



2585-5

#### Joint ICTP-TWAS School on Coherent State Transforms, Time-Frequency and Time-Scale Analysis, Applications

2 - 20 June 2014

Group-theoretical methods for the design and analysis of higherdimensional wavelet systems contd.

> H. Fuhr RWTH, Aachen Germany

Group-theoretical methods for the design and analysis of higher-dimensional wavelet systems II
Wavelet inversion, admissibility and the Plancherel formula

Hartmut Führ fuehr@matha.rwth-aachen.de

Trieste, June 2014

Lehrstuhl A für Mathematik, RWTH





I Wavelet transforms associated to groups of affine mappings (Monday)



- I Wavelet transforms associated to groups of affine mappings (Monday)
- II Wavelet inversion, admissibility and the Plancherel formula (Tuesday)

- I Wavelet transforms associated to groups of affine mappings (Monday)
- II Wavelet inversion, admissibility and the Plancherel formula (Tuesday)
- III Sparse signals and function spaces (Wednesday)



- I Wavelet transforms associated to groups of affine mappings (Monday)
- II Wavelet inversion, admissibility and the Plancherel formula (Tuesday)
- III Sparse signals and function spaces (Wednesday)
- IV Wavelet approximation theory over general dilation groups (Thursday, Friday)



1 Some examples



- 1 Some examples
- 2 Admissibility for reducible actions



- Some examples
- 2 Admissibility for reducible actions
- 3 A toy example



- Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory



- Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations

- Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations
- 6 References



#### Overview

- 1 Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations
- 6 References



### Recall general setup: d-dimensional CWT

- $H < \mathrm{GL}(d,\mathbb{R})$ , a closed matrix group
- $G = \mathbb{R}^d \times H$ , the affine group generated by H and translations. As a set,  $G = \mathbb{R}^d \times H$ , with group law

$$(x,h)(y,g)=(x+hy,hg).$$

- Modular function:  $\Delta_G(x, h) = \Delta_G(h) = \Delta_H(h)/|\det h|$ .
- Define the translation and dilation operators via

$$(T_x f)(y) = f(y - x) , (D_h f)(y) = |\det(h)|^{-1/2} f(h^{-1} y) .$$

• Quasi-regular representation of G acts on  $L^2(\mathbb{R}^d)$  via

$$(\pi(x,h)f)(y) = |\det(h)|^{-1/2} f(h^{-1}(y-x)).$$

• Continuous wavelet transform: Given  $f, \psi \in L^2(\mathbb{R}^d)$ , we let

$$W_{\psi}f:G\to\mathbb{C}\;,\;W_{\psi}f(x,h)=\langle f,\pi(x,h)\psi
angle\;.$$

• Dual orbit space  $\mathbb{R}^d/H^T$ 



## Admissibility condition

### Lemma 1 (Recall from Talk I)

Let  $H < \mathrm{GL}(\mathbb{R}^d)$  be a closed matrix group, and  $\psi, f \in \mathrm{L}^2(\mathbb{R}^d)$ . Then

$$||W_{\psi}f||_{2}^{2} = \int_{\mathbb{R}^{d}} |\widehat{f}(\xi)|^{2} \int_{H} |\widehat{\psi}(h^{T}\xi)|^{2} dh \ d\xi \ .$$

In particular, letting

$$\Phi: \mathbb{R}^d \to \mathbb{R}^+ \cup \infty \ , \ \xi \mapsto \int_H |\widehat{\psi}(h^T \xi)|^2 dh$$

we have that  $\psi$  is

- weakly admissible iff  $\Phi$  is bounded and almost nowhere vanishing;
- admissible iff Φ is a constant map.



## Admissibility condition

### Lemma 1 (Recall from Talk I)

Let  $H < \operatorname{GL}(\mathbb{R}^d)$  be a closed matrix group, and  $\psi, f \in L^2(\mathbb{R}^d)$ . Then

$$\|W_{\psi}f\|_{2}^{2} = \int_{\mathbb{R}^{d}} |\widehat{f}(\xi)|^{2} \int_{H} |\widehat{\psi}(h^{T}\xi)|^{2} dh \ d\xi.$$

In particular, letting

$$\Phi: \mathbb{R}^d \to \mathbb{R}^+ \cup \infty \; , \; \xi \mapsto \int_H |\widehat{\psi}(h^T \xi)|^2 dh$$

we have that  $\psi$  is

- weakly admissible iff  $\Phi$  is bounded and almost nowhere vanishing;
- admissible iff Φ is a constant map.

