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CWT on the sphere S2

• Antoine and Vandergheynst defined satisfactorily a dilation on the
sphere S2. They used a group-theoretical approach based on the
Lorentz group G = SO(3, 1)

• G = KAN with K compact, A Abelian and N nilpotent subgroups. The
parameter space X of the CWT is the quotient G/N

• The expression for the dilation, with parameter a > 0, of the colatitude
angle θ is

θa = 2 arctan(a tan(θ/2)),

• Geometrical interpretation as a dilation around the North Pole of the
sphere, lifted from the tangent plane by inverse stereographic projection

• A unitary representation of this dilation is given by

[DS2

a f ](θ, ϕ) = λ(a, θ)1/2f (θ1/a, ϕ),
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CWT on the sphere S2 (II)

• The multiplier (Radon-Nikodym derivative) is:

λ(a, θ) =
d cos θ1/a

d cos θ
=

4a2

((a2 − 1) cos θ + a2 + 1)2

• Points of X are pairs (β, a) with β ∈ SO(3) (rotations) and a ∈ R+

(dilations).
• Given f ∈ L2(S2), the representation

fβ,a(θ, ϕ) := [US2

β ◦ DS2

a f ](θ, ϕ)

is unitary, where [US2

β f ](θ, ϕ) = f (β−1(θ, ϕ)) is the quasi-regular
representation of SO(3).
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Admissibility and Frame conditions

• A non-zero function f ∈ L2(S2) is called admissible (mod(N,σ)) iff the
condition

0 <
∫

X
dν(β, a)|〈fβ,a|ψ〉|2 <∞

is satisfied for any ψ ∈ L2(S2), where dν(β, a) = da
a3 dµ(β) is the measure

on X and dµ(β) is the Haar measure on SO(3).
• A weaker (necessary but not sufficient) admissibility condition is∫

S2

f (θ, ϕ)

1 + cos θ
dΩ = 0.

• Given an admissible f ∈ L2(S2), the family {fβ,a, β ∈ SO(3), a > 0} is a
frame iff there exist 0 < A ≤ B such that

A‖ψ‖2 ≤
∫

X
dν(β, a)|〈fβ,a|ψ〉|2 ≤ B‖ψ‖2, ∀ψ ∈ L2(S2).



CWT on the sphere S2 based on SO(3, 1): a reminder CWT on the torus Modular wavelets Bibliography

Lifting admissible functions from the Euclidean plane

• Any function φ ∈ L2(R2) fulfilling the (weak) zero mean admissibility
condition ∫

R2
φ(r , ϕ)rdrdϕ = 0

(in polar coordinates), provides a function f on the sphere by inverse
stereographic projection

f (θ, ϕ) = [Π−1
S2 φ](θ, ϕ) =

2φ(2 tan(θ/2), ϕ)

1 + cos θ
(1)

that satisfies the weak admissibility condition for the sphere.
• This result also holds for the (strong) admissibility condition.
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Hilbert space of functions on the torus

• Hilbert space L2(T2, dω) of square integrable functions on the torus T2,
with measure dω = dθ1dθ2

• θ1, θ2 angles parametrizing the “meridional” and “equatorial” circles.
• dω invariant under translations θ1,2 → θ1,2 + ϑ1,2, derived from the Haar

measure on SO(2, 2).
• Inner product with respect to this measure:

〈f |g〉 :=

∫ π

−π

∫ π

−π
f (θ1, θ2)g(θ1, θ2)dω, ∀f , g ∈ L2(T2)

• Orthonormal basis of L2(T2) in terms of “plane waves”

φn1n2 (θ1, θ2) =
1

2π
ein1θ1 ein2θ2 , n1, n2 ∈ Z

〈φn1,n2 |φn′1,n
′
2
〉 = δn1,n′1

δn2,n′2
.

• The coefficients f̂ n1,n2 := 〈φn1,n2 |f 〉 are the usual Fourier coefficients of
f ∈ L2(T2).
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Dilations on the torus

• The group of “conformal” transformations of the torus is:

SO(2, 2) = (SO(2, 1)× SO(2, 1))/Z2

• SO(2, 1) ≈ SL(2,R), and any 2× 2 matrix of determinant one can be
decomposed as(

cos(ϑ/2) sin(ϑ/2)
− sin(ϑ/2) cos(ϑ/2)

)( √
a 0

0 1/
√

a

)(
1 b
0 1

)
,

then the KAN decomposition of SL(2,R) is given by K1 = T1 = S1,
A1 = R+ and N1 = R.

