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Agenda for this week

I Wavelet transforms associated to groups of affine mappings (Monday)
II Wavelet inversion, admissibility and the Plancherel formula (Tuesday)
III Sparse signals and function spaces (Wednesday)
IV Wavelet approximation theory over general dilation groups (Thursday,

Friday)
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Continuous wavelet transform of one-dimensional signals

Definition 1 (Translation and dilation)

Let ψ ∈ L2(R). Given a 6= 0, b ∈ R, define

Tb : L2(R)→ L2(R) , (Tbf )(x) = f (x − b)

and
Da : L2(R)→ L2(R) , (Daf )(x) = |a|−1/2f (a−1x) .

Definition 2
Given ψ ∈ L2(R), we let

ψb,a : R→ C , ψb,a(x) = TbDaψ(x) = |a|−1/2ψ (x− ba) .

Given f ∈ L2(R), we define

Wψf : R× R′ → C , (b, a) 7→ 〈f , ψb,a〉 .
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Interpretation issues

Informal description
Assume that ψ is localized in an ε-neighborhood around zero.

Then ψb,a is localized in a aε-neighborhood around b.
I.e. ψb,a is a detail of size ≈ a located at b.
Wavelet transform acts as mathematical microscope: Use scale parameter a
to adjust the focus, use shift parameter b to slide across the object (i.e.
function).

Motivation for higher-dimensional wavelet systems
Design systems of building blocks indexed by position and additional
features (such as scale, orientation, aspect ratio etc.)
Note that, as dimensions increase, the possibilities of dilating wavelets
multiply.
Challenge: What are “good” choices of dilations?
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Wavelet inversion

Theorem 3
Assume that the wavelet ψ is Calderón-admissible, i.e. it fulfills the
condition

Cψ =

∫
R
|ψ̂(ξ)|2|ξ|−1dξ <∞

Then for f ∈ L2(R), we have

‖f ‖22 =
1
Cψ

∫
R′

∫
R
|Wψf (b, a)|2db da

|a|2
.

Inversion formula
The wavelet isometry gives rise to the weak sense inversion formula

f =
1
Cψ

∫
R′

∫
R
Wψf (b, a)ψb,a db

da

|a|2
.

Informally: f is decomposed into details of varying positions and scales.
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Wavelets and the affine group

The semidirect product Ro R′ is the cartesian product R× R′ with
group law

(b, a)(b′, a′) = (b + ab′, bb′) , (b, a)−1 = (−a−1b, a−1) .

G = Ro R′ is a locally compact topological group, with left Haar
measure given by

d(b, a) = db
da

a2 ,

and modular function ∆G (b, a) = a−1.
The map

π : G 3 (b, a) 7→ TbDa

is a (strongly continuous, unitary) representation of G , i.e., a
continuous group homomorphism into the unitary group of L2(R).
The wavelet transform is a matrix coefficient associated to the
representation,

Wψf (b, a) = 〈f , π(b, a)ψ〉 .
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Admissible vectors
Definition 4
Let (π,Hπ) denote a unitary representation of the (loc. comp.) group G .

(a) Given ψ ∈ Hπ, let Vψ : Hπ → Cb(G ) be the linear operator defined by

Vψη(x) = 〈η, π(x)ψ〉 .

(b) ψ ∈ Hπ is called weakly admissible if Vψ : Hπ ↪→ L2(G ) is bounded
injective map, and admissible if Vψ : Hπ → L2(G ) is a nonzero scalar
multiple of an isometry.

Observations
If ψ ∈ L2(R) is Calderón-admissible, then it is admissible in the
representation-theoretic sense.
Note: Vψ intertwines π with left translation. Hence, if π a weakly
admissible vector, it is (equivalent to) a subrepresentation of the
regular representation.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 10 / 41



Admissible vectors
Definition 4
Let (π,Hπ) denote a unitary representation of the (loc. comp.) group G .
(a) Given ψ ∈ Hπ, let Vψ : Hπ → Cb(G ) be the linear operator defined by

Vψη(x) = 〈η, π(x)ψ〉 .