Note: This is also applicable to reducible group actions.





• Consider  $H = 2^{\mathbb{Z}} < \mathbb{R}'$ , and the semidirect product  $G = \mathbb{R} \times H$ , acting on  $L^2(\mathbb{R})$  through the quasi-regular representation.



- Consider  $H=2^{\mathbb{Z}}<\mathbb{R}'$ , and the semidirect product  $G=\mathbb{R}\rtimes H$ , acting on  $L^2(\mathbb{R})$  through the quasi-regular representation.
- Pick  $\psi \in \mathrm{L}^2(\mathbb{R})$  such that

$$\forall_{\text{a.e.}} \xi \in \mathbb{R} : \sum_{k \in \mathbb{Z}} |\widehat{\psi}(2^k \xi)|^2 = 1$$

- Consider  $H = 2^{\mathbb{Z}} < \mathbb{R}'$ , and the semidirect product  $G = \mathbb{R} \times H$ , acting on  $L^2(\mathbb{R})$  through the quasi-regular representation.
- Pick  $\psi \in \mathrm{L}^2(\mathbb{R})$  such that

$$\forall_{\text{a.e.}} \xi \in \mathbb{R} : \sum_{k \in \mathbb{Z}} |\widehat{\psi}(2^k \xi)|^2 = 1$$

ullet Then  $\psi$  is admissible for the quasiregular representation of  ${\it G}$ , yielding

$$\forall f \in L^2(\mathbb{R}) : ||f||_2^2 = \sum_{k \in \mathbb{Z}} 2^{-k} \int_{\mathbb{R}} |W_{\psi} f(x, 2^k)|^2 dx.$$

- Consider  $H = 2^{\mathbb{Z}} < \mathbb{R}'$ , and the semidirect product  $G = \mathbb{R} \times H$ , acting on  $L^2(\mathbb{R})$  through the quasi-regular representation.
- Pick  $\psi \in \mathrm{L}^2(\mathbb{R})$  such that

$$\forall_{a.e.} \xi \in \mathbb{R} : \sum_{k \in \mathbb{Z}} |\widehat{\psi}(2^k \xi)|^2 = 1$$

ullet Then  $\psi$  is admissible for the quasiregular representation of  ${\it G}$ , yielding

$$\forall f \in L^2(\mathbb{R}) : ||f||_2^2 = \sum_{k \in \mathbb{Z}} 2^{-k} \int_{\mathbb{R}} |W_{\psi} f(x, 2^k)|^2 dx.$$

• Note:  $\pi$  does not have irreducible subrepresentations.



• Consider the dilation group H = SO(2), and  $G = E(2) = \mathbb{R}^2 \times H$ .

- Consider the dilation group H = SO(2), and  $G = E(2) = \mathbb{R}^2 \times H$ .
- Fix measurable  $R \subset \mathbb{R}^+$ , and let

$$U = \{ \xi \in \mathbb{R}^2 : |\xi| \in R \}, \mathcal{H}_U = \{ f \in L^2(\mathbb{R}^d) : \widehat{f} \cdot \mathbf{1}_U = \widehat{f} \}$$

- Consider the dilation group H = SO(2), and  $G = E(2) = \mathbb{R}^2 \times H$ .
- Fix measurable  $R \subset \mathbb{R}^+$ , and let

$$U = \{ \xi \in \mathbb{R}^2 : |\xi| \in R \}, \mathcal{H}_U = \{ f \in L^2(\mathbb{R}^d) : \widehat{f} \cdot \mathbf{1}_U = \widehat{f} \}$$

• Let  $\xi_0 = (1,0)^T$ , and suppose that  $\psi \in \mathcal{H}$  fulfills

$$orall_{a.e.}r\in R \;:\; \int_0^{2\pi}\left|\widehat{\psi}(\mathit{rh}_{ heta}\xi_0)
ight|^2d heta=1\;.$$

