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Recall general setup: d -dimensional CWT
H < GL(d ,R), a closed matrix group
G = Rd o H, the affine group generated by H and translations. As a
set, G = Rd × H, with group law

(x , h)(y , g) = (x + hy , hg) .

Modular function: ∆G (x , h) = ∆G (h) = ∆H(h)/| det h|.
Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

Dual orbit space Rd/HT
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Admissibility condition

Lemma 1 (Recall from Talk I)

Let H < GL(Rd) be a closed matrix group, and ψ, f ∈ L2(Rd). Then

‖Wψf ‖22 =

∫
Rd

|f̂ (ξ)|2
∫
H
|ψ̂(hT ξ)|2dh dξ .

In particular, letting

Φ : Rd → R+ ∪∞ , ξ 7→
∫
H
|ψ̂(hT ξ)|2dh

we have that ψ is
weakly admissible iff Φ is bounded and almost nowhere vanishing;
admissible iff Φ is a constant map.

Note: This is also applicable to reducible group actions.
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Semidiscrete wavelet transform (Mallat/Zhong)

Consider H = 2Z < R′, and the semidirect product G = RoH, acting
on L2(R) through the quasi-regular representation.
Pick ψ ∈ L2(R) such that

∀a.e.ξ ∈ R :
∑
k∈Z
|ψ̂(2kξ)|2 = 1

Then ψ is admissible for the quasiregular representation of G , yielding

∀f ∈ L2(R) : ‖f ‖22 =
∑
k∈Z

2−k
∫
R
|Wψf (x , 2k)|2dx .

Note: π does not have irreducible subrepresentations.
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Wavelets over E (2) (Isham/Klauder)
Consider the dilation group H = SO(2), and G = E (2) = R2 o H.

Fix measurable R ⊂ R+, and let

U = {ξ ∈ R2 : |ξ| ∈ R} ,HU = {f ∈ L2(Rd) : f̂ · 1U = f̂ }

Let ξ0 = (1, 0)T , and suppose that ψ ∈ H fulfills

∀a.e.r ∈ R :

∫ 2π

0

∣∣∣ψ̂(rhθξ0)
∣∣∣2 dθ = 1 .

hθ = rotation by angle θ.
Then ψ is admissible for HU , yielding

∀f ∈ HU : ‖f ‖22 =

∫ 2π

0

∫
R
|Wψf (x , θ)|2dxdθ .

Note:
I Any subset R ′ ⊂ R gives rise to a smaller subspace HU′ , hence πU

does not have irreducible subrepresentations.
I The admissibility criterion is only fulfillable if

∫
R
rdr <∞.
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A general question

General problem

Given H, decide whether H is (weakly) admissible.
Provide representation-theoretic explanation. (Note: Duflo/Moore is
no longer applicable.)

Starting point
Assume that H is weakly admissible. Then there exists an integrable
function ϕ : Rd → R+ such that

∀a.e.ξ ∈ Rd : 0 <
∫
H
ϕ(hT ξ)dξ <∞ .

(Recall admissibility criterion from last talk, with ϕ = |ψ̂|2.)
What does that tell us about H?
( Regularity properties of the dual action!)
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Regularity of the orbit space

Definition 2
We let Rd/HT denote the space of orbits under the dual action, endowed
with the quotient Borel structure.

Rd/HT admits a λ-transversal if there exists an HT -invariant λ-conull
Borel set Y ⊂ Rd and a Borel set C ⊂ Y meeting each orbit in Y in
precisely one point.

Chief purpose of this condition
Exclude pathological behaviour (proper ergodicity etc.)
If a transversal T of the orbit exists, we can identify T with the orbit space
Rd/HT .
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Measure decompositions

Definition 3

(a) A measurable family of measures is a family (βO)O∈Rd/HT , such that
for all Borel sets B ⊂ X , the map O 7→ βO(B) is Borel on X/H.

(b) A measure decomposition of λ is a pair (λ, (βO)O⊂Rd ) , with λ a
suitable measure on Rd/HT , and a family (βO)O∈Rd/HT of measures
such that for all B ⊂ Rd Borel,

λ(B) =

∫
Rd/HT

βO(B)dλ(O) .