• Since SO(2, 2) is locally the direct product of two copies of SO(2, 1), the
parameter space of the CWT is X = KAN/N = T2 × (R+)2 labeled by
(ϑ1, ϑ2, a1, a2), with ϑi ∈ (−π, π), ai ∈ R+ for i = 1, 2.
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The action of the dilation group A on the torus is:

θa = 2 arctan(a tan(θ/2)), θ = θk , a = ak , k = 1, 2.

θ
θa

2 tan θ
2 2a tan θ
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Dilations on the torus
• The dilation of each angle of the torus is similar to the one for the

colatitude angle in the sphere, but in our case θk ∈ (−π, π) instead of
(0, π).

• As for the sphere, this transformation are interpreted as independent
dilations around the points θi = 0 , i = 1, 2, lifted from the tangent lines to
each circle by inverse stereographic projections.

• For f ∈ L2(T2), a pure dilation is

[Da1,a2 f ](θ1, θ2) = λ(a1, θ1)1/2λ(a2, θ2)1/2f ((θ1)1/a1 , (θ2)1/a2 ),

• The multiplier (Radon-Nikodym derivative) is

λ(a, θ) =
dθ1/a

dθ
=

2a
(a2 − 1) cos θ + a2 + 1

• Given f ∈ L2(T2), the action

fϑ1,ϑ2
a1,a2

(θ1, θ2) = [Uϑ1,ϑ2 ◦ Da1,a2 f ](θ1, θ2)

= λ(a1, θ1 − ϑ1)
1
2 λ(a2, θ2 − ϑ2)

1
2 f ((θ1 − ϑ1) 1

a1
, (θ2 − ϑ2) 1

a2
)

is unitary, where Uϑ1,ϑ2 is the representation of translations on the torus.
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Admissibility condition on the torus
Definition

A non-zero function γ ∈ L2(T2) is admissible (mod(N,σ)) iff the condition

0 <
∫

X
dν(ϑ1, ϑ2, a1, a2)|〈γϑ1,ϑ2

a1,a2
|ψ〉|2 <∞

is satisfied for all 0 6= ψ ∈ L2(T2).

• The measure on X is

dν(ϑ1, ϑ2, a1, a2) =
da1

a2
1

da2

a2
2

dϑ1dϑ2

(2π)2 .

• The admissibility condition can be restated as follows:

Proposition

A non-zero function γ ∈ L2(T2) is admissible iff there exist C ∈ R such that

0 < Λn1,n2 ≡
∫ ∞

0

∫ ∞
0

da1

a2
1

da2

a2
2
|γ̂n1,n2

a1,a2
|2 < C <∞ ∀(n1, n2) ∈ Z2

where γ̂n1,n2
a1,a2

= 〈φn1,n2 |γa1,a2〉 are the Fourier coefficients of γa1,a2 = Da1,a2γ.
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A necessary admissibility condition on the torus

Proposition

A non-zero function γ ∈ L2(T2) is admissible only if it fulfills the condition∫ π

−π

∫ π

−π
Γ(θ1, θ2)dθ1dθ2 = 0 .

where Γ(θ1, θ2) := γ(θ1, θ2)/
√

(1 + cos θ1)(1 + cos θ2).

• Admissibility condition does not guarantee a proper reconstruction of a
function from its wavelet coefficients, and a frame condition is required.

• However, the admissibility condition is enough (and easier to proof) if γ
is localized.

• By “localized” we mean that θi,ai ≈ aiθi ,∀(θ1, θ2) ∈ supp(γ) and ai ≤ 1
(i.e., a valid approximation in the Euclidean limit).

• For practical purposes, this is not really a restriction since the
approximation θa ≈ aθ is quite good for a large range of θ when a ≤ 1.
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Frame condition on the torus

• Let us denote by Qq , q = 1, 2, 3, 4, the four quadrants of the Fourier
plane in counterclockwise order.

• Since dilations do not mix quadrants, and translations do not change the
support of γ̂, it is clear that γ̂ must have support on all (four) quadrants in
order to be admissible.

