)

The Abdus Salam

(CTP International Centre
for Theoretical Physics

N

2585-28

Joint ICTP-TWAS School on Coherent State Transforms, Time-
Frequency and Time-Scale Analysis, Applications

2 - 20 June 2014

Numerical algorithms for sparse recovery contd.

l. Loris

ULB, Brussels
Belgium

Strada Costiera, 11 - 34151 - Trieste - Italy « Tel. +39 0402240111 « Fax. +39 040224163 « sci_info@ictp.it « www.ictp.it
ICTP is govemned by UNESCO, IAEA, and ltaly, and it is a UNESCO Category 1 Institute

Numerical algorithms for sparse recovery (part 2)

Ignace Loris

Université Libre de Bruxelles

Coherent state transforms,
time-frequency and time-scale analysis, applications

Trieste, Italy, June 2-21, 2014

Ignace Loris (igloris@ulb.ac.be)

Summary of part 1

@ Sparse (approximate) solution to linear equations Ku = y by solving

~ . 2
0 =argmin ;|[Ku — y|j3 + ullulls

Ignace Loris (igloris@ulb.ac.be)

Summary of part 1

@ Sparse (approximate) solution to linear equations Ku = y by solving

~ . 2
0 =argmin ;|[Ku — y|j3 + ullulls

@ lterative soft-thresholding algorithm:
Unt1 = Sap |Un + aKT(y — Ku,,)]

with §,, = component-wise soft-thresholding:

u—>A u>pu
Su(u)=4 0 lul < p
u+ A u<—u
converges to U if o < 2/||K||2. .

Ignace Loris (igloris@ulb.ac.be)

Summary of part 1

@ Sparse (approximate) solution to linear equations Ku = y by solving

~ . 2
0 =argmin ;|[Ku — y|j3 + ullulls

@ lterative soft-thresholding algorithm:
Unt1 = Sap |Un + aKT(y — Ku,,)]

with §,, = component-wise soft-thresholding:

u—>A u>pu
Su(u)=4 0 lul < p
u+ A u<—u
converges to U if o < 2/||K||2. .

@ u, and U will have many components equal to zero (‘sparsity’)

Ignace Loris (igloris@ulb.ac.be)

Summary of part 1

@ Sparse (approximate) solution to linear equations Ku = y by solving

~ . 2
0 =argmin ;|[Ku — y|j3 + ullulls

@ lterative soft-thresholding algorithm:

Unt1 = Sap |Un + aKT(y — Ku,,)] 0 (1/)
H 7
with §,, = component-wise soft-thresholding: ///
u—>A u>pu —L .
Su(u)=4 0 lul < u 7% iy
u+ A u<—p /a
converges to U if o < 2/||K||2.

@ u, and U will have many components equal to zero (‘sparsity’)
@ soft-thresholding is the ‘proximal operator’ of ||u||4

Ignace Loris (igloris@ulb.ac.be)

Problem statement

@ Before: Sparse (approximate) solution to linear equations Ku = y by
solving
argmin 3||Ku — |3 + ululls (2)

Ignace Loris (igloris@ulb.ac.be)

Problem statement

@ Before: Sparse (approximate) solution to linear equations Ku = y by
solving
argmin 3||Ku — |3 + ululls (2)

@ Now: instead of u sparse, we require Au sparse: many (Au); =0,
where A is a linear operator ('analysis style sparsity’)

Ignace Loris (igloris@ulb.ac.be)

Problem statement

@ Before: Sparse (approximate) solution to linear equations Ku = y by
solving
argmin 3||Ku — |3 + ululls (2)

@ Now: instead of u sparse, we require Au sparse: many (Au); =0,
where A is a linear operator ('analysis style sparsity’)
@ (approximate) solution & to linear equations Ku = y with Au sparse
by solving:
0 =argmin 3[|Ku — |13 + pl| Aull4 3)

Ignace Loris (igloris@ulb.ac.be)

Problem statement

@ Before: Sparse (approximate) solution to linear equations Ku = y by
solving
argmin 3||Ku — |3 + ululls (2)

@ Now: instead of u sparse, we require Au sparse: many (Au); =0,
where A is a linear operator ('analysis style sparsity’)
@ (approximate) solution & to linear equations Ku = y with Au sparse
by solving:
0 =argmin 3[|Ku — |13 + pl| Aull4 3)

@ A is not necessarily invertible

@ (2)is a special case of (3): A = Id or change of variables if 3A~"