(b) ψ ∈ Hπ is called weakly admissible if Vψ : Hπ ↪→ L2(G ) is bounded
injective map, and admissible if Vψ : Hπ → L2(G ) is a nonzero scalar
multiple of an isometry.

Observations
If ψ ∈ L2(R) is Calderón-admissible, then it is admissible in the
representation-theoretic sense.
Note: Vψ intertwines π with left translation. Hence, if π a weakly
admissible vector, it is (equivalent to) a subrepresentation of the
regular representation.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 10 / 41



Admissible vectors
Definition 4
Let (π,Hπ) denote a unitary representation of the (loc. comp.) group G .
(a) Given ψ ∈ Hπ, let Vψ : Hπ → Cb(G ) be the linear operator defined by

Vψη(x) = 〈η, π(x)ψ〉 .

(b) ψ ∈ Hπ is called weakly admissible if Vψ : Hπ ↪→ L2(G ) is bounded
injective map, and admissible if Vψ : Hπ → L2(G ) is a nonzero scalar
multiple of an isometry.

Observations

If ψ ∈ L2(R) is Calderón-admissible, then it is admissible in the
representation-theoretic sense.
Note: Vψ intertwines π with left translation. Hence, if π a weakly
admissible vector, it is (equivalent to) a subrepresentation of the
regular representation.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 10 / 41



Admissible vectors
Definition 4
Let (π,Hπ) denote a unitary representation of the (loc. comp.) group G .
(a) Given ψ ∈ Hπ, let Vψ : Hπ → Cb(G ) be the linear operator defined by

Vψη(x) = 〈η, π(x)ψ〉 .

(b) ψ ∈ Hπ is called weakly admissible if Vψ : Hπ ↪→ L2(G ) is bounded
injective map, and admissible if Vψ : Hπ → L2(G ) is a nonzero scalar
multiple of an isometry.

Observations
If ψ ∈ L2(R) is Calderón-admissible, then it is admissible in the
representation-theoretic sense.

Note: Vψ intertwines π with left translation. Hence, if π a weakly
admissible vector, it is (equivalent to) a subrepresentation of the
regular representation.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 10 / 41



Admissible vectors
Definition 4
Let (π,Hπ) denote a unitary representation of the (loc. comp.) group G .
(a) Given ψ ∈ Hπ, let Vψ : Hπ → Cb(G ) be the linear operator defined by

Vψη(x) = 〈η, π(x)ψ〉 .

(b) ψ ∈ Hπ is called weakly admissible if Vψ : Hπ ↪→ L2(G ) is bounded
injective map, and admissible if Vψ : Hπ → L2(G ) is a nonzero scalar
multiple of an isometry.

Observations
If ψ ∈ L2(R) is Calderón-admissible, then it is admissible in the
representation-theoretic sense.
Note: Vψ intertwines π with left translation. Hence, if π a weakly
admissible vector, it is (equivalent to) a subrepresentation of the
regular representation.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 10 / 41



Admissibility for irreducible representations

Theorem 5 (Duflo/Moore ’76, Grossmann/Morlet/Paul ’84)
Let π be an irreducible representation of a locally compact group G .

(a) π has admissible vectors iff π < λG .
(b) A nonzero η ∈ Hπ is admissible (up to normalization) if Vηη ∈ L2(G ),

or equivalently, if Vηϕ ∈ L2(G ), for some nonzero ϕ ∈ Hπ.
(c) There exists a unique, densely defined positive operator Cπ with

densely defined inverse, such that η ∈ Hπ is admissible iff
η ∈ dom(Cπ), with ‖Cπη‖ = 1.In addition, we have the orthogonality
relation

〈Cπη′,Cπη〉〈ϕ,ϕ′〉 = 〈Vηϕ,Vη′ϕ′〉 , (1)

for all ϕ,ϕ′ ∈ Hπ and η, η′ ∈ dom(Cπ).
(d) Cπ is scalar iff G is unimodular, or equivalently, if every nonzero vector

is admissible up to normalization.
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Square-integrability

Definition 6
If the equivalent conditions in the theorem are fulfilled, we call the
representation a discrete series representation.

