

2585-28

Joint ICTP-TWAS School on Coherent State Transforms, Time-Frequency and Time-Scale Analysis, Applications

2 - 20 June 2014

Numerical algorithms for sparse recovery contd.

I. Loris ULB, Brussels Belgium

Numerical algorithms for sparse recovery (part 2)

Ignace Loris

Université Libre de Bruxelles

Coherent state transforms, time-frequency and time-scale analysis, applications
Trieste, Italy, June 2–21, 2014

• Sparse (approximate) solution to linear equations Ku = y by solving

$$\hat{u} = \arg\min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \mu ||u||_{1}$$

• Iterative soft-thresholding algorithm:

$$u_{n+1} = S_{\alpha\mu} \left[u_n + \alpha K^T (y - Ku_n) \right]$$

with $\mathcal{S}_{\mu}=$ component-wise soft-thresholding:

$$S_{\mu}(u) = \begin{cases} u - \lambda & u \ge \mu \\ 0 & |u| \le \mu \\ u + \lambda & u \le -\mu \end{cases}$$

converges to \hat{u} if $\alpha < 2/\|K\|^2$.

• soft-thresholding is the 'proximal operator' of $||u||_1$

• Sparse (approximate) solution to linear equations Ku = y by solving

$$\hat{u} = \arg\min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \mu ||u||_{1}$$

Iterative soft-thresholding algorithm:

$$u_{n+1} = \mathcal{S}_{\alpha\mu} \left[u_n + \alpha K^T (y - K u_n) \right]$$

with $\mathcal{S}_{\mu}=$ component-wise soft-thresholding:

$$S_{\mu}(u) = \begin{cases} u - \lambda & u \geq \mu \\ 0 & |u| \leq \mu \\ u + \lambda & u \leq -\mu \end{cases}$$

converges to \hat{u} if $\alpha < 2/\|K\|^2$.

• soft-thresholding is the 'proximal operator' of $||u||_1$

• Sparse (approximate) solution to linear equations Ku = y by solving

$$\hat{u} = \arg\min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \mu ||u||_{1}$$

Iterative soft-thresholding algorithm:

$$u_{n+1} = \mathcal{S}_{\alpha\mu} \left[u_n + \alpha K^T (y - K u_n) \right]$$

with $\mathcal{S}_{\mu}=$ component-wise soft-thresholding:

$$S_{\mu}(u) = \begin{cases} u - \lambda & u \ge \mu \\ 0 & |u| \le \mu \\ u + \lambda & u \le -\mu \end{cases}$$

converges to \hat{u} if $\alpha < 2/\|K\|^2$.

• soft-thresholding is the 'proximal operator' of ||u||

• Sparse (approximate) solution to linear equations Ku = y by solving

$$\hat{u} = \arg\min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \mu ||u||_{1}$$

Iterative soft-thresholding algorithm:

$$u_{n+1} = S_{\alpha\mu} \left[u_n + \alpha K^T (y - Ku_n) \right]$$

with $\mathcal{S}_{\mu}=$ component-wise soft-thresholding:

$$S_{\mu}(u) = \begin{cases} u - \lambda & u \ge \mu \\ 0 & |u| \le \mu \\ u + \lambda & u \le -\mu \end{cases}$$

converges to \hat{u} if $\alpha < 2/\|K\|^2$.

• soft-thresholding is the 'proximal operator' of $||u||_1$

$$\arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|u\|_{1}$$
 (2)

- Now: instead of u sparse, we require Au sparse: many $(Au)_i = 0$, where A is a linear operator ('analysis style sparsity')
- (approximate) solution \hat{u} to linear equations Ku = y with Au sparse by solving:

$$\hat{u} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|Au\|_{1}$$
 (3)

- A is not necessarily invertible
- (2) is a special case of (3): A = Id or change of variables if $\exists A^{-1}$
- proximal operator of $\mu \|Au\|_1$ does not have a simple expression in general, otherwise one could use:

$$u_{n+1} = \operatorname{prox}_{\alpha\mu\parallel A \cdot \parallel_1} \left[u_n + \alpha K^T (y - Ku_n) \right]$$

$$\arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|u\|_{1}$$
 (2)

- Now: instead of u sparse, we require Au sparse: many $(Au)_i = 0$, where A is a linear operator ('analysis style sparsity')
- (approximate) solution \hat{u} to linear equations Ku = y with Au sparse by solving:

$$\hat{u} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|Au\|_{1}$$
 (3)

- A is not necessarily invertible
- (2) is a special case of (3): A = Id or change of variables if $\exists A^{-1}$
- proximal operator of $\mu \|Au\|_1$ does not have a simple expression in general, otherwise one could use:

$$u_{n+1} = \operatorname{prox}_{\alpha\mu\|A\cdot\|_1} \left[u_n + \alpha K^T (y - Ku_n) \right]$$

$$\arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|u\|_{1}$$
 (2)

- Now: instead of u sparse, we require Au sparse: many $(Au)_i = 0$, where A is a linear operator ('analysis style sparsity')
- (approximate) solution \hat{u} to linear equations Ku = y with Au sparse by solving:

$$\hat{u} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|Au\|_{1}$$
 (3)