(c) Lebesgue measure decomposes over the orbits if there exists a
measure decomposition such that, for λ-almost every O ∈ Rd/HT ,
the measure βO is supported in O.
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Measure decomposition and transversals: Example

Consider the group H = 2Z.
The HT -orbit of ξ ∈ R is given by O = {2kξ : k ∈ Z}.
Transversal for the orbit space: T = [1, 2) ∪ (−2,−1].
We let βO denote counting measure, weighted by 2k , and let λ be
Lebesgue measure on T

Then, for all Borel sets B ⊂ R:

λ(B) =
∑
k∈Z

λ(B ∩ 2kT )

=
∑
k∈Z

2k
∫
±[1,2)

1B(2kξ)dξ

=

∫
R/HT

βO(B)dλ(O) .
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λ(B) =
∑
k∈Z

λ(B ∩ 2kT )

=
∑
k∈Z

2k
∫
±[1,2)

1B(2kξ)dξ

=

∫
R/HT

βO(B)dλ(O) .
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Measure decomposition and transversals: Second example

Consider the group H = SO(2).
The HT -orbit O of ξ ∈ R2 is given by the circle with center 0 and
radius |ξ|.
Transversal to the orbit space: R+ · (1, 0)T .
We let βO denote the rotation invariant measure on the sphere, and
let λ be given by rdr .
Then, for all Borel sets B ⊂ R2:

λ(B) =

∫
R+

∫
|ξ|=r

1B(ξ)dξ rdr

=

∫
R2/HT

βO(B)dλ(O) .
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A characterization of admissibility

Theorem 4 (HF, ’10)

Let H < GL(d ,R) be closed. Then H is weakly admissible iff only almost
every stabilizer is compact, and in addition, one of the following equivalent
conditions hold:
(a) λ decomposes over the orbits.
(b) Rd/HT admits a λ-transversal.

Theorem 5 (HF, ’10)
Let H < GL(d ,R) be closed. Then H is admissible iff H is weakly
admissible and in addition, G is nonunimodular.
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Summary: Wavelet inversion without irreducibility

Admissibility condition is useful also in the reducible case.
Usually, instead of a single integral condition infinitely many (usually
uncountably many) such conditions are required.
Weak admissibility ⇔ well-behaved dual orbit space
Strong admissibility ⇔ well-behaved dual orbit space and
non-unimodularity
Abstract admissibility criteria  Plancherel theory, see remainder of
this set of slides.
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Overview

1 Some examples

2 Admissibility for reducible actions

3 A toy example

4 Plancherel theory

5 Back to quasi-regular representations

6 References
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Towards a representation-theoretic view

Abstract harmonic approach to admissibility

Recall: If a representation has a weakly admissible vector, it is
contained in the regular representation.
Thus, we need to understand

I leftinvariant subspaces of L2(G ),
I and their admissible vectors.

For well-behaved groups, representations and their invariant subspaces
are best understood in terms of their decomposition into irreducibles.
 Plancherel theory!
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Toy example G = R: Invariant subspaces

Let G = R, H ⊂ L2(R) translation-invariant closed subspace.
Theorem: T : L2(R)→ L2(R) bounded, translationinvariant
=⇒ ∃ unique T̂ ∈ L∞(R̂) such that (Tf )∧ (ω) = T̂ (ω)f̂ (ω).
Applied to projection P onto H: There exists a measurable U ⊂ R̂,
unique up to nullsets, such that (Pf )∧(ω) = χU(ω)f̂ (ω), or

H = HU = {f ∈ L2(R) : supp(f̂ ) ⊂ U}
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Toy example G = R: Admissible vectors

H = HU as on the previous slide, η ∈ H. Then Vηφ = φ ∗ η∗, and the
convolution theorem yields

(Vηφ)∧ (ω) = φ̂(ω)η̂(ω) .

In particular,

η admissible ⇔ φ̂ 7→ φ̂η̂ is an isometry on L2(U)

⇔ |η(ω)| = 1 a.e. on U .

=⇒ HU has admissible vectors iff |U| <∞
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Toy example G = R: CWT and Plancherel inversion

For U ⊂ R measurable, with |U| <∞, let πU be the restriction of left
regular representation to HU .
Under the Plancherel transform, π is equivalent to the representation
π̂U acting on L2(U) via

(π̂(x)f ) (ω) = e−2πiωx f (ω) .