Theorem 7
The quasi-regular representation π of G = Ro R′ is a discrete series
representation. The associated Duflo-Moore operator is given by

(Cπf )∧(ξ) = |ξ|1/2f̂ (ξ) .
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General Procedure: d -dimensional CWT

Pick a suitable dilation group H < GL(d ,R), a closed matrix group
Define G = Rd oH, the affine group generated by H and translations.
As a set, G = Rd × H, with group law

(x , h)(y , g) = (x + hy , hg) .

Modular function: ∆G (x , h) = ∆G (h) = ∆H(h)/| det h|.
Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .
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Admissible matrix groups

Definition 8
We call a closed matrix group H < GL(Rd)

(weakly) admissible if there exists a (weakly) admissible ψ ∈ L2(Rd);
irreducibly admissible if it is admissible, and in addition the
quasi-regular representation is irreducible.

Aims of the following
Find explicit criteria for H to be (weakly, irreducibly) admissible.
Key question: Understand the dual action.
Develop methods for the systematic construction of (weakly,
irreducibly) admissible matrix groups.
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Example: The similitude group (Murenzi)

Pick H = R+ · SO(d). I.e., every element of H is described by a
rotation and a scale parameter.
Given a suitable wavelet ψ and (x , r · τ), with r > 0 and rotation τ ,
we can interpret π(x , h)ψ = TxDhψ as a detail of size r and
orientation τ , at position x .
Given a suitable wavelet ψ and a signal f ∈ L2(Rd), we obtain a
wavelet transform

Wψf (x , τ, r) = 〈f ,TxDτDrψ〉 .

Assume that the wavelet fulfills the Calderón condition

Cψ =

∫
Rd

|ψ̂(ξ)|2|ξ|−ddξ <∞ .

Then, for all f ∈ L2(Rd), we have

‖f ‖22 =
1
Cψ

∫
R+

∫
SO(2)

∫
Rd

|Wψf (x , τ, r)|2dxdτ dr
r3 .

The group is irreducibly admissible.
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Similitude wavelets
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Example: The shearlet group (Kutyniok/Labate/...)

We define a closed matrix group in dimension two, via

H =

{(
a b

0 sign(a)|a|1/2
)

: a 6= 0, b ∈ R
}

This time, we obtain a wavelet system indexed by anisotropic scale
parameter a, shearing parameter b and position parameter x .
Assume that the wavelet fulfills the Calderón condition

Cψ =

∫
R2
|ψ̂(ξ)|2|ξ1|−2dξ <∞ .

Then, for all f ∈ L2(R2), we have

‖f ‖22 =
1
Cψ

∫
R+

∫
R

∫
R2
|Wψf (x , b, a)|2dxdb da

|a|3
.

The group is irreducibly admissible.
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Shearlets
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Example: Diagonal group

Define the group H by

H =

{(
a 0
0 b

)
: ab 6= 0

}
Interpretation:Write(

a 0
0 b

)
=

(
a 0
0 a

)(
1 0
0 b/a

)
and interpret a as scale and b/a as aspect ratio of the wavelet.
Assume that the wavelet fulfills the Calderón condition

Cψ =

∫
R2
|ψ̂(ξ)|2|ξ1ξ2|−1dξ <∞ .

Then, for all f ∈ L2(R2), we have

‖f ‖22 =
1
Cψ

∫
R′

∫
SO(d)

∫
Rd

|Wψf (x , a, b)|2dx da
a2

db

b2 .