- A is not necessarily invertible
- (2) is a special case of (3): A = Id or change of variables if $\exists A^-$
- proximal operator of $\mu \|Au\|_1$ does not have a simple expression in general, otherwise one could use:

$$u_{n+1} = \operatorname{prox}_{\alpha\mu\|A\cdot\|_1} \left[u_n + \alpha K^T (y - Ku_n) \right]$$

$$\arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|u\|_{1}$$
 (2)

- Now: instead of u sparse, we require Au sparse: many $(Au)_i = 0$, where A is a linear operator ('analysis style sparsity')
- (approximate) solution \hat{u} to linear equations Ku = y with Au sparse by solving:

$$\hat{u} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \mu \|Au\|_{1}$$
 (3)

- A is not necessarily invertible
- (2) is a special case of (3): A = Id or change of variables if $\exists A^{-1}$
- proximal operator of $\mu \|Au\|_1$ does not have a simple expression in general, otherwise one could use:

$$u_{n+1} = \operatorname{prox}_{\alpha\mu\parallel A \cdot \parallel_1} \left[u_n + \alpha K^T (y - Ku_n) \right]$$

Goal (1)

Want an explicit iterative algorithm for:

$$\arg \min_{u} \frac{1}{2} ||Ku - y||_{2}^{2} + \lambda ||Au||_{1}$$

- for a generic A, i.e. **no** A^{-1}
- explicit: uses only K, K^T, A and A^T at every step, **No** equation solving at every step **No** non-trivial sub-problem at every step **No** smoothing of type : $||Au||_1 \approx \sum_i \sqrt{(Au)_i^2 + \epsilon^2}$,
- Guide: new algorithm should reduce to (1) if A = 1This is a choice, not a mathematical requirement

Goal (2)

• More generally: we want an explicit iterative algorithm for:

$$arg \min_{u} f(u) + g(Au)$$

where f is convex, differentiable with Lipschitz continuous gradient (L), g is convex, A is a linear map

- ullet in terms of ∇f , prox_g (as before) and A, A^T ,
- WITHOUT using $prox_{g(A \cdot)}$,
- and that reduces to the proximal gradient algorithm:

$$u_{n+1} = \operatorname{prox}_{\alpha_n g} \left(u_n - \alpha_n \nabla f(u_n) \right) \tag{4}$$

when A = Id.

Variational equations for $\hat{u} = \arg\min_{u} f(u) + g(Au)$

• Introducing $\tilde{g} = \alpha g(\beta^{-1})$, we can equivalently write:

$$\operatorname{arg\,min}_{u} \alpha f(u) + \tilde{g}(\beta A u)$$

The variational equations are:

$$\alpha \nabla f(u) + \beta A^T w = 0$$
 with $w \in \partial \tilde{g}(\beta A u)$

• This can be expressed as:

$$\alpha \nabla f(u) + \beta A^T w = 0$$
 and $\beta A u = \operatorname{prox}_{\tilde{g}}(w + \beta A u)$

Would like to write this as a fixed point equation.

• Introduce the function $prox_{\tilde{g}} \equiv Id - prox_{\tilde{g}^*}$:

$$u = u - \alpha \nabla f(u) - \beta A^T w$$
 and $\beta A u = w + \beta A u - \operatorname{prox}_{\tilde{g}^*}(w + \beta A u)$
 $\downarrow u = u - \alpha \nabla f(u) - \beta A^T w$ and $w = \operatorname{prox}_{\tilde{g}^*}(w + \beta A u)$

• NB: $\operatorname{Id} - \operatorname{prox}_{\tilde{g}}$ really is the proximal operator of a convex function \tilde{g}^* (\tilde{g}^* is the "convex conjugate" of \tilde{g} : $\tilde{g}^*(u) = \sup_{v} \langle u, v \rangle - \tilde{g}(v)$).

Iterative algorithms

Variational equations are:

$$\hat{u} = \arg\min_{u} f(u) + g(Au) \Leftrightarrow \begin{cases} \hat{u} = \hat{u} - \alpha \nabla f(\hat{u}) - \beta A^{T} \hat{w} \\ \hat{w} = \operatorname{prox}_{\tilde{g}^{*}}(\hat{w} + \beta A\hat{u}) \end{cases}$$
(5)

Need iterative algorithm for solving these equations.

- Now: make a choice and prove convergence.
- For example, one could set:

$$\begin{cases} w_{n+1} = \operatorname{prox}_{\tilde{g}^*}(w_n + \beta A u_n) \\ u_{n+1} = u_n - \alpha \nabla f(u_n) - \beta A^T w_{n+1} \end{cases}$$

and study convergence.

• However this algorithm does not reduce to the proximal gradient algorithm (4) when A = 1 (variable w remains).

Generalized proximal gradient algorithm (1)

- Choice: Use a predict-correct step on the *u* variable
- By introducing \bar{u}_{n+1} :

$$\begin{cases} \bar{u}_{n+1} = u_n - \alpha \nabla f(u_n) - \beta A^T w_n \\ w_{n+1} = \operatorname{prox}_{\tilde{g}^*}(w_n + \beta A \bar{u}_{n+1}) \\ u_{n+1} = u_n - \alpha \nabla f(u_n) - \beta A^T w_{n+1} \end{cases}$$

• Now, if A = Id and $\beta = 1$:

$$u_{n+1} = u_n - \alpha \nabla f(u_n) - w_{n+1}$$

$$= u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(w_n + \bar{u}_{n+1})$$

$$= u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(w_n + u_n - \alpha \nabla f(u_n) - w_n)$$

$$= u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(u_n - \alpha \nabla f(u_n))$$

$$= \operatorname{prox}_{\tilde{g}}(u_n - \alpha \nabla f(u_n)) = \operatorname{prox}_{\alpha g}(u_n - \alpha \nabla f(u_n))$$

where we used $\operatorname{Id} - \operatorname{prox}_{\widetilde{g}^*} = \operatorname{prox}_{\widetilde{g}} = \operatorname{prox}_{\alpha g}$

Similar reduction in case A orthogonal.