 $h_{\theta} = \text{rotation by angle } \theta.$ 



- Consider the dilation group H = SO(2), and  $G = E(2) = \mathbb{R}^2 \times H$ .
- Fix measurable  $R \subset \mathbb{R}^+$ , and let

$$U = \{ \xi \in \mathbb{R}^2 : |\xi| \in R \}, \mathcal{H}_U = \{ f \in L^2(\mathbb{R}^d) : \widehat{f} \cdot \mathbf{1}_U = \widehat{f} \}$$

• Let  $\xi_0 = (1,0)^T$ , and suppose that  $\psi \in \mathcal{H}$  fulfills

$$orall_{a.e.}r\in R \;:\; \int_0^{2\pi}\left|\widehat{\psi}(\mathit{rh}_{ heta}\xi_0)
ight|^2d heta=1\;.$$

 $h_{\theta} = \text{rotation by angle } \theta.$ 

• Then  $\psi$  is admissible for  $\mathcal{H}_{\mathcal{U}}$ , yielding

$$\forall f \in \mathcal{H}_U : \|f\|_2^2 = \int_0^{2\pi} \int_{\mathbb{R}} |W_{\psi}f(x,\theta)|^2 dx d\theta.$$

- Consider the dilation group H = SO(2), and  $G = E(2) = \mathbb{R}^2 \times H$ .
- Fix measurable  $R \subset \mathbb{R}^+$ , and let

$$U = \{ \xi \in \mathbb{R}^2 : |\xi| \in R \}, \mathcal{H}_U = \{ f \in L^2(\mathbb{R}^d) : \widehat{f} \cdot \mathbf{1}_U = \widehat{f} \}$$

• Let  $\xi_0 = (1,0)^T$ , and suppose that  $\psi \in \mathcal{H}$  fulfills

$$orall_{a.e.}r\in R \;:\; \int_0^{2\pi}\left|\widehat{\psi}(\mathit{rh}_{ heta}\xi_0)
ight|^2d heta=1\;.$$

 $h_{\theta} = \text{rotation by angle } \theta.$ 

• Then  $\psi$  is admissible for  $\mathcal{H}_{\mathcal{U}}$ , yielding

$$\forall f \in \mathcal{H}_U : \|f\|_2^2 = \int_0^{2\pi} \int_{\mathbb{R}} |W_{\psi}f(x,\theta)|^2 dx d\theta.$$

Note:



- Consider the dilation group H = SO(2), and  $G = E(2) = \mathbb{R}^2 \times H$ .
- Fix measurable  $R \subset \mathbb{R}^+$ , and let

$$U = \{ \xi \in \mathbb{R}^2 : |\xi| \in R \}, \mathcal{H}_U = \{ f \in L^2(\mathbb{R}^d) : \widehat{f} \cdot \mathbf{1}_U = \widehat{f} \}$$

• Let  $\xi_0 = (1,0)^T$ , and suppose that  $\psi \in \mathcal{H}$  fulfills

$$orall_{a.e.}r\in R \;:\; \int_0^{2\pi}\left|\widehat{\psi}(\mathit{rh}_{ heta}\xi_0)
ight|^2d heta=1\;.$$

 $h_{\theta} = \text{rotation by angle } \theta.$ 

• Then  $\psi$  is admissible for  $\mathcal{H}_{\mathcal{U}}$ , yielding

$$orall f \in \mathcal{H}_U : \|f\|_2^2 = \int_0^{2\pi} \int_{\mathbb{R}} |W_{\psi}f(x,\theta)|^2 dx d\theta .$$

- Note:
  - ▶ Any subset  $R' \subset R$  gives rise to a smaller subspace  $\mathcal{H}_{U'}$ , hence  $\pi_U$  does not have irreducible subrepresentations.