The group is irreducibly admissible.
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Diagonal wavelets
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Dual action
Question
Is there a systematic way of understanding these examples? Are there
checkable criteria for H to give rise to a wavelet transform?

Answer will be provided by dual action.

Dual action of H on Rd is defined by

H × Rd 3 (h, ξ) 7→ hT ξ .

Wψf is a family of convolution products with dilated wavelets,

Wψf (·, h) = (f ∗ π(0, h)ψ∗) , ψ∗(y) = ψ(−y)

Dual action describes influence of dilation on frequency content:

F (π(0, h)ψ∗) (ξ) = |det(h)|1/2ψ(hT ξ)

Dual stabilizer of ξ ∈ Rd : Hξ = {h ∈ H : hT ξ = ξ}.
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Dual action and irreducibility
Definition 9
Let U ⊂ Rd denote a Borel-measurable set. Define

HU =
{
f ∈ L2(Rd) : f̂ · 1U = f̂

}
.

Lemma 10

(a) Let ΣHT denote the set of HT -invariant Borel subsets of Rd ,
identified up to sets of measure zero. Then the mapping

ΣHT → {H ⊂ L2(Rd) : H is closed and π-invariant}
U 7→ HU

is a bijection.
(b) In particular: πU := π|HU

is an irreducible representation iff U cannot
be decomposed into two HT -invariant subsets of positive measure,
i.e., iff HT acts ergodically on U.
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Dual action and admissibility

Lemma 11

Let H < GL(Rd) be a closed matrix group, and ψ, f ∈ L2(Rd).

Then

‖Wψf ‖22 =

∫
Rd

|f̂ (ξ)|2
∫
H
|ψ̂(hT ξ)|2dh dξ .

In particular, letting

Φ : Rd → R+ ∪∞ , ξ 7→
∫
H
|ψ̂(hT ξ)|2dh

we have that ψ is
weakly admissible iff Φ is bounded and almost nowhere vanishing;
admissible iff Φ is a constant map.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 25 / 41



Dual action and admissibility

Lemma 11

Let H < GL(Rd) be a closed matrix group, and ψ, f ∈ L2(Rd). Then

‖Wψf ‖22 =

∫
Rd

|f̂ (ξ)|2
∫
H
|ψ̂(hT ξ)|2dh dξ .

In particular, letting

Φ : Rd → R+ ∪∞ , ξ 7→
∫
H
|ψ̂(hT ξ)|2dh

we have that ψ is
weakly admissible iff Φ is bounded and almost nowhere vanishing;
admissible iff Φ is a constant map.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 25 / 41



Dual action and admissibility

Lemma 11

Let H < GL(Rd) be a closed matrix group, and ψ, f ∈ L2(Rd). Then

‖Wψf ‖22 =

∫
Rd

|f̂ (ξ)|2
∫
H
|ψ̂(hT ξ)|2dh dξ .

In particular, letting

Φ : Rd → R+ ∪∞ , ξ 7→
∫
H
|ψ̂(hT ξ)|2dh

we have that ψ is

weakly admissible iff Φ is bounded and almost nowhere vanishing;
admissible iff Φ is a constant map.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 25 / 41



Dual action and admissibility

Lemma 11

Let H < GL(Rd) be a closed matrix group, and ψ, f ∈ L2(Rd). Then

‖Wψf ‖22 =

∫
Rd

|f̂ (ξ)|2
∫
H
|ψ̂(hT ξ)|2dh dξ .

In particular, letting

Φ : Rd → R+ ∪∞ , ξ 7→
∫
H
|ψ̂(hT ξ)|2dh

we have that ψ is
weakly admissible iff Φ is bounded and almost nowhere vanishing;

admissible iff Φ is a constant map.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 25 / 41



Dual action and admissibility

Lemma 11

Let H < GL(Rd) be a closed matrix group, and ψ, f ∈ L2(Rd). Then

‖Wψf ‖22 =

∫
Rd

|f̂ (ξ)|2
∫
H
|ψ̂(hT ξ)|2dh dξ .

