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Whittaker-Shannon Theorem

If f is a bandlimited function, f ∈ UT , i.e., the support of its
Fourier transform f̂ is contained in [−ωN , ωN ], and if
tn ≡ nT , ∀n ∈ Z, ωN ≡ π

T ; then f can be reconstructed from its
samples

f (t) =
+∞∑

n=−∞
f (tn)hT (t − tn),

with
hT (t) = sinc(ωN t) ≡ sin(ωN t)

ωN t
.
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• If f is not bandlimited (f /∈ UT ), then the previous formula
provide us with a function f̌ ∈ UT minimizing ‖f̌ − f‖. f̌ is
the orthogonal proyection PUT f of f over UT .

• Whittaker-Shannon sampling theorem can be generalized
to other spaces WQ, such that f ∈WQ can be recovered
from the sampled values {f (qn), qn ∈ Q}. A signal f /∈WQ
can be aproximated by its orthogonal projection f̌ = PWQ f
over WQ.
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Coherent States. Basic ingridients

Let G a group of “movements”. For instance:
• Affine Group G = R+ × R acting on R:

x 7→ gx = ax + b, x ∈ R,g = (a,b) ∈ G = R+ × R

• Rotation Group G = SO(3) acting on R3

~x 7→ g~x = ~x ′, ~x ∈ R3,g = R(α, β, γ) ∈ G = SO(3)

(α, β, γ) Euler angles.
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• Let H be a Hilbert space of “finite energy signals“ ψ and let

U : G→ Lin(H)

g 7→ U(g)

be a unitary and irreducible representation of G in H:

U(gg′) = U(g)U(g′), U(g−1) = U†(g)
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• Let consider the Hilbert space

L2(G,dg) = {Ψ : G→ C /
∫

G
|Ψ(g)|2dg <∞} ,

where d(g′g) = dg is the left invariant Haar measure.
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Admissible Vector

Admissible Vector: A non-zero function γ ∈ H is an admissible
(or ”fiducial vector“) if:

Γ(g) ≡ 〈U(g)γ|γ〉 ∈ L2(G,dg).

That is, if

Cγ = (Γ(g), Γ(g)) =

∫
G

Γ̄(g)Γ(g)dg =

∫
G
|〈U(g)γ|γ〉|2dg <∞ .
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Coherent States

Coherent States: Given a unitary and irreducible representation
U of G an a nonzero function γ ∈ H admissible, a system of
Coherent States (CS) in H associated with G is defined as the
set of functions in the orbit of γ under G:

γg = U(g)γ, g ∈ G.

It could well happen that γ is invariant under a nontrivial
subgroup H ⊂ G, i.e., U(h)γ = γ, ∀h ∈ H (usually up to phase).
In these cases, to avoid redundancy, we introduce the concept
of “admissibility modulo H”.
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Coherent States II

It could also happen that there does not exist admissible
vectors since ∫

G
|〈U(g)γ|γ〉|2dg =∞ , ∀γ ∈ H

(for instance, for the continuous series of representations of a
non-compact semisimple group). In these cases, we can still
define a set of coherent states by restricting ourselves to a
quotient space G/H, with H a suitable subgroup of G.
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Admissibility mod(H, σ)

• Consider the homogeneous space Q = G/H, with H a
closed subgroup. Then the nonzero function γ is
admissible mod(H, σ) (with σ : Q −→ G, a Borel section),
and the representation U is square integrable mod(H, σ), if
the condition

0 <
∫

Q
|〈U(σ(q))γ|ψ〉|2dq <∞, ∀ψ ∈ H,

holds, where dq is a quasi-invariant measure on Q.
• Coherent states indexed by Q:

γσ(q) = U(σ(q))γ, q ∈ Q, over-complete set in H.
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Resolution operator

• The frame or resolution operator Aσ =
∫

Q |γσ(q)〉〈γσ(q)|dq is
positive, bounded and invertible.

0 <
∫

Q
|〈U(σ(q))γ|ψ〉|2dq = 〈ψ|Aσ|ψ〉 <∞, ∀ψ ∈ H.

• If the operator A−1
σ is bounded, then the set

Sσ =
{
|γσ(q)〉, q ∈ Q

}
is a frame, and a tight frame if Aσ is

proportional to the identity, Aσ = λI, λ > 0.
• We shall restrict to the case where γ generates a frame

(that is, A−1
σ is bounded).
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Sampling operator

• Define the sampling or analysis operator, or generalized
Bargmann-Fock (GBF) transform :

Tγ : H −→ L2(Q,dq)
ψ 7−→ Ψγ(q) = (Tγψ)(q) = 〈γσ(q)|ψ〉.

〈γσ(q)|ψ〉: wavelet coefficients o GBF representation of ψ.

• Tγ is unitary from H into L2
γ(Q,dq) ≡ Tγ(H) (GBF space)

which is a Reproducing Kernel Hilbert space with
reproducing kernel 〈γσ(q)|γσ(q′)〉 ≡ B(q,q′).
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Reconstruction Formula

• The inverse map T−1
γ provide us with the reconstruction

formula. Given Ψγ ∈ L2
γ(Q,dq):

Aσ|ψ〉 =

∫
Q
|γq〉〈γq|ψ〉dq =

∫
Q

Ψγ(q)|γq〉dq =⇒

A−1
σ Aσ|ψ〉 = |ψ〉 = T−1

γ Ψγ =

∫
Q

Ψγ(q)A−1
σ |γσ(q)〉dq ,

• This formula expands the signal ψ in terms of the dual
frame S̃σ = {A−1

σ |γσ(q)〉,q ∈ Q} with coefficients
Ψγ(q) = (Tγψ)(q).