Generalized proximal gradient algorithm (1)

- Choice: Use a predict-correct step on the *u* variable
- By introducing \bar{u}_{n+1} :

$$\begin{cases} \bar{u}_{n+1} &= u_n - \alpha \nabla f(u_n) - \beta A^T w_n \\ w_{n+1} &= \operatorname{prox}_{\tilde{g}^*}(w_n + \beta A \bar{u}_{n+1}) \\ u_{n+1} &= u_n - \alpha \nabla f(u_n) - \beta A^T w_{n+1} \end{cases}$$

• Now, if A = Id and $\beta = 1$:

$$\begin{array}{ll} u_{n+1} &=& u_n - \alpha \nabla f(u_n) - w_{n+1} \\ &=& u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(w_n + \bar{u}_{n+1}) \\ &=& u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(w_n + u_n - \alpha \nabla f(u_n) - w_n) \\ &=& u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(u_n - \alpha \nabla f(u_n)) \\ &=& \operatorname{prox}_{\tilde{g}}(u_n - \alpha \nabla f(u_n)) = \operatorname{prox}_{\alpha g}(u_n - \alpha \nabla f(u_n)) \end{array}$$

where we used $\operatorname{Id} - \operatorname{prox}_{\tilde{g}^*} = \operatorname{prox}_{\tilde{g}} = \operatorname{prox}_{\alpha g}$

Similar reduction in case A orthogonal.

Generalized proximal gradient algorithm (1)

- Choice: Use a predict-correct step on the u variable
- By introducing \bar{u}_{n+1} :

$$\begin{cases}
\bar{u}_{n+1} = u_n - \alpha \nabla f(u_n) - \beta A^T w_n \\
w_{n+1} = \operatorname{prox}_{\tilde{g}^*}(w_n + \beta A \bar{u}_{n+1}) \\
u_{n+1} = u_n - \alpha \nabla f(u_n) - \beta A^T w_{n+1}
\end{cases}$$

• Now, if A = Id and $\beta = 1$:

$$\begin{array}{ll} u_{n+1} &=& u_n - \alpha \nabla f(u_n) - w_{n+1} \\ &=& u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(w_n + \bar{u}_{n+1}) \\ &=& u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(w_n + u_n - \alpha \nabla f(u_n) - w_n) \\ &=& u_n - \alpha \nabla f(u_n) - \operatorname{prox}_{\tilde{g}^*}(u_n - \alpha \nabla f(u_n)) \\ &=& \operatorname{prox}_{\tilde{g}}(u_n - \alpha \nabla f(u_n)) = \operatorname{prox}_{\alpha g}(u_n - \alpha \nabla f(u_n)) \end{array}$$

where we used $\operatorname{Id}-\operatorname{prox}_{\tilde{g}^*}=\operatorname{prox}_{\tilde{g}}=\operatorname{prox}_{\alpha g}$

Similar reduction in case A orthogonal.

Generalized proximal gradient algorithm (2)

• Iterative algorithm with variable step lengths:

$$\begin{cases} \bar{u}_{n+1} = u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_n \\ w_{n+1} = \operatorname{prox}_{\tilde{g}_n^*} [w_n + \beta_n A \bar{u}_{n+1}] \\ u_{n+1} = u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_{n+1} \end{cases}$$

where
$$\tilde{g}_n(\cdot) = \alpha_n g(\beta_n^{-1} \cdot)$$

• We will study convergence of:

$$\begin{cases} \bar{u}_{n+1} &= u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_n \\ \tilde{w}_{n+1} &= \operatorname{prox}_{\tilde{g}_n^*} [w_n + \beta_n A \bar{u}_{n+1}] \\ \tilde{u}_{n+1} &= u_n - \alpha_n \nabla f(u_n) - \beta_n A^T \tilde{w}_{n+1} \\ w_{n+1} &= (1 - \lambda_n) w_n + \lambda_n \tilde{w}_{n+1} \\ u_{n+1} &= (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1} \end{cases}$$

Generalized proximal gradient algorithm (2)

Iterative algorithm with variable step lengths:

$$\begin{cases} \bar{u}_{n+1} &= u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_n \\ w_{n+1} &= \operatorname{prox}_{\tilde{g}_n^*} [w_n + \beta_n A \bar{u}_{n+1}] \\ u_{n+1} &= u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_{n+1} \end{cases}$$

where $\tilde{g}_n(\cdot) = \alpha_n g(\beta_n^{-1} \cdot)$

• We will study convergence of:

$$\begin{cases} \bar{u}_{n+1} &= u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_n \\ \tilde{w}_{n+1} &= \operatorname{prox}_{\tilde{g}_n^*} [w_n + \beta_n A \bar{u}_{n+1}] \\ \tilde{u}_{n+1} &= u_n - \alpha_n \nabla f(u_n) - \beta_n A^T \tilde{w}_{n+1} \\ w_{n+1} &= (1 - \lambda_n) w_n + \lambda_n \tilde{w}_{n+1} \\ u_{n+1} &= (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1} \end{cases}$$