@ proximal operator of x|/Au|4 does not have a simple expression in
general, otherwise one could use:

Unt1 = PrOX,, A, [un +aKT(y — Kun)]

Ignace Loris (igloris@ulb.ac.be)

@ Want an explicit iterative algorithm for:

argmin 3 [Ku — y 3 + X Au

@ foragenericA,i.e. no A’

@ explicit: uses only K, KT, A and AT at every step,
No equation solving at every step
No non-trivial sub-problem at every step

No smoothing of type : W

@ Guide: new algorithm should reduce to (1) if A = 1

This is a choice, not a mathematical requirement

Ignace Loris (igloris@ulb.ac.be)

@ More generally: we want an explicit iterative algorithm for:
arg muin f(u) + g(Au)

where f is convex, differentiable with Lipschitz continuous gradient
(L), g is convex, A is a linear map

@ in terms of V, prox, (as before) and A, AT,
@ WITHOUT using proxy, .y,
@ and that reduces to the proximal gradient algorithm:

Unt1 = ProX,,q (un — anVit(up)) (4)

when A = Id.

Ignace Loris (igloris@ulb.ac.be)

Variational equations for & = argmin, f(u) + g(Au)

@ Introducing § = ag(p~"-), we can equivalently write:
argmin af (u) + 9(BAu)
@ The variational equations are:
aVf(u) + BATw =0 with w € dg(BAu)
@ This can be expressed as:
aVFf(u)+pATw =0 and BAu= proxg(w + SAu)

Would like to write this as a fixed point equation.
@ Introduce the function proxs; = Id — prox.:
u=u—aVfu)-pATw and BAu=w + BAu — proxs-(w + SAu)
)
u=u—aVf(u)—BATw and w = proxs-(w + SAu)

@ NB: Id — prox really is the proximal operator of a convex function g*
(g* is the “convex conjugate” of g: g*(u) = sup,(u,v) — g(v)).

Ignace Loris (igloris@ulb.ac.be)

Iterative algorithms

@ Variational equations are:

0 = 0—aVi@) - pATW

U =arg muin f(u)+9g(Au) < { W = proxs.(W + fAD) (5)

Need iterative algorithm for solving these equations.
@ Now: make a choice and prove convergence.
@ For example, one could set:

{ Wni1 = ProXg(wn + SAup)

and study convergence.

@ However this algorithm does not reduce to the proximal gradient
algorithm (4) when A = 1 (variable w remains).

Ignace Loris (igloris@ulb.ac.be)

Generalized proximal gradient algorithm (1)

@ Choice: Use a predict-correct step on the u variable

Ignace Loris (igloris@ulb.ac.be)

Generalized proximal gradient algorithm (1)

@ Choice: Use a predict-correct step on the u variable
@ By introducing up. 1:

Dn+1 - Un - an(Un) - IBATWn
Wny1 = ProXg«(wn + BAlni1)

Ignace Loris (igloris@ulb.ac.be)

Generalized proximal gradient algorithm (1)

@ Choice: Use a predict-correct step on the u variable
@ By introducing up. 1:

Dn+1 - Un - an(Un) - IBATWn
Wny1 = ProXg«(wn + BAlni1)

@ Now, ifA=Idand 5 = 1:

Upy1 = Up—aVi(up) — Wpiq

Un — aVf(up) — proxXg.(Wn + ln1)

= Uup— aVif(uy) — proxz-(wWp + un — aVf(un) — wp)
Un — aVf(up) — proxz«(un — aVf(up))

proxg(un — aVf(un)) = prox,q(un — aVif(up))

(Qz

where we used Id — proxgz. = proxg = prox,q

@ Similar reduction in case A orthogonal.

Ignace Loris (igloris@ulb.ac.be)

Generalized proximal gradient algorithm (2)

@ lterative algorithm with variable step lengths:

Dn+1 — Un - anvf(Un) - 5nATWn
Wni1 = ProXg: [Wp + BnAln1]
Uni1 = Up—anVF(Up) — BnAT W1

where §n(-) = ang(57 ")

Ignace Loris (igloris@ulb.ac.be)

Generalized proximal gradient algorithm (2)

@ lterative algorithm with variable step lengths:

Dn+1 — Un - anvf(Un) - 5nATWn
Wni1 = ProXg: [Wp + BnAln1]
Uni1 = Up—anVF(Up) — BnAT W1

where gn(-) = ang(5;)
@ We will study convergence of:

Upy1 = Un— anVi(up) — BpATwy
Wniq = Proxg [Whn + BnAln1]

Upy1 = Up— anVi(up) — 5nATV~Vn+1
Wni1 = (1= Anp)Wn + \gWpp

Upgr = (1= Xn)un + Aplingq

Ignace Loris (igloris@ulb.ac.be)

Generalized proximal gradient algorithm

Theorem (generalized proximal gradient algorithm [, ,])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),
g: RY — Ris convex, proper, lower semi-continuous,

A RY — R s a linear map, and a minimizer of F (u) = f(u) + g(Au)
exists, THEN the iterative algorithm:

Un+1 =
Wn+1 =
[/n+1 =
Wni1 =

Upy1 =

Up — anVE(un) — BaATwy,

Proxg: [Wh + BnAln 1]

Un — anVi(up) — ﬂnATVNVn+1 (6)
(1= X\)Whn + AW 1

(1 =)\n)Un aF)\nEIn+1

with ug = arbitrary, e < ap <2/L —¢, e < 1 < B < ... < 1/||A|| — e and
e < Ap < 1 converges to a minimizer of F (u).

Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

Let & € argmin, f(u) + g(Au), i.e.:

{

for some «, 8 > 0 and where §(-) = ag(p~"-).

= 0—aVf(l) - pATW
proxg (W + BAU)

> O

Convexity of |[w — w||3 and Wp1 = (1 — A\p)Wp + A\nWp 1 implies:
Wit = W[5 < (1= n)[Wp — W[5+ An|[Wpy1 — W3 (7)
Convexity of ||u — 0|2 and up1 = (1 — Ap)up + Anlini1 implies:

lun1 = 8lZ = (1= An)llun — U1 +Anll8n41 = UlZ —An(1 = An)lltn — Tn1 13

(8)

Ignace Loris (igloris@ulb.ac.be)

Recall property of proximal operators

If t+ = prox,(t~ + A) then:
It —tI3 < It 7 — t" — 15 +2(t" —t,) +2g(t) — 29(t") (9)

for all t.
We will use this property on the (iteration) relation:

Wpiq = proxg: [Wn + BnAlni1]
with t+ = Wy, q,t~ = wy, t = W, A = 3,Alp, and for g} instead of g
and on the fixed-point relation:
W = proxg. W + Al

with tt = w,t~ = w,t = W, 1, A = B,Al, and for g} instead of g.

Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

It follows from Wi, 1 = proxg: [W,, + BnAlp11] and eq. (9) with
t+ — Wn+1,t_ — Wn,t - W A ﬁnAUn that

W1~ W3 < [Wn— WI3 ~ W1 — Wall3 + 2(Wnst — W, fpAllne)
+295(W) — 295(Wn1)
It follows from W = proxg. [W + 8,Al] and eq. (9) with
tt =w,t- =w,t = Wy q, A = BRAU that:

W —Wrlls < || —Warql5 — [W=d[Z + 2(W — W1, BpAD)
+285(Wn11) — 2g5(W)
Together (and using Ty 1 = Gpy1 — BnAT (Wn — Winyt)):

st~ WG < o~ WIE — Womis —wal3
+28n(Wny1 — W, A(Uns1 — U))

= |lwp — VAVHZ — [[Wniq — WnHz

+28n(Wny1 — W, A(Uny1 — 0 — /BnAT(— Wny1)))
0

Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

It follows from {ipyq = Up — anVF(Up) — BnAT Wpiq that:

e~ 013 < o — 013~ |G — ol ~
+2<Un+1 — U, _Oéan(Un) — /BnATWn+1>

It follows from & = & — o, V(&) — BrAT W that:

A = .
10 = niall3 < 10— Tpyall3 — 10— D13

+2(U — Upy1, —anVF(U) - BnATVAV>
Together:
[Gin+1 —)3 < lun — 03 - Hf’njﬂ —NunHé \
+2an (0 — Upy1, VF(un) — V(D))
—26n(Un11 — 0, AT (Wpyq — W)
(see part 1) o112 . 9 L .)
< |un — 0|5 — [|Uny1 — Unll5 + 2ang||un — Uny|l5
—2Bn(lins1 — 0, AT (Wng1 — W)

(11)

Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

Adding inequalities (10) and (11) yields:

[8n41 = Ol + [Wnp1 = W[5 < lup — 05 + [[wa — |3
—(1— 25 [n g1 — Unll3 — IWni1 — wall3
—2035(AT (W1 — W), AT (W — Wy 1))
The inner product 2(AT (Wp1 — vT/) AT(W, — Wpy1)) equals
AT (W —)3 — AT (W1 —)| — AT (W — p..1)| and hence:
8n+1 = U3 + (IWns1 — W5 — BFIAT (Wns1 — W)[3
< lun — 0I5 + [wn — |5 — BFIAT (wn — W)]3
—(1 = %) [Un 1 — Unll3 — [Wni1 — a3 + B3 IAT (Wn — Winy1)l13

If By < Bt then —B2 4 |AT (Wnyq — W)||3 < —B2||AT (Wpsq — W)||3 such
that:

ULB Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

|81 = D5 + [Wniq = W5 4 < llun = G5+ wn = I3,

—(1 = %) Uns1 — Upll3 — [Wni1 — wal3, 4
12)
where [w| , = [lw]3 — GZI|ATw|3 (a norm).
Combining inequalities (7), (8) and (12) yields:

o A A ~ 112
[Unt1 = GlJ5 + [|wni1 — WH%,H_1A < lup — @l|5 + [lwn — wl|5,a
“n [(1=%L) + (1= A0)| i1 — unl3
—An|[Wnit — Wn”%,,A

With e < Ay <1and a, < 2/L — e, it follows that:

[Unt1 = [J5 + [|Wni1 — VAV”%,,MA < lup — @l + [lwn — VAV”%,,A

—C1[|8n11 — Un|5 — C2||Wni1 — Wn||%,,A

(13)

for some ¢q,c, > 0.

ULB Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

It follows that:

lun1 = I+ Wat —WlIE 4 < llun = DIE + W — W5,
< ..
< uo — @3 + wo — W3, =C

With 3 = sup, 8, < 1/||A|| and ||w||%A = |w|3 — B?||ATw||3, one finds:

N N Bni1 < A N
1 = GlIZ + [Wir — W12, < Hun+1 Q[l3 + [Iwns1 = W[IZ 4 < C

i.e. (up,wp) is bounded.
As (an)n and (Bn)n are also bounded, there exists a common converging
subsequence:

j—)OO j—)OO

j— 00 —00
Up, R A IZ% o >0, ﬁn]j

5>0

Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

Inequality (13) also implies (N > M):

N=1 _ 17 ~
> nem CllTn11 — unl3 + C2[|Wni1 — Wn”%—;,,A
N—1 - N - N
< Sty — @B+ (Wo — W12 5 — [Upet — B2 — Wi — WIE, s
= llum — Gl13 + llwm — W[, 0 — llun — G115 — [lwn — W3,

< llum — 815 + [lwm — (13,4
(14)
This means that |41 — Unll2 "= 0 and thus: &y 41— uf.
It also implies that || W1 — W,-,H%A < [Ip 1 — wall2, , "= 0, and thus:
Wn +1 5w,

Using Uy 1 = tpy1 — BnAT (W, — Wy 1)), one also finds that & Up; 41 Izt

Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

But as ~ 7
{ Unj+1 = Unj - Oénij(Unj) W, /anA an

an+1 = proxg,’;‘] |:an + /anAL_/nj—H
one finds (j — oo) by continuity of Vf and prox (2x!) that:

ut = ul —aVfu) — pATWT
wi = proxg. [wl+ gAuT]

i.e. ut is a minimizer of f(u) + g(Au).

Ignace Loris (igloris@ulb.ac.be)

Proof of convergence

Finally, choosing i = uf and w = w', inequality (14) implies that:

B>Bn
lun — a3+ llwy = w3, =" fun = uTl5 + lwy = wili3
(14) 2 112
< lum —u'lz + llwm — w5, A
< uy — a5+ [wy — w3

(N > M). As there is a subsequence (up,, wy,) that converges to (uf, w'),
the rhs can be made as small as one likes (choice of M). This shows that

the whole sequence (up,, wy), converges to (uf, w).
One also shows that i, converges to u' and that w,, converges to wi. O

Ignace Loris (igloris@ulb.ac.be)

Generalized proximal gradient algorithm with error

terms

Theorem (generalized proximal gradient algorithm [])

Lete > 0. IFf:RY — R is convex with Lipschitz continuous gradient (L),
g: RY — Ris convex, proper, lower semi-continuous,