Theorem
For any localized admissible function γ, the family
{γϑ1,ϑ2

a1,a2
, (ϑ1, ϑ2, a1, a2) ∈ X} is a continuous frame; that is, there exist real

constants 0 < c ≤ C such that

c||ψ||2 ≤
∫

X
dν(ϑ1, ϑ2, a1, a2)|〈γϑ1,ϑ2

a1,a2
|ψ〉|2 ≤ C||ψ||2, ∀ψ ∈ L2(T2).

• In the proof of this theorem we use the property (valid for localized
admissible functions)

γ̂
n1,n2
a1,a2

≈ 2
√

a1a2 Γ̂a1n1,a2n2 , a1, a2 << 1
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CWT on the torus and reconstruction formula

• The CWT of a function ψ ∈ L2(T2) reads as:

Ψ
ϑ1,ϑ2
a1,a2

= 〈γϑ1,ϑ2
a1,a2

|ψ〉 =

∫∫
T2
γ
ϑ1,ϑ2
a1,a2

(θ1, θ2)ψ(θ1, θ2)dω, ψ ∈ L2(T2).

• The original function ψ can be reconstructed (in the weak sense) from its
wavelet coefficients Ψ

ϑ1,ϑ2
a1,a2

by means of the reconstruction formula:

ψ(θ1, θ2) =

∫
X

dν(a1, a2, ϑ1, ϑ2)Ψ
ϑ1,ϑ2
a1,a2

γ̃
ϑ1,ϑ2
a1,a2

(θ1, θ2)

where {γ̃ϑ1,ϑ2
a1,a2

} is the dual frame whose Fourier coefficients are given by

〈φn1n2 |γ̃
ϑ1,ϑ2
a1,a2

〉 = Λ−1
n1n2〈φn1n2 |γ

ϑ1,ϑ2
a1,a2

〉.

• Note that the dual frame is well-defined (0 6= γ̃
ϑ1,ϑ2
a1,a2

∈ L2(T2)) since
admissibility condition ensures that
0 < c < Λn1n2 < C <∞, ∀(n1, n2) ∈ Z2.
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Existence of admissible functions
• Existence of admissibile functions on the torus is guaranteed by “lifting”

separable admissibile functions on the euclidean plane:

Proposition

A “tensor-product” admissible function ψ ∈ L2(R2) provides an admissible
function on L2(T2) by inverse stereographic projection

[Π−1
T2 ψ](θ1, θ2) =

1√
1 + cos θ1

√
1 + cos θ2

ψ

(
2 tan

θ1

2
, 2 tan

θ2

2

)
• As an example consider Difference of Gaussians (DoG) in 1D

ψα(x) = e−x2
− e−x2/α2

α
• A two-dimensional separable DoG function on the torus would be

[Π−1
T2 ψα1,α2 ](θ1, θ2) =

1√
1 + cos θ1

√
1 + cos θ2

ψα1

(
2 tan

θ1

2

)
ψα2

(
2 tan

θ2

2

)
.

• but also axisymmetric (non-separable) DoG can be constructed

[Π−1
T2 ψα](θ1, θ2) =

1√
1 + cos θ1

√
1 + cos θ2

ψα

(
2

√
tan2 θ1

2
+ tan2 θ2

2

)
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Examples of admissible functions on the torus
Axisymmetric DoG on T2 and its dilation for two cases: a1 = 2, a2 = 1 and
a1 = 1, a2 = 2:
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Can we have wavelets on the torus with a single dilation?
• To prove the frame property it has been essential to have two dilations

a1, a2.
• We need two dilations to bring any pair (n1, n2) to supp(Γ̂) (extended to

n1, n2 reals), ensuring that Λn1,n2 > c.
• Can we have wavelets on the torus with a single dilation?
• The idea is to restrict to a “single” dilation (a1, a2 = σ(a1)), with σ′ > 0,

usually σ(a) = a (also σ(a) =
√

a for shearlets).
• The parameter space X is restricted to

X ′ = {(a, b1, b2), a > 0, b1,2 ∈ R}. From the measure

dν(b1, b2, a1, a2) = db1db2
da2

1
a2

1

da2
2

a2
2

on X we derive the measure on X ′

dν′(b1, b2, a) =
σ(a)

σ′(a)

da
a4 db1db2.