Generalized proximal gradient algorithm

Theorem (generalized proximal gradient algorithm [1, 3, 6])

Let $\epsilon > 0$. IF $f : \mathbb{R}^d \to \mathbb{R}$ is convex with Lipschitz continuous gradient (L), $g : \mathbb{R}^{d'} \to \mathbb{R}$ is convex, proper, lower semi-continuous, $A : \mathbb{R}^d \to \mathbb{R}^{d'}$ is a linear map, and a minimizer of F(u) = f(u) + g(Au) exists. THEN the iterative algorithm:

$$\begin{cases}
\bar{u}_{n+1} = u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_n \\
\tilde{w}_{n+1} = \operatorname{prox}_{\tilde{g}_n^*} [w_n + \beta_n A \bar{u}_{n+1}] \\
\tilde{u}_{n+1} = u_n - \alpha_n \nabla f(u_n) - \beta_n A^T \tilde{w}_{n+1} \\
w_{n+1} = (1 - \lambda_n) w_n + \lambda_n \tilde{w}_{n+1} \\
u_{n+1} = (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1}
\end{cases} (6)$$

with $u_0 =$ arbitrary, $\epsilon \le \alpha_n \le 2/L - \epsilon$, $\epsilon \le \beta_1 \le \beta_2 \le ... \le 1/\|A\| - \epsilon$ and $\epsilon \le \lambda_n \le 1$ converges to a minimizer of F(u).

Let $\hat{u} \in \arg\min_{u} f(u) + g(Au)$, i.e.:

$$\begin{cases} \hat{u} = \hat{u} - \alpha \nabla f(\hat{u}) - \beta A^{T} \hat{w} \\ \hat{w} = \operatorname{prox}_{\tilde{g}^{*}} (\hat{w} + \beta A \hat{u}) \end{cases}$$

for some $\alpha, \beta > 0$ and where $\tilde{g}(\cdot) = \alpha g(\beta^{-1} \cdot)$.

Convexity of $\|w - \hat{w}\|_2^2$ and $w_{n+1} = (1 - \lambda_n)w_n + \lambda_n \tilde{w}_{n+1}$ implies:

$$\|\mathbf{w}_{n+1} - \hat{\mathbf{w}}\|_{2}^{2} \leq (1 - \lambda_{n}) \|\mathbf{w}_{n} - \hat{\mathbf{w}}\|_{2}^{2} + \lambda_{n} \|\tilde{\mathbf{w}}_{n+1} - \hat{\mathbf{w}}\|_{2}^{2}$$
 (7)

Convexity of $||u - \hat{u}||_2^2$ and $u_{n+1} = (1 - \lambda_n)u_n + \lambda_n \tilde{u}_{n+1}$ implies:

$$\|u_{n+1} - \hat{u}\|_{2}^{2} = (1 - \lambda_{n})\|u_{n} - \hat{u}\|_{2}^{2} + \lambda_{n}\|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} - \lambda_{n}(1 - \lambda_{n})\|u_{n} - \tilde{u}_{n+1}\|_{2}^{2}$$
(8)

Recall property of proximal operators

If $t^+ = \operatorname{prox}_g(t^- + \Delta)$ then:

$$||t^{+} - t||_{2}^{2} \le ||t^{-} - t||_{2}^{2} - ||t^{+} - t^{-}||_{2}^{2} + 2\langle t^{+} - t, \Delta \rangle + 2g(t) - 2g(t^{+})$$
 (9)

for all t.

We will use this property on the (iteration) relation:

$$\tilde{w}_{n+1} = \operatorname{prox}_{\tilde{g}_n^*} \left[w_n + \beta_n A \bar{u}_{n+1} \right]$$

with $t^+ = \tilde{w}_{n+1}, t^- = w_n, t = \hat{w}, \Delta = \beta_n A \bar{u}_n$, and for \tilde{g}_n^* instead of g and on the fixed-point relation:

$$\hat{\mathbf{w}} = \mathsf{prox}_{\tilde{\mathbf{g}}_n^*} \left[\hat{\mathbf{w}} + \beta_n \mathbf{A} \hat{\mathbf{u}} \right]$$

with $t^+ = \hat{w}, t^- = \hat{w}, t = \tilde{w}_{n+1}, \Delta = \beta_n A \hat{u}$, and for \tilde{g}_n^* instead of g.

