1 — )| — AT (W — p..1)| and hence:
8n+1 = U3 + (IWns1 — W5 — BFIAT (Wns1 — W)[3
< lun — 0I5 + [wn — |5 — BFIAT (wn — W)]3
—(1 = %) [Un 1 — Unll3 — [ Wni1 — a3 + B3 IAT (Wn — Winy1)l13

If By < Bt then —B2 4 |AT (Wnyq — W)||3 < —B2||AT (Wpsq — W)||3 such
that:
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Proof of convergence

|81 = D5 + [Wniq = W5 4 < llun = G5+ wn = I3,

—(1 = %) Uns1 — Upll3 — [ Wni1 — wal3, 4
12)
where [w| , = [lw]3 — GZI|ATw|3 (a norm).
Combining inequalities (7), (8) and (12) yields:

o A A ~ 112
[Unt1 = GlJ5 + [|wni1 — WH%,H_1A < lup — @l|5 + [lwn — wl|5,a
“n [(1=%L) + (1= A0)| i1 — unl3
—An|[Wnit — Wn”%,,A

With e < Ay <1and a, < 2/L — e, it follows that:

[Unt1 = [J5 + [|Wni1 — VAV”%,,MA < lup — @l + [lwn — VAV”%,,A

—C1[|8n11 — Un|5 — C2||Wni1 — Wn||%,,A

(13)

for some ¢q,c, > 0.
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Proof of convergence

It follows that:

lun1 = I+ Wat —WlIE 4 < llun = DIE + W — W5,
< ..
< uo — @3 + wo — W3, =C

With 3 = sup, 8, < 1/||A|| and ||w||%A = |w|3 — B?||ATw||3, one finds:

N N Bni1 < A N
1 = GlIZ + [Wir — W12, < Hun+1 Q[l3 + [Iwns1 = W[IZ 4 < C

i.e. (up,wp) is bounded.
As (an)n and (Bn)n are also bounded, there exists a common converging
subsequence:

j—)OO j—)OO

j— 00 —00
Up, R A IZ% o >0, ﬁn]j

5>0

Ignace Loris (igloris@ulb.ac.be)



Proof of convergence

Inequality (13) also implies (N > M):

N=1 _ 17 ~
> nem CllTn11 — unl3 + C2[|Wni1 — Wn”%—;,,A
N—1 - N - N
< Sty — @B+ (Wo — W12 5 — [Upet — B2 — Wi — WIE, s
= llum — Gl13 + llwm — W[, 0 — llun — G115 — [lwn — W3,

< llum — 815 + [lwm — (13,4
(14)
This means that |41 — Unll2 "= 0 and thus: &y 41— uf.
It also implies that || W1 — W,-,H%A < [Ip 1 — wall2, , "= 0, and thus:
Wn +1 5w,

Using Uy 1 = tpy1 — BnAT (W, — Wy 1)), one also finds that & Up; 41 Izt
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Proof of convergence

But as ~ 7
{ Unj+1 = Unj - Oénij(Unj) W, /anA an

an+1 = proxg,’;‘] |:an + /anAL_/nj—H
one finds (j — oo) by continuity of Vf and prox (2x!) that:

ut = ul —aVfu) — pATWT
wi = proxg. [wl+ gAuT]

i.e. ut is a minimizer of f(u) + g(Au).
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Proof of convergence

Finally, choosing i = uf and w = w', inequality (14) implies that:

B>Bn
lun — a3+ llwy = w3, =" fun = uTl5 + lwy = wili3
(14) 2 112
< lum —u'lz + llwm — w5, A
< uy — a5+ [wy — w3

(N > M). As there is a subsequence (up,, wy,) that converges to (uf, w'),
the rhs can be made as small as one likes (choice of M). This shows that

the whole sequence (up,, wy), converges to (uf, w).
One also shows that i, converges to u' and that w,, converges to wi. O
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Generalized proximal gradient algorithm with error

terms

Theorem (generalized proximal gradient algorithm [ ])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),
g: RY — Ris convex, proper, lower semi-continuous,

A RY — R s a linear map, and a minimizer of F (u) = f(u) + g(Au)
exists, THEN the iterative algorithm:

L_/n+1 =
Wn—H =
E’n+1 =
Wni1 =

Upy1 =

Up — apVf(un) — BnAT W, + €,

Proxg: [Wpn + BnAln1] + dn

Un — anV(Un) — BnAT Wyiq + 1n (15)
(1= An)Wn + AnWpq

(1 = )\n)Un + )\nfln+1

with ug = arbitrary, e < an <2/L—¢, e <51 < [ < ... < 1/||A] — ¢,

e <A <130 llenll2 < 400, 32, 10nll2 < 400, 32, lInnll2 < +oo
converges to a minimizer of F(u).
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Generalized iterative soft-thresholding algorithm

(GISTA)

@ For f = }||Ku — y|3 and g(u) = p|ul|1, the problem reduces to:
i =argmin }|[Ku — y/|3 + AllAull

and the algorithm (6) reduces to:

Dn+1 = Up— OZVf(Un) — IBATWn
Wn+1 - Pall/ﬁ [Wn + ﬁADn+1] (16)

with ug = arbitrary, 0 < o < 2/||K||?, 0 < 8 < 1/||A|| and

P, =1d — S, (= projection on /, ball).
@ Convenience: conditions on « and 5 do not mix A and K
@ Coefficients of Au, are not sparse in every step (only as n — o).

@ One also shows:




Applications

@ In image restoration:
@ ‘Total Variation’ (TV) penalty

o A= ( 2)( ) is the local gradient of image
y

o [|Aulls = Zplxels \/ Axu)? + (Ayu )
@ P, =component-wise:

A 2 2
Wy, W, Wg + wz > A
P (wx, wy) { W3+Wy2( e Wy) 7

(Wy, wy) \ W2+ wE <A

@ promotes images with sparse gradients (=piecewise constant images)
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Applications

@ In image restoration:
@ ‘Total Variation’ (TV) penalty

o A= ( 2)( ) is the local gradient of image
y

o [|Aulls = Zplxels \/ Axu)? + (Ayu )
@ P, =component-wise:

A 2 2
Wy, W, Wg + wz > A
P (wx, wy) { W3+Wy2( e Wy) 7

(Wy, wy) \ W2+ wE <A
@ promotes images with sparse gradients (=piecewise constant images)

@ Group sparsity (possibly with overlapping groups):
@ A defines the groups (a single 1 on each row)
@ Columns of A may have more than a single nonzero entry
(overlapping groups).
° ||AUH1 = Zkegroups H(ui)iGQTOUP k”P withp =2orp=o0
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Other algorithms

@ Many other algorithms exist

® See also [2, 7, 4, 5] and references therein
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