In particular, letting

Φ : Rd → R+ ∪∞ , ξ 7→
∫
H
|ψ̂(hT ξ)|2dh

we have that ψ is
weakly admissible iff Φ is bounded and almost nowhere vanishing;
admissible iff Φ is a constant map.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 25 / 41



Proof of the Lemma

‖Wψf ‖22 =

∫
H

∫
Rd

|〈f , π(x , h)ψ〉|2 dµG (x , h)

=

∫
H

∫
Rd

∣∣∣〈f̂ , (π(x , h)ψ)∧〉
∣∣∣2 dx dh

| det(h)|
.

=

∫
H

∫
Rd

∣∣∣∣∫
Rd

f̂ (ξ)| det(h)|1/2e2πiξx ψ̂(hT ξ)dξ

∣∣∣∣2 dx dh

| det(h)|

=

∫
H

∫
Rd

|F(φh)(−x)|2 dxdh ,

with φh(ξ) = f̂ (ξ)ψ̂(hT ξ). The Plancherel formula yields∫
H

∫
Rd

|φh(ξ)|2 dξdh =

∫
H

∫
Rd

∣∣∣f̂ (ξ)
∣∣∣2 ∣∣∣ψ̂(hT ξ)

∣∣∣2 dξdh
=

∫
Rd

∣∣∣f̂ (ω)
∣∣∣2(∫

H

∣∣∣ψ̂(h−1.ω)
∣∣∣2 dh)︸ ︷︷ ︸

=Φ(ξ)

dξ
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Characterization of irreducibly admissible groups
Theorem 12 (Bernier/Taylor ’95, HF ’96, HF ’10)

Let H < GL(d ,R) be closed.

(a) H is irreducibly admissible iff there exists a conull open orbit O of the
dual action, such that for all ξ ∈ O, the dual stabilizer Hξ is compact.

(b) Assume that H is irreducibly admissible, and fix ξ0 ∈ O. Define a
function Ψ on O by

Ξ(hT ξ0) := ∆H(h)| det(h)|−1.

Then Ξ is a well-defined continuous function on Rd and for every
ψ ∈ L2(Rd) :

ψ is admissible⇔
∫
O

∣∣∣ψ̂(ξ)
∣∣∣2 Ξ(ξ)dλ(ξ) <∞.

(c) The Duflo-Moore operator is the Fourier multiplier associated to Ξ1/2.
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Sketch of proof
Proof of sufficiency part in (a), and of part (b):

Assume there exists a conull open orbit with compact stabilizer. Then
π is irreducible by Lemma 10.
Let ξ ∈ O be arbitrary. Then the image map µξ of left Haar measure
on H under the projection map h 7→ hT ξ is a well-defined Radon
measure on the orbit O, and independent of the choice of ξ, i.e.
µξ = µξ0 .
µξ0 is Lebesgue-absolutely continuous, with Radon-Nikodym-derivative
Ξ. Thus, for arbitrary ξ ∈ O,∫

H
|ψ̂(hT ξ)|2dh =

∫
O
|ξ̂′|2dµξ(ξ′)

=

∫
O
|ξ̂′|2Ξ(ξ′)dξ′ ,

independent of ξ.
Ξ is continuous on O, thus the integral becomes finite as soon as ψ̂ is
bounded with compact support inside O. Then Lemma 11 entails
admissibility for ψ.
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Back to the examples

For H = R+ · SO(d), the open dual orbit is given by O = Rd \ {0}.
The associated stabilizers are isomorphic to SO(d − 1), hence
compact.
For the shearlet group, the open dual orbit is given by R2 \ ({0} ×R).
The associated stabilizers are trivial.
For the diagonal group, the open dual orbit is given by R′ ×R′. Again,
the associated stabilizers are trivial.
In all cases, the admissibility conditions can be obtained by applying
Theorem 12.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 29 / 41



Back to the examples

For H = R+ · SO(d), the open dual orbit is given by O = Rd \ {0}.
The associated stabilizers are isomorphic to SO(d − 1), hence
compact.