- Consider the dilation group H = SO(2), and  $G = E(2) = \mathbb{R}^2 \rtimes H$ .
- Fix measurable  $R \subset \mathbb{R}^+$ , and let

$$U = \{ \xi \in \mathbb{R}^2 : |\xi| \in R \}, \mathcal{H}_U = \{ f \in L^2(\mathbb{R}^d) : \widehat{f} \cdot \mathbf{1}_U = \widehat{f} \}$$

• Let  $\xi_0 = (1,0)^T$ , and suppose that  $\psi \in \mathcal{H}$  fulfills

$$orall_{a.e.}r\in R \;:\; \int_0^{2\pi}\left|\widehat{\psi}(\mathit{rh}_{ heta}\xi_0)
ight|^2d heta=1\;.$$

 $h_{\theta} = \text{rotation by angle } \theta.$ 

• Then  $\psi$  is admissible for  $\mathcal{H}_{\mathcal{U}}$ , yielding

$$\forall f \in \mathcal{H}_U : \|f\|_2^2 = \int_0^{2\pi} \int_{\mathbb{R}} |W_{\psi}f(x,\theta)|^2 dx d\theta.$$

- Note:
  - ▶ Any subset  $R' \subset R$  gives rise to a smaller subspace  $\mathcal{H}_{U'}$ , hence  $\pi_U$  does not have irreducible subrepresentations.
  - ▶ The admissibility criterion is only fulfillable if  $\int_R r dr < \infty$ .



#### Overview

- 1 Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations
- 6 References



General problem



### General problem

• Given H, decide whether H is (weakly) admissible.

### General problem

- Given H, decide whether H is (weakly) admissible.
- Provide representation-theoretic explanation. (Note: Duflo/Moore is no longer applicable.)



### General problem

- Given H, decide whether H is (weakly) admissible.
- Provide representation-theoretic explanation. (Note: Duflo/Moore is no longer applicable.)

#### Starting point

Assume that H is weakly admissible. Then there exists an integrable function  $\varphi:\mathbb{R}^d\to\mathbb{R}^+$  such that

$$\forall_{a.e.} \xi \in \mathbb{R}^d : 0 < \int_H \varphi(h^T \xi) d\xi < \infty .$$

\*\*\*\*\*\*

### General problem

- Given H, decide whether H is (weakly) admissible.
- Provide representation-theoretic explanation. (Note: Duflo/Moore is no longer applicable.)

#### Starting point

Assume that H is weakly admissible. Then there exists an integrable function  $\varphi:\mathbb{R}^d\to\mathbb{R}^+$  such that

$$\forall_{a.e.} \xi \in \mathbb{R}^d : 0 < \int_H \varphi(h^T \xi) d\xi < \infty.$$

(Recall admissibility criterion from last talk, with  $\varphi = |\widehat{\psi}|^2$ .) What does that tell us about H?

J111

#### General problem

- Given H, decide whether H is (weakly) admissible.
- Provide representation-theoretic explanation. (Note: Duflo/Moore is no longer applicable.)

#### Starting point

Assume that H is weakly admissible. Then there exists an integrable function  $\varphi:\mathbb{R}^d\to\mathbb{R}^+$  such that

$$\forall_{a.e.} \xi \in \mathbb{R}^d : 0 < \int_H \varphi(h^T \xi) d\xi < \infty.$$

(Recall admissibility criterion from last talk, with  $\varphi=|\widehat{\psi}|^2$ .)

What does that tell us about H?

(→ Regularity properties of the dual action!)

# Regularity of the orbit space

#### Definition 2

We let  $\mathbb{R}^d/H^T$  denote the space of orbits under the dual action, endowed with the quotient Borel structure.

## Regularity of the orbit space

#### Definition 2

We let  $\mathbb{R}^d/H^T$  denote the space of orbits under the dual action, endowed with the quotient Borel structure.

 $\mathbb{R}^d/H^T$  admits a  $\lambda$ -transversal if there exists an  $H^T$ -invariant  $\lambda$ -conull Borel set  $Y \subset \mathbb{R}^d$  and a Borel set  $C \subset Y$  meeting each orbit in Y in precisely one point.

# Regularity of the orbit space

#### Definition 2

We let  $\mathbb{R}^d/H^T$  denote the space of orbits under the dual action, endowed with the quotient Borel structure.

 $\mathbb{R}^d/H^T$  admits a  $\lambda$ -transversal if there exists an  $H^T$ -invariant  $\lambda$ -conull Borel set  $Y \subset \mathbb{R}^d$  and a Borel set  $C \subset Y$  meeting each orbit in Y in precisely one point.