• Is the subset {ψb1,b2
a ≡ ψb1,b2

a,σ(a)} a frame?
• Yes if we impose additional conditions to supp(Γ̂), like extending it to a

ring around the origin (0, 0), or to introduce extra group parameters like
rotations, shears, etc.

• In the discrete case, frames in Rn, with n ≥ 2, with a single isotropic
dilation are constructed from more than one (in fact at least 2n − 1)
admissible function.
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Modular group on the torus

Definition

The modular group on the torus T2 is the subgroup

SL(2,Z) =

{
M =

(
m n
p q

)
; m, n, p, q ∈ Z, det(M) = mq − np = 1

}
, (2)

of the group SL(2,R) of linear transformations of the plane preserving the
area with integer entries.

• The modular group transforms pair of integers (n1, n2) into pairs of
integers (n′1, n

′
2)t = M(n1, n2)t = (mn1 + nn2, pn1 + qn2)t .

• It preserves the torus T2 = R2/Z2, and its action on functions on the
torus is

fM (θ1, θ2) ≡ f (M−1(θ1, θ2)t ).

• Since M preserves the area, this defines a unitary representation of
SL(2,Z) on L2(T2):

U : L2(T2)→ L2(T2)

f (θ1, θ2) 7→ [U(M)f ](θ1, θ2) ≡ fM (θ1, θ2) .
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Modular group on the torus

• This unitary representation is not irreducible, admitting infinite invariant
subspaces Vg ⊂ L2(T2), g ∈ N ∪ {0}.

• To prove this, we first note that the action of the modular group in Fourier
space is given by:

f̂ (n1,n2)
M = f̂ (n1,n2)M ∀(n1, n2) ∈ Z2 , M ∈ SL(2,Z) , f ∈ L2(T2) .

• The action of a modular transformation M in Fourier space is through its
transpose ~n′ = M t~n, which is again a modular transformation.

• Since we shall work mainly in Fourier space, we shall consider the action
on row vectors, (n′1, n

′
2) = (n1, n2)M.

• The action of the modular group on Z2 is not transitive, leaving certain
subsets invariant. In what follows, g.c.d. stands for greatest common
divisor.

Lemma

For each g ∈ N ∪ {0} the subset Gg = {(n1, n2) ∈ Z2 : g.c.d.(n1, n2) = g},
with G0 ≡ {(0, 0)}, is invariant under the modular group.
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Modular group on the torus (II)

• We can think of Z2 as partitioned into orbits under the action of SL(2,Z).
• Each orbit Gg is generated by the action of the group on, let us say, the

point (g, g) ∈ Z2 (or (g, 0) or (0, g)).
• The action of the modular group in each orbit Gg is transitive but not free,

since the point (g, g) 6= (0, 0) has a stabilizer (or isotropy) group:

N =

{(
2 1
−1 0

)k

, k ∈ Z

}
∼ Z

while the point (0, 0), which is an orbit by itself, has as stabilizer the
whole group SL(2,Z).
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Modular group on the torus (III)
• The stabilizer is the same for all orbits Gg , g 6= 0. Also, for g 6= 0, if we

choose a different point in the orbit (like (g, 0) or (0, g)), the stabilizer
group is different but isomorphic (in fact conjugate). For example, for
(g, 0), the stabilizer is

N1 =

{(
1 0
1 1

)k

, k ∈ Z

}
∼ Z,

while for (0, g) it is

N2 =

{(
1 1
0 1

)k

, k ∈ Z

}
∼ Z.

• By the orbit-stabilizer theorem, there is a bijection between each orbit
Gg , g 6= 0, and the quotient X ≡ SL(2,Z)/N.

• This means that there is also a bijection between any two orbits Gg , Gg′

with g, g′ 6= 0. This bijection can be realized as follows:

Proposition

Given (n1, n2) ∈ Gg , there is only one representative Mg
n1,n2

∈ X (i.e. mod. N)
such that (n1, n2)Mg

n1,n2
= (g, g).
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Modular group on the torus (III)

• Mg
n1,n2

can be written as Mg
n1,n2

= M1
n′1,n
′
2
, where n′1 = n1/g , n′2 = n2/g are

coprime, i.e. g.c.d.(n′1, n
′
2) = 1. This allows us to take the representative

Mn′1,n
′
2
≡ M1

n′1,n
′
2

= Mg
n1,n2

for all cases g 6= 0, for instance, when writing
expressions like

∑
M∈X .