For the shearlet group, the open dual orbit is given by R2 \ ({0} ×R).
The associated stabilizers are trivial.
For the diagonal group, the open dual orbit is given by R′ ×R′. Again,
the associated stabilizers are trivial.
In all cases, the admissibility conditions can be obtained by applying
Theorem 12.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 29 / 41



Back to the examples

For H = R+ · SO(d), the open dual orbit is given by O = Rd \ {0}.
The associated stabilizers are isomorphic to SO(d − 1), hence
compact.
For the shearlet group, the open dual orbit is given by R2 \ ({0} ×R).
The associated stabilizers are trivial.

For the diagonal group, the open dual orbit is given by R′ ×R′. Again,
the associated stabilizers are trivial.
In all cases, the admissibility conditions can be obtained by applying
Theorem 12.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 29 / 41



Back to the examples

For H = R+ · SO(d), the open dual orbit is given by O = Rd \ {0}.
The associated stabilizers are isomorphic to SO(d − 1), hence
compact.
For the shearlet group, the open dual orbit is given by R2 \ ({0} ×R).
The associated stabilizers are trivial.
For the diagonal group, the open dual orbit is given by R′ ×R′. Again,
the associated stabilizers are trivial.

In all cases, the admissibility conditions can be obtained by applying
Theorem 12.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 29 / 41



Back to the examples

For H = R+ · SO(d), the open dual orbit is given by O = Rd \ {0}.
The associated stabilizers are isomorphic to SO(d − 1), hence
compact.
For the shearlet group, the open dual orbit is given by R2 \ ({0} ×R).
The associated stabilizers are trivial.
For the diagonal group, the open dual orbit is given by R′ ×R′. Again,
the associated stabilizers are trivial.
In all cases, the admissibility conditions can be obtained by applying
Theorem 12.

H. Führ (RWTH Aachen) Group Theoretical Methods I Trieste, June 2014 29 / 41



Further examples

Consider H = GL(d ,R), for d > 1. H has a unique open orbit, but
the associated stabilizer is noncompact. ⇒ H is not irreducibly
admissible. (“too big”)
Consider H = R+ · Id, for d > 1. H has no open orbit, hence it is not
irreducibly admissible. (“too small”)
Generally: Any irreducibly admissible group acting in dimension d has
dimension between d and d(d + 1)/2.
Let H = SO(d). Then every orbit of H is a sphere, hence not open.
Thus H is not irreducibly admissible.
Generally: If H < GL(d ,R) is compact, it is not irreducibly admissible.
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Outline

1 1D-CWT and the affine group

2 Representations and wavelet transforms

3 CWT in higher dimensions

4 General admissibility criteria

5 Irreducibly admissible groups in dimension two

6 References
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Dilation groups in dimension 2

1 Diagonal group:

H =

{(
a 0
0 b

)
: ab 6= 0

}
2 Similitude group:

H =

{(
a b
−b a

)
: a2 + b2 6= 0

}
3 Shearlet group(s):

Hc =

{(
a b
0 sign(a)|a|c

)
: a 6= 0

}
(c ∈ R)

(c = 1/2: Kutyniok/Labate/Dahlke/Steidl/Teschke ...)

Note: Up to choice of coordinates, this list is (essentially) complete!
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Similitude wavelets
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Shearlets
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Diagonal wavelets
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CWT: Test image
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CWT over similitude group
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Shearlet analysis
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CWT over diagonal group
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Summary

Group-theoretic approach allows the design of a great variety of
wavelet systems.
Main tool from representation theory (so far): Discrete series
representations.
Main tool from Fourier analysis: Plancherel theorem, and the dual
action.
For nonirreducible setting: Need a better understanding of
representation theory, and of the dual action.
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