A RY — R s a linear map, and a minimizer of F (u) = f(u) + g(Au)
exists, THEN the iterative algorithm:

L_/n+1 =
Wn—H =
E’n+1 =
Wni1 =

Upy1 =

Up — apVf(un) — BnAT W, + €,

Proxg: [Wpn + BnAln1] + dn

Un — anV(Un) — BnAT Wyiq + 1n (15)
(1= An)Wn + AnWpq

(1 =)\n)Un +)\nfln+1

with ug = arbitrary, e < an <2/L—¢, e <51 < [< ... < 1/||A] — ¢,

e <A <130 llenll2 < 400, 32, 10nll2 < 400, 32, lInnll2 < +oo
converges to a minimizer of F(u).

ULB Ignace Loris (igloris@ulb.ac.be)

Generalized iterative soft-thresholding algorithm

(GISTA)

@ For f = }||Ku — y|3 and g(u) = p|ul|1, the problem reduces to:
i =argmin }|[Ku — y/|3 + AllAull

and the algorithm (6) reduces to:

Dn+1 = Up— OZVf(Un) — IBATWn
Wn+1 - Pall/ﬁ [Wn + ﬁADn+1] (16)

with ug = arbitrary, 0 < o < 2/||K||?, 0 < 8 < 1/||A|| and

P, =1d — S, (= projection on /, ball).
@ Convenience: conditions on « and 5 do not mix A and K
@ Coefficients of Au, are not sparse in every step (only as n — o).

@ One also shows:

Applications

@ In image restoration:
@ ‘Total Variation’ (TV) penalty

o A= (2)() is the local gradient of image
y

o [|Aulls = Zplxels \/ Axu)? + (Ayu)
@ P, =component-wise:

A 2 2
Wy, W, Wg + wz > A
P (wx, wy) { W3+Wy2(e Wy) 7

(Wy, wy) \ W2+ wE <A

@ promotes images with sparse gradients (=piecewise constant images)

Ignace Loris (igloris@ulb.ac.be)

Applications

@ In image restoration:
@ ‘Total Variation’ (TV) penalty

o A= (2)() is the local gradient of image
y

o [|Aulls = Zplxels \/ Axu)? + (Ayu)
@ P, =component-wise:

A 2 2
Wy, W, Wg + wz > A
P (wx, wy) { W3+Wy2(e Wy) 7

(Wy, wy) \ W2+ wE <A
@ promotes images with sparse gradients (=piecewise constant images)

@ Group sparsity (possibly with overlapping groups):
@ A defines the groups (a single 1 on each row)
@ Columns of A may have more than a single nonzero entry
(overlapping groups).
° ||AUH1 = Zkegroups H(ui)iGQTOUP k”P withp =2orp=o0

Ignace Loris (igloris@ulb.ac.be)

Other algorithms

@ Many other algorithms exist

® See also [2, 7, 4, 5] and references therein

Ignace Loris (igloris@ulb.ac.be)

Acknowledgements

@ Thanks to organizers.

@ Thanks to Hoan-Phung Bui, Federica Porta and Caroline Verhoeven.

Ignace Loris (igloris@ulb.ac.be)

Bibliography |

1

2

[3

[4]

[5

[6

[7

Hoan-Phung Bui.
Algorithme itératif permettant la résolution de problémes inverses.
Master’s thesis, Université Libre de Bruxelles, 2014.

Antonin Chambolle and Thomas Pock.

A first-order primal-dual algorithm for convex problems with applications to imaging.
J Math Imaging Vis, 40:120-145, 2011.

hal-00490826.

Peijun Chen, Jianguo Huang, and Xiaoqun Zhang.
A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration.
Inverse Problems, 29(2):025011—, 2013.

P. L. Combettes and J.-C. Pesquet.

Proximal splitting methods in signal processing,” in: Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
Editors), pp. 185-212., New York, 2011, chapter 1, pages 185-212.

Springer-Verlag, 2011.

Ignace Loris.
L1Packv2: A Mathematica package for minimizing an £1-penalized functional.
Computer Physics Communications, 179(12):895-902, 2008.

Ignace Loris and Caroline Verhoeven.
On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty.
Inverse Problems, 27(12):125007, 2011.

Xiaoqun Zhang, Martin Burger, and Stanley Osher.
A unified primal-dual algorithm framework based on bregman iteration.
J Sci Comput, 46:20-46, 2011.

Ignace Loris