It follows from $\tilde{w}_{n+1}=\operatorname{prox}_{\tilde{g}_n^*}[w_n+\beta_nA\bar{u}_{n+1}]$ and eq. (9) with $t^+=\tilde{w}_{n+1}, t^-=w_n, t=\hat{w}, \Delta=\beta_nA\bar{u}_n$ that:

$$\begin{split} \|\tilde{w}_{n+1} - \hat{w}\|_{2}^{2} & \leq \|w_{n} - \hat{w}\|_{2}^{2} - \|\tilde{w}_{n+1} - w_{n}\|_{2}^{2} + 2\langle \tilde{w}_{n+1} - \hat{w}, \beta_{n} A \bar{u}_{n+1} \rangle \\ & + 2\tilde{g}_{n}^{*}(\hat{w}) - 2\tilde{g}_{n}^{*}(\tilde{w}_{n+1}) \end{split}$$

It follows from $\hat{w} = \text{prox}_{\tilde{g}_n^*} [\hat{w} + \beta_n A \hat{u}]$ and eq. (9) with $t^+ = \hat{w}, t^- = \hat{w}, t = \tilde{w}_{n+1}, \Delta = \beta_n A \hat{u}$ that:

$$\frac{\|\hat{w} - \tilde{w}_{n+1}\|_{2}^{2}}{\|\hat{w} - \tilde{w}_{n+1}\|_{2}^{2}} - \|\hat{w} - \hat{w}\|_{2}^{2} + 2\langle \hat{w} - \tilde{w}_{n+1}, \beta_{n}A\hat{u}\rangle + 2\tilde{g}_{n}^{*}(\tilde{w}_{n+1}) - 2\tilde{g}_{n}^{*}(\hat{w})$$

Together (and using $\bar{u}_{n+1} = \tilde{u}_{n+1} - \beta_n A^T (w_n - \tilde{w}_{n+1})$):

$$\begin{split} \|\tilde{w}_{n+1} - \hat{w}\|_{2}^{2} &\leq \|w_{n} - \hat{w}\|_{2}^{2} - \|\tilde{w}_{n+1} - w_{n}\|_{2}^{2} \\ &+ 2\beta_{n} \langle \tilde{w}_{n+1} - \hat{w}, A(\bar{u}_{n+1} - \hat{u}) \rangle \end{split}$$

$$= \|w_{n} - \hat{w}\|_{2}^{2} - \|\tilde{w}_{n+1} - w_{n}\|_{2}^{2} \\ &+ 2\beta_{n} \langle \tilde{w}_{n+1} - \hat{w}, A(\tilde{u}_{n+1} - \hat{u} - \beta_{n}A^{T}(w_{n} - \tilde{w}_{n+1})) \rangle \end{split}$$

It follows from $\tilde{u}_{n+1} = u_n - \alpha_n \nabla f(u_n) - \beta_n A^T \tilde{w}_{n+1}$ that:

$$\|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} \stackrel{(=)}{\leq} \|u_{n} - \hat{u}\|_{2}^{2} - \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} + 2\langle \tilde{u}_{n+1} - \hat{u}, -\alpha_{n} \nabla f(u_{n}) - \beta_{n} A^{T} \tilde{w}_{n+1} \rangle$$

It follows from $\hat{u} = \hat{u} - \alpha_n \nabla f(\hat{u}) - \beta_n A^T \hat{w}$ that:

$$\|\hat{u} - \tilde{u}_{n+1}\|_{2}^{2} \stackrel{(=)}{\leq} \|\hat{u} - \tilde{u}_{n+1}\|_{2}^{2} - \|\hat{u} - \hat{u}\|_{2}^{2} + 2\langle \hat{u} - \tilde{u}_{n+1}, -\alpha_{n} \nabla f(\hat{u}) - \beta_{n} A^{T} \hat{w} \rangle$$

Together:

$$\begin{split} \|\tilde{u}_{n+1} - \hat{u}\|_2^2 & \leq & \|u_n - \hat{u}\|_2^2 - \|\tilde{u}_{n+1} - u_n\|_2^2 \\ & + 2\alpha_n \langle \hat{u} - \tilde{u}_{n+1}, \nabla f(u_n) - \nabla f(\hat{u}) \rangle \\ & - 2\beta_n \langle \tilde{u}_{n+1} - \hat{u}, A^T(\tilde{w}_{n+1} - \hat{w}) \rangle \\ & \leq & \|u_n - \hat{u}\|_2^2 - \|\tilde{u}_{n+1} - u_n\|_2^2 + 2\alpha_n \frac{L}{4} \|u_n - \tilde{u}_{n+1}\|_2^2 \\ & - 2\beta_n \langle \tilde{u}_{n+1} - \hat{u}, A^T(\tilde{w}_{n+1} - \hat{w}) \rangle \end{split}$$

Adding inequalities (10) and (11) yields:

$$\begin{split} \|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} + \|\tilde{w}_{n+1} - \hat{w}\|_{2}^{2} & \leq \|u_{n} - \hat{u}\|_{2}^{2} + \|w_{n} - \hat{w}\|_{2}^{2} \\ & - (1 - \frac{\alpha_{n}L}{2}) \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} - \|\tilde{w}_{n+1} - w_{n}\|_{2}^{2} \\ & - 2\beta_{n}^{2} \langle A^{T}(\tilde{w}_{n+1} - \hat{w}), A^{T}(w_{n} - \tilde{w}_{n+1}) \rangle \end{split}$$

The inner product $2\langle A^T(\tilde{w}_{n+1} - \hat{w}), A^T(w_n - \tilde{w}_{n+1}) \rangle$ equals $\|A^T(w_n - \hat{w})\|_2^2 - \|A^T(\tilde{w}_{n+1} - \hat{w})\|_2^2 - \|A^T(w_n - \tilde{w}_{n+1})\|_2^2$ and hence:

$$\begin{split} \|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} + \|\tilde{w}_{n+1} - \hat{w}\|_{2}^{2} - \beta_{n}^{2} \|A^{T}(\tilde{w}_{n+1} - \hat{w})\|_{2}^{2} \\ &\leq \|u_{n} - \hat{u}\|_{2}^{2} + \|w_{n} - \hat{w}\|_{2}^{2} - \beta_{n}^{2} \|A^{T}(w_{n} - \hat{w})\|_{2}^{2} \\ &- (1 - \frac{\alpha_{n}L}{2}) \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} - \|\tilde{w}_{n+1} - w_{n}\|_{2}^{2} + \beta_{n}^{2} \|A^{T}(w_{n} - \tilde{w}_{n+1})\|_{2}^{2} \end{split}$$