• Similar results hold for (g, 0) and (0, g).
• The previous proposition allows us to label pairs (n1, n2) ∈ Z2

equivalently as (g,M−1
n1
g ,

n2
g

), where g.c.d(n1, n2) = g, for (n1, n2) 6= (0, 0).

• For (n1, n2) = (0, 0) we can label it as (g = 0, I2), where I2 represents
the 2× 2 identity matrix.

• A similar analysis can be done for functions on the torus, studying the
action of the modular group on the Fourier coefficients.

• Denote by Vg ⊂ L2(T2) subspace spanned by the states φn1,n2 with
gcd(n1, n2) = g, g = 0, 1, 2, . . .. The same considerations as in the case
of the subsets Gg apply here. Thus we have:
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Modular group on the torus (IV)
Proposition

The subspaces Vg , g = 0, 1, 2, . . . of L2(T2) given by

Vg = {ψ ∈ L2(T2) : supp(ψ̂) ⊂ Gg}

are invariant under the action of the modular group SL(2,Z).

• The action of the modular group in each orbit is transitive but not free,
the stabilizer group being again N for orbits Vg , g 6= 0, and the whole
SL(2,Z) for V0.

• There is a bijection between each orbit Vg , g 6= 0 and the quotient
X ≡ SL(2,Z)/N, and between any two orbits Vg , Vg′ with g, g′ 6= 0.

• Thus, expressions like
∑∞

n1,n2=−∞
qn1,n2 can be written as∑∞

g=0

∑
M∈Xg

qg,M−1 , where we mean by X0 = {I2} and Xg = X for
g 6= 0.

The previous considerations can be restated as follows:

Proposition
Let g ∈ N. If γ = φn1,n2 , with g.c.d(n1, n2) = g, then Bg,γ = {γM /M ∈ X} is
an orthonormal basis of Vg .
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Modular Coherent States

• The question is whether we can extend this “basis” to the whole L2(T2).
The answer is given in the following Proposition:

Proposition

Let η ∈ L2(T1) such that supp(η̂) = Z, and define γ(θ1, θ2) = η(θ1 + θ2). Then
the set Fγ = {γϑ1,ϑ2

M /M ∈ X , ϑ1, ϑ2 ∈ T2} is a continuous upper semi-frame
in the sense that there exist C > 0 such that

0 <
∫

dϑ1dϑ2

(2π)2

∑
M∈X

|〈γϑ1,ϑ2
M |ψ〉|2 ≤ C||ψ||2 , ∀ψ ∈ L2(T2), ψ 6= 0 .

• This provides an admissibility condition for modular “coherent states”.
• Thanks to modular transformations, now γ̂ does not need to have

support on the four Fourier quadrants Qq , q = 1, 2, 3, 4, but only on the
main diagonal n1 = n2 (or in n1 = 0 or n2 = 0 lines).

• The set Fγ is not a frame in L2(T2), since |γ̂g,g | → 0 when g →∞,
preventing |γ̂g,g | to be uniformly bounded from below by a positive
constant.
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Modular Frame

• However if we restrict ourselves to suitable subspaces of L2(T2), like that
of band-limited functions

WL1,L2 = {ψ ∈ L2(T2) : ψ̂n1,n2 = 0, ∀|n1| > L1, |n2| > L2} ⊂ L2(T2) ,

the set Fγ becomes a frame, even for a suitable bandlimited function
η ∈ L2(T1). More precisely, we have the following result:

Corollary
Under the conditions of the previous Proposition, the set Fγ is a frame for any
subspace WL1,L2 of band limited functions in L2(T2).

• Note that if γ is chosen such that η̂ = χ[0,gmax], then Fγ is a tight frame,
and a Parseval frame if appropriately rescaled.
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Modular transformations and dilations

• We shall make use of the modular group to complete the parameter
space X ′ for the case of dependent dilations a2 = σ(a1) (for simplicity,
we shall restrict ourselves to the case σ(a) = a).