• These expressions acquire a simpler form when Aσ is
proportional to the identity operator (tight frame).
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Discrete Frame or Resolution operator

• For numerical treatment, the resolution operator Aσ is
discretized, by restricting the integral to a sum over a
discrete subset Q ⊂ Q:

Aσ =

∫
Q
|γσ(q)〉〈γσ(q)|dq −→ A =

∑
qk∈Q

|qk 〉〈qk |,

S =
{
|qk 〉 ≡ |γσ(qk )〉, qk ∈ Q

}
HS = Span(S).

• In general, the operator A does not coincide with the
original Aσ, and HS 6= H (although there are important
cases where it does).
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Admissibility and Frame condition

• The nonzero function γ is admissible if:

0 <
∑

qk∈Q
|〈qk |ψ〉|2 <∞ , ∀ψ ∈ H.

In this case A is positive, bounded and invertible.
• The set S is a frame if there exist 0 < b ≤ B <∞ such

that:

b‖ψ‖2 ≤
∑

qk∈Q
|〈qk |ψ〉|2 ≤ B‖ψ‖2, ∀ψ ∈ H.

i.e. 0 < b ≤ 〈ψ|A|ψ〉
〈ψ|ψ〉

≤ B <∞ , ∀ψ ∈ H

In this case A−1 is also bounded, and HS = H.
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Sampling and synthesis operators

• The sampling operator T is now:

T : H −→ `2

ψ 7−→ T (ψ) = {〈qk |ψ〉, qk ∈ Q} .

• T ∗ : `2 −→ H is the synthesis operator.
• It turns out that A ≡ T ∗T .
• The frame condition can be written as:

bI ≤ T ∗T ≤ BI,

where I is the identity operator in H.
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Reconstruction formula for the discrete case

• dual Frame : S̃ = {|q̃k 〉 ≡ A−1|qk 〉 , qk ∈ Q}

• Reconstruction formula:

|ψ〉 =
∑

qk∈Q
Ψk |q̃k 〉,

with Ψk ≡ 〈qk |ψ〉: wavelet coefficients o data.
• The reproducing kernel property of the GBF space allows

to identify:

Data Ψ(zk ) = 〈zk |ψ〉 wavelet coefficients
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Resolution of the identity

• Resolution of the identity :

T +
l T =

∑
qk∈Q

|q̃k 〉〈qk | = T ∗(T +
l )∗ =

∑
qk∈Q

|qk 〉〈q̃k | = I

where T +
l ≡ (T ∗T )−1T ∗ is the left-pseudoinverse of T .

• The operator P = T T +
l acting on `2 is an orthogonal

projector into the range of T .
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sinc-type function (Ξk(q))

• In the GBF space, the reconstruction formula reads:

Ψ(q) ≡ 〈q|ψ〉 =
∑

qk∈Q
〈q|q̃k 〉Ψk ≡

∑
qk∈Q

Ξk (q)Ψk

• This is a sinc-type reconstruction formula, with sinc-type
function Ξk (q) = 〈q|q̃k 〉.

• The formulas obtained correspond to Oversampling, when
we have more data than necessary to exactly recover the
original function.
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Undersampling

• The case when there are not enough data to fully
reconstruct the original signal is named Undersampling. In
this case only a partial reconstruction is possible.

• S does not generate a discrete frame, and the operator
A = T ∗T is not invertible. But we can buid another
operator from T :

B = T T ∗.

• If the subset S is free (made of linearly independent
vectors), then B is invertible.

• Discrete Reproducing kernel (B):

Bkl = 〈qk |ql〉 Gram Matrix.
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Undersampling II

• We need the Right-Pseudoinverse of T :
T +

r ≡ T ∗(T T ∗)−1 =⇒ T T +
r = I`2 .

• PS = T +
r T is the orthogonal projector onto the subspace

HS.

• Dual pseudo-frame : |q̃k 〉 =
∑
ql∈Q
B−1

lk |ql〉.
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Resolution of the proyector PS

The dual pseudo-frame provides a resolution of the projector
PS .

T +
r T =

∑
qk∈Q

|q̃k 〉〈qk | = T ∗(T +
r )∗ =

∑
qk∈Q

|qk 〉〈q̃k | = PS .
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Partial reconstruction ψ̌ of the signal ψ

• Using the resolution of the projector PS , acting on the
signal ψ on the GBF space:

• |ψ̌〉 = PS |ψ〉

Ψ̌(q) ≡ 〈q|ψ̌〉 =
∑

qk∈Q
〈q|q̃k 〉Ψk ≡

∑
qk∈Q

Lk (q)Ψk .

• where Lk (q) are Lagrange-type interpolating functions:
Lk (q) = 〈q|q̃k 〉, Lk (ql) = δkl .

• The quadratic error is:

Eψ(S)2 =
‖ψ − ψ̌‖2

‖ψ‖2
=
〈ψ|I − PS |ψ〉
‖ψ‖2

.
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