If $\beta_n \leq \beta_{n+1}$ then $-\beta_{n+1}^2 \|A^T(\tilde{w}_{n+1} - \hat{w})\|_2^2 \leq -\beta_n^2 \|A^T(\tilde{w}_{n+1} - \hat{w})\|_2^2$ such that:

$$\|\tilde{u}_{n+1} - \hat{u}\|_{2}^{2} + \|\tilde{w}_{n+1} - \hat{w}\|_{\beta_{n+1}A}^{2} \leq \|u_{n} - \hat{u}\|_{2}^{2} + \|w_{n} - \hat{w}\|_{\beta_{n}A}^{2} - (1 - \frac{\alpha_{n}L}{2})\|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} - \|\tilde{w}_{n+1} - w_{n}\|_{\beta_{n}A}^{2}$$

$$(12)$$

where $\|w\|_{\beta_n A}^2 = \|w\|_2^2 - \beta_n^2 \|A^T w\|_2^2$ (a norm).

Combining inequalities (7), (8) and (12) yields:

$$\begin{aligned} \|u_{n+1} - \hat{u}\|_{2}^{2} + \|w_{n+1} - \hat{w}\|_{\beta_{n+1}A}^{2} &\leq \|u_{n} - \hat{u}\|_{2}^{2} + \|w_{n} - \hat{w}\|_{\beta_{n}A}^{2} \\ &- \lambda_{n} \left[(1 - \frac{\alpha_{n}L}{2}) + (1 - \lambda_{n}) \right] \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} \\ &- \lambda_{n} \|\tilde{w}_{n+1} - w_{n}\|_{\beta_{n}A}^{2} \end{aligned}$$

With $\epsilon \leq \lambda_n \leq 1$ and $\alpha_n \leq 2/L - \epsilon$, it follows that:

$$||u_{n+1} - \hat{u}||_{2}^{2} + ||w_{n+1} - \hat{w}||_{\beta_{n+1}A}^{2} \le ||u_{n} - \hat{u}||_{2}^{2} + ||w_{n} - \hat{w}||_{\beta_{n}A}^{2} - c_{1}||\tilde{u}_{n+1} - u_{n}||_{2}^{2} - c_{2}||\tilde{w}_{n+1} - w_{n}||_{\beta_{n}A}^{2}$$

$$(13)$$

for some $c_1, c_2 > 0$.

It follows that:

$$\begin{split} \|u_{n+1} - \hat{u}\|_2^2 + \|w_{n+1} - \hat{w}\|_{\beta_{n+1}A}^2 & \leq & \|u_n - \hat{u}\|_2^2 + \|w_n - \hat{w}\|_{\beta_nA}^2 \\ & \leq & \dots \\ & \leq & \|u_0 - \hat{u}\|_2^2 + \|w_0 - \hat{w}\|_{\beta_0A}^2 = C \end{split}$$

With $\bar{\beta} = \sup_n \beta_n < 1/||A||$ and $||w||_{\bar{\beta}A}^2 = ||w||_2^2 - \bar{\beta}^2 ||A^T w||_2^2$, one finds:

$$\|u_{n+1} - \hat{u}\|_{2}^{2} + \|w_{n+1} - \hat{w}\|_{\bar{\beta}A}^{2} \stackrel{\beta_{n+1} \leq \bar{\beta}}{\leq} \|u_{n+1} - \hat{u}\|_{2}^{2} + \|w_{n+1} - \hat{w}\|_{\beta_{n+1}A}^{2} \leq C$$

i.e. (u_n, w_n) is bounded.

As $(\alpha_n)_n$ and $(\beta_n)_n$ are also bounded, there exists a common converging subsequence:

$$u_{n_j} \stackrel{j \to \infty}{\longrightarrow} u^{\dagger}, \quad w_{n_j} \stackrel{j \to \infty}{\longrightarrow} w^{\dagger}, \quad \alpha_{n_j} \stackrel{j \to \infty}{\longrightarrow} \alpha > 0, \quad \beta_{n_j} \stackrel{j \to \infty}{\longrightarrow} \beta > 0$$