• The action of the modular group on T2 induces a transformation of
functions f ∈ L2(T2) that completes the previous (dilation and
translation) transformations as

fϑ1,ϑ2
a,M (θ1, θ2) := fϑ1,ϑ2

a (M−1(θ1, θ2)t ) = fϑ1,ϑ2
a (qθ1−nθ2,−pθ1+mθ2), (3)

where we have used the notation fϑ1,ϑ2
a := fϑ1,ϑ2

a,a when restricting to a
single dilation.

• Adding the whole modular group SL(2,Z) to the parameter space X ′

introduces redundancy that is not suitable for admissibility conditions.
Therefore, we shall restrict ourselves to the quotient space
X = SL(2,Z)/N.

• The choice of N (isotropy subgroup of (g, g)) is in fact connected with
the case Γ(θ1, θ2) = η(θ1 + θ2), for which the only possible non-zero
Fourier coefficients are the diagonal Γ̂l,l (we shall make use of this
property when proving the frame condition).
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Modular admissibility
The admissibility condition for “modular wavelets” on the torus reads:

Definition

A non-zero function γ ∈ L2(T2) is called “modular-admissible” if there exist
C ∈ R such that the condition

0 <
∫

X ′
dν′(ϑ1, ϑ2, a)

∑
M∈X

|〈γϑ1,ϑ2
a,M |ψ〉|2 < C <∞

is satisfied for every non-zero ψ ∈ L2(T2).

• This admissibility condition can be equivalently expressed as follows:

Proposition

A non-zero function γ ∈ L2(T2) is “modular-admissible” iff there exist C ∈ R
such that

0 < Λ̃n1,n2 ≡
∫ ∞

0

da
a3

∑
M∈X

|γ̂n1,n2
a,M |

2 < C <∞ , ∀(n1, n2) ∈ Z2

where γ̂n1,n2
a,M = 〈φn1,n2 |γa,M〉 are the Fourier coefficients of γa,M ≡ γ0,0

a,M .
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Modular Frame
Proposition
The necessary (weak) admissibility condition still holds for modular
admissible functions.

• We shall restrict ourselves to “diagonal” functions Γ(θ1, θ2) = η(θ1 + θ2),
for which Γ̂n1,n2 = 0 if n1 6= n2.

• Modular transformations relaxes the requirement that Γ̂ must have
support on the four quadrants.

• In fact it is just enough that Γ̂ has support on the positive main diagonal.

Theorem
For any localized modular-admissible function γ, whose associated function Γ
is diagonal, the family{

γ
ϑ1,ϑ2
a,M , (ϑ1, ϑ2) ∈ (−π, π)2, a ∈ R+,M ∈ X

}
is a frame, that is, there exist real constants 0 < c ≤ C such that

c||ψ||2 ≤
∑
M∈X

∫
X ′

dν′(ϑ1, ϑ2, a)|〈γϑ1,ϑ2
a,M |ψ〉|2 ≤ C||ψ||2, ∀ψ ∈ L2(T2).
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Example of modular wavelets

• Let us provide a particular example of modular admissible function
based on DoG functions.

• Consider the diagonal function

Γ(θ1, θ2) =
ψα
(

2 tan θ1+θ2
2

)
1 + cos(θ1 + θ2)

,

so that the corresponding admissible function on the torus is the
“diagonal DoG”

γ(θ1, θ2) =
√

(1 + cos θ1)(1 + cos θ2)Γ(θ1, θ2).
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(a) (b)

(c) (d)

Figure: Modular transformation of the “diagonal DoG” with α = 10 for: (a) M = I2, (b)
M1,0, (c) M0,1, (d) M4,5.
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STÉPHANE MALLAT. A Wavelet Tour of Signal Processing. Editorial Academic Press. Second
Edition. 1999.

S.T. ALI, J.-P. ANTOINE, J.P. GAZEAU. Coherent States, Wavelets and Their

Generalizations, 2nd Ed. Springer, 2014.


	CWT on the sphere S2 based on SO(3,1): a reminder
	CWT on the torus T2 based on the group SO(2,2)
	The group-theoretical construction

	Modular wavelets
	Modular group on the Torus T2
	Modular admissibility, modular wavelets and frame conditions

	Bibliography