Then, given η ∈ L2(U),

Vηφ =

∫
U
φ(ω)η(ω)e2πiωxdω = (φη)∨(x) .

 wavelet transform coincides with Plancherel inversion.
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Operator-valued Fourier transform
Loose description:
Decompose regular representation by integrating functions against
irreducible representations. Compare to the reals:

f̂ (ω) =

∫
R
f (x)e−2πiωxdx ,

uses the characters x 7→ e−2πiωx .

Definition 6
Let G be a locally compact group. From now on: G is assumed to be type
I.
(a) Ĝ denotes the unitary dual, the set of (equivalence classes of)

irreducible representations.
(b) Given f ∈ L1(G ), σ ∈ Ĝ , let

F(f )(σ) := f̂ (σ) :=

∫
G
f (x)σ(x)dx .

(Weak operator integral).
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Plancherel Theorem

Theorem 7 (Duflo/Moore, ’76)
There exist
(i) νG , positive σ-finite measure on Ĝ ,
(ii) Cσ,C

−1
σ (σ ∈ Ĝ ), densely defined, positive operators,

such that
(a) ∀f ∈ L1(G ) ∩ L2(G ) : σ(f ) ◦ C−1

σ ∈ B2(Hσ), νG -a.e.
(b) The mapping L1(G ) ∩ L2(G ) 3 f 7→ (σ(f ) ◦ C−1

σ )
σ∈Ĝ extends to a

unitary equivalence

P : L2(G )→ B⊕2 :=

∫
HS(Hσ)dνG (σ) .

(c) G unimodular iff Cσ scalar νG -almost everywhere. In this case picking
Cσ = IdHσ determines νG uniquely.
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Invariant subspaces

Recall toy example: Invariant subspace of L2(R) correspond to Borel
subsets U ⊂ R̂.

Theorem 8 (Characterization of invariant subspaces)

P : L2(G )→ L2(G ) left-invariant projection operator iff ∃ measurable
family (P̂σ)

σ∈Ĝ of projections, such that

(Pf )∧(σ) = f̂ (σ) ◦ P̂σ for νG − almost every σ

This is a generalisation:
Think of the characteristic function χU in the real case as a field of
projection operators, each acting on a one-dimensional space.
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Existence of admissible vectors

Theorem 9 (Admissibility criterion, HF ’00)

Let H ⊂ L2(G ) be left-invariant, with associated family (P̂σ)
σ∈Ĝ of

projection operators.
Let a ∈ H with Plancherel transform (Aσ)

σ∈Ĝ fulfilling νG -a.e.
A∗σCσ extends to a bounded operator [A∗σCσ]

[A∗σCσ]∗ = CσAσ is an isometry on range of P̂σ
Then a is admissible

Theorem 10 (HF’00)

H as in Theorem 9 has admissible vectors iff either
(a) G is unimodular, and

∫
Ĝ

rank(P̂σ)dνG (σ) <∞
(b) G is nonunimodular
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A second look at measure decompositions

Assume that Lebesgue measure decomposes over the HT -orbits, via
the measures λ and (βO)O∈Rd/HT .

We have that f ∈ L2(Rd) corresponds to a family of functions on the
dual orbits, via

f 7→
(
f̂O

)
O∈Rd/HT

where each f̂O is the restriction of f̂ to O.
The measure decomposition formula entails that f̂O ∈ L2(O, dβO), for
almost every O ∈ Rd/HT , and that

‖f ‖22 =

∫
Rd/HT

∥∥∥f̂O∥∥∥2

2
dλ(O) .

Thus L2(Rd) decomposes as a direct integral∫ ⊕
Rd/HT

L2(O, dβO)dλ(O).
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Measure decompositions and direct integrals

In addition, we have representations πO acting on L2(O, dβO) via

(πO(x , h)fO)(ξ) = |det(h)|1/2 exp(2πi〈ξ, x〉)fO(hT ξ) .

Each πO is irreducible.
In summary:

I The Fourier transform effects a unitary equivalence

π '
∫ ⊕
Rd/HT

πOdλ(O) ,

decomposing π into irreducibles.
I Weak admissibility of H can now be related to absolute continuity of

measures, and is essentially equivalent to almost everywhere
compactness of the stabilizers.

I Concrete admissibility condition in Lemma 1 and abstract version in
Theorem 9 coincide.

I Non-unimodularity condition in Theorem 4 is related to the same
condition in Theorem 10.
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