Inequality (13) also implies (N > M):

$$\sum_{n=M}^{N-1} c_{1} \|\tilde{u}_{n+1} - u_{n}\|_{2}^{2} + c_{2} \|\tilde{w}_{n+1} - w_{n}\|_{\beta_{n}A}^{2}$$

$$\leq \sum_{n=M}^{N-1} \|u_{n} - \hat{u}\|_{2}^{2} + \|w_{n} - \hat{w}\|_{\beta_{n}A}^{2} - \|u_{n+1} - \hat{u}\|_{2}^{2} - \|w_{n+1} - \hat{w}\|_{\beta_{n+1}A}^{2}$$

$$= \|u_{M} - \hat{u}\|_{2}^{2} + \|w_{M} - \hat{w}\|_{\beta_{M}A}^{2} - \|u_{N} - \hat{u}\|_{2}^{2} - \|w_{N} - \hat{w}\|_{\beta_{N}A}^{2}$$

$$\leq \|u_{M} - \hat{u}\|_{2}^{2} + \|w_{M} - \hat{w}\|_{\beta_{M}A}^{2}$$

$$\leq \|u_{M} - \hat{u}\|_{2}^{2} + \|w_{M} - \hat{w}\|_{\beta_{M}A}^{2}$$

$$(14)$$

This means that $\|\tilde{u}_{n+1} - u_n\|_2 \stackrel{n \to \infty}{\longrightarrow} 0$ and thus: $\tilde{u}_{n_i+1} \stackrel{j \to \infty}{\longrightarrow} u^{\dagger}$.

It also implies that $\|\tilde{w}_{n+1} - w_n\|_{\bar{\beta}A}^2 \leq \|\tilde{w}_{n+1} - w_n\|_{\beta_n A}^2 \stackrel{n \to \infty}{\longrightarrow} 0$, and thus:

$$\tilde{W}_{n_j+1} \stackrel{j \to \infty}{\longrightarrow} W^\dagger.$$

Using $\bar{u}_{n+1} = \tilde{u}_{n+1} - \beta_n A^T (w_n - \tilde{w}_{n+1})$), one also finds that $\bar{u}_{n_i+1} \stackrel{J \to \infty}{\longrightarrow} u^{\dagger}$.

But as

$$\begin{cases} \bar{u}_{n_j+1} &= u_{n_j} - \alpha_{n_j} \nabla f(u_{n_j}) - \beta_{n_j} A^T w_{n_j} \\ \tilde{w}_{n_j+1} &= \operatorname{prox}_{\tilde{g}_{n_j}^*} \left[w_{n_j} + \beta_{n_j} A \bar{u}_{n_j+1} \right] \end{cases}$$

one finds $(j \to \infty)$ by continuity of ∇f and prox (2x!) that:

$$\begin{cases} u^{\dagger} = u^{\dagger} - \alpha \nabla f(u^{\dagger}) - \beta A^{T} w^{\dagger} \\ w^{\dagger} = \operatorname{prox}_{\tilde{g}^{*}} \left[w^{\dagger} + \beta A u^{\dagger} \right] \end{cases}$$

i.e. u^{\dagger} is a minimizer of f(u) + g(Au).

Finally, choosing $\hat{u} = u^{\dagger}$ and $\hat{w} = w^{\dagger}$, inequality (14) implies that:

$$||u_{N} - u^{\dagger}||_{2}^{2} + ||w_{N} - w^{\dagger}||_{\bar{\beta}A}^{2} \stackrel{\bar{\beta} \geq \beta_{N}}{\leq} ||u_{N} - u^{\dagger}||_{2}^{2} + ||w_{N} - w^{\dagger}||_{\beta_{N}A}^{2}$$

$$\stackrel{(14)}{\leq} ||u_{M} - u^{\dagger}||_{2}^{2} + ||w_{M} - w^{\dagger}||_{\beta_{M}A}^{2}$$

$$\leq ||u_{M} - u^{\dagger}||_{2}^{2} + ||w_{M} - w^{\dagger}||_{2}^{2}$$

 $(N \ge M)$. As there is a subsequence (u_{n_j}, w_{n_j}) that converges to (u^\dagger, w^\dagger) , the rhs can be made as small as one likes (choice of M). This shows that the whole sequence $(u_n, w_n)_n$ converges to (u^\dagger, w^\dagger) .

One also shows that \tilde{u}_n converges to u^\dagger and that \tilde{w}_n converges to w^\dagger . \square

Generalized proximal gradient algorithm with error terms

Theorem (generalized proximal gradient algorithm [1])

Let $\epsilon > 0$. IF $f : \mathbb{R}^d \to \mathbb{R}$ is convex with Lipschitz continuous gradient (L), $g : \mathbb{R}^{d'} \to \mathbb{R}$ is convex, proper, lower semi-continuous, $A : \mathbb{R}^d \to \mathbb{R}^{d'}$ is a linear map, and a minimizer of F(u) = f(u) + g(Au) exists. THEN the iterative algorithm:

$$\begin{cases}
\bar{u}_{n+1} = u_n - \alpha_n \nabla f(u_n) - \beta_n A^T w_n + \epsilon_n \\
\tilde{w}_{n+1} = \operatorname{prox}_{\tilde{g}_n^*} [w_n + \beta_n A \bar{u}_{n+1}] + \delta_n \\
\tilde{u}_{n+1} = u_n - \alpha_n \nabla f(u_n) - \beta_n A^T \tilde{w}_{n+1} + \eta_n \\
w_{n+1} = (1 - \lambda_n) w_n + \lambda_n \tilde{w}_{n+1} \\
u_{n+1} = (1 - \lambda_n) u_n + \lambda_n \tilde{u}_{n+1}
\end{cases} (15)$$

with $u_0 =$ arbitrary, $\epsilon \le \alpha_n \le 2/L - \epsilon$, $\epsilon \le \beta_1 \le \beta_2 \le \ldots \le 1/\|A\| - \epsilon$, $\epsilon \le \lambda_n \le 1$, $\sum_n \|\epsilon_n\|_2 < +\infty$, $\sum_n \|\delta_n\|_2 < +\infty$, $\sum_n \|\eta_n\|_2 < +\infty$ converges to a minimizer of F(u).

Generalized iterative soft-thresholding algorithm (GISTA)

• For $f = \frac{1}{2} \|Ku - y\|_2^2$ and $g(u) = \mu \|u\|_1$, the problem reduces to:

$$\hat{u} = \arg\min_{u} \frac{1}{2} \|Ku - y\|_{2}^{2} + \lambda \|Au\|_{1}$$

and the algorithm (6) reduces to:

$$\begin{cases}
\bar{u}_{n+1} = u_n - \alpha \nabla f(u_n) - \beta A^T w_n \\
w_{n+1} = P_{\alpha \mu/\beta} [w_n + \beta A \bar{u}_{n+1}] \\
u_{n+1} = u_n - \alpha \nabla f(u_n) - \beta A^T \tilde{w}_{n+1}
\end{cases} (16)$$

with $u_0 =$ arbitrary, $0 < \alpha < 2/\|K\|^2$, $0 < \beta < 1/\|A\|$ and $P_{\mu} = \text{Id} - S_{\mu}$ (= projection on ℓ_{∞} ball).

- Convenience: conditions on α and β do not mix A and K
- Coefficients of Au_n are not sparse in every step (only as $n \to \infty$).
- One also shows:

$$F(\tilde{u}_N) - F(\hat{u}) \leq C/N$$

for the Césaro means: $\tilde{u}_N = \frac{1}{N} \sum_{n=1}^{N} u_n$

Applications

- In image restoration:
 - 'Total Variation' (TV) penalty
 - ullet $A=\left(egin{array}{c} \Delta_\chi \ \Delta_y \end{array}
 ight)$ is the local gradient of image
 - $||Au||_1 = \sum_{\text{pixels}} \sqrt{(\Delta_x u)^2 + (\Delta_y u)^2}$
 - P_{λ} =component-wise:

$$P_{\lambda}(w_x, w_y) = \left\{ egin{array}{l} rac{\lambda}{\sqrt{w_x^2 + w_y^2}}(w_x, w_y) & \sqrt{w_x^2 + w_y^2} > \lambda \\ (w_x, w_y) & \sqrt{w_x^2 + w_y^2} \leq \lambda \end{array}
ight.$$

- promotes images with sparse gradients (=piecewise constant images)
- Group sparsity (possibly with overlapping groups):
 - A defines the groups (a single 1 on each row)
 - Columns of A may have more than a single nonzero entry (overlapping groups).
 - $||Au||_1 = \sum_{k \in \text{groups}} ||(u_i)_{i \in \text{group } k}||_p \text{ with } p = 2 \text{ or } p = \infty$

Applications

- In image restoration:
 - 'Total Variation' (TV) penalty
 - ullet $A=\left(egin{array}{c} \Delta_\chi \ \Delta_y \end{array}
 ight)$ is the local gradient of image
 - $||Au||_1 = \sum_{\text{pixels}} \sqrt{(\Delta_x u)^2 + (\Delta_y u)^2}$
 - P_{λ} =component-wise:

$$P_{\lambda}(w_{x}, w_{y}) = \begin{cases} \frac{\lambda}{\sqrt{w_{x}^{2} + w_{y}^{2}}} (w_{x}, w_{y}) & \sqrt{w_{x}^{2} + w_{y}^{2}} > \lambda \\ (w_{x}, w_{y}) & \sqrt{w_{x}^{2} + w_{y}^{2}} \leq \lambda \end{cases}$$

- promotes images with sparse gradients (=piecewise constant images)
- Group sparsity (possibly with overlapping groups):
 - A defines the groups (a single 1 on each row)
 - Columns of A may have more than a single nonzero entry (overlapping groups).
 - $||Au||_1 = \sum_{k \in \text{groups}} ||(u_i)_{i \in \text{group } k}||_p \text{ with } p = 2 \text{ or } p = \infty$

Other algorithms

- Many other algorithms exist
- See also [2, 7, 4, 5] and references therein

Acknowledgements

- Thanks to organizers.
- Thanks to Hoan-Phung Bui, Federica Porta and Caroline Verhoeven.

Bibliography I

[1] Hoan-Phung Bui.

Algorithme itératif permettant la résolution de problèmes inverses. Master's thesis. Université Libre de Bruxelles. 2014.

[2] Antonin Chambolle and Thomas Pock.

A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis. 40:120-145, 2011. hal-00490826

[3] Peijun Chen, Jianguo Huang, and Xiaogun Zhang.

A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Problems, 29(2):025011-, 2013.

[4] P. L. Combettes and J.-C. Pesquet.

Proximal splitting methods in signal processing," in: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Editors), pp. 185-212. New York, 2011, chapter 1, pages 185-212. Springer-Verlag, 2011.

Ignace Loris.

L1Packv2: A Mathematica package for minimizing an ℓ_1 -penalized functional. Computer Physics Communications, 179(12):895-902, 2008.

- [6] Ignace Loris and Caroline Verhoeven.
 - On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Problems, 27(12):125007, 2011,
- Xiaogun Zhang, Martin Burger, and Stanley Osher.
 - A unified primal-dual algorithm framework based on bregman iteration.
 - J Sci Comput. 46:20-46, 2011.