#### Chief purpose of this condition

Exclude pathological behaviour (proper ergodicity etc.)

If a transversal T of the orbit exists, we can identify T with the orbit space  $\mathbb{R}^d/H^T$ .





#### Definition 3

(a) A measurable family of measures is a family  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^{\mathcal{T}}}$ , such that for all Borel sets  $B \subset X$ , the map  $\mathcal{O} \mapsto \beta_{\mathcal{O}}(B)$  is Borel on X/H.

#### Definition 3

- (a) A measurable family of measures is a family  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$ , such that for all Borel sets  $B \subset X$ , the map  $\mathcal{O} \mapsto \beta_{\mathcal{O}}(B)$  is Borel on X/H.
- (b) A measure decomposition of  $\lambda$  is a pair  $(\overline{\lambda}, (\beta_{\mathcal{O}})_{\mathcal{O} \subset \mathbb{R}^d})$ , with  $\overline{\lambda}$  a suitable measure on  $\mathbb{R}^d/H^T$ , and a family  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$  of measures such that for all  $B \subset \mathbb{R}^d$  Borel,

$$\lambda(B) = \int_{\mathbb{R}^d/H^T} \beta_{\mathcal{O}}(B) d\overline{\lambda}(\mathcal{O}) \ .$$



#### Definition 3

- (a) A measurable family of measures is a family  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$ , such that for all Borel sets  $B \subset X$ , the map  $\mathcal{O} \mapsto \beta_{\mathcal{O}}(B)$  is Borel on X/H.
- (b) A measure decomposition of  $\lambda$  is a pair  $(\overline{\lambda}, (\beta_{\mathcal{O}})_{\mathcal{O} \subset \mathbb{R}^d})$ , with  $\overline{\lambda}$  a suitable measure on  $\mathbb{R}^d/H^T$ , and a family  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$  of measures such that for all  $B \subset \mathbb{R}^d$  Borel,

$$\lambda(B) = \int_{\mathbb{R}^d/H^T} \beta_{\mathcal{O}}(B) d\overline{\lambda}(\mathcal{O}) \ .$$

(c) Lebesgue measure decomposes over the orbits if there exists a measure decomposition such that, for  $\overline{\lambda}$ -almost every  $\mathcal{O} \in \mathbb{R}^d/H^T$ , the measure  $\beta_{\mathcal{O}}$  is supported in  $\mathcal{O}$ .





• Consider the group  $H = 2^{\mathbb{Z}}$ .

- Consider the group  $H = 2^{\mathbb{Z}}$ .
- The  $H^T$ -orbit of  $\xi \in \mathbb{R}$  is given by  $\mathcal{O} = \{2^k \xi : k \in \mathbb{Z}\}.$

- Consider the group  $H = 2^{\mathbb{Z}}$ .
- The  $H^T$ -orbit of  $\xi \in \mathbb{R}$  is given by  $\mathcal{O} = \{2^k \xi : k \in \mathbb{Z}\}.$
- Transversal for the orbit space:  $T = [1, 2) \cup (-2, -1]$ .

- Consider the group  $H = 2^{\mathbb{Z}}$ .
- The  $H^T$ -orbit of  $\xi \in \mathbb{R}$  is given by  $\mathcal{O} = \{2^k \xi : k \in \mathbb{Z}\}.$
- Transversal for the orbit space:  $T = [1,2) \cup (-2,-1]$ .
- We let  $\beta_{\mathcal{O}}$  denote counting measure, weighted by  $2^k$ , and let  $\overline{\lambda}$  be Lebesgue measure on T

- Consider the group  $H = 2^{\mathbb{Z}}$ .
- The  $H^T$ -orbit of  $\xi \in \mathbb{R}$  is given by  $\mathcal{O} = \{2^k \xi : k \in \mathbb{Z}\}.$
- Transversal for the orbit space:  $T = [1,2) \cup (-2,-1]$ .
- We let  $\beta_{\mathcal{O}}$  denote counting measure, weighted by  $2^k$ , and let  $\overline{\lambda}$  be Lebesgue measure on T
- Then, for all Borel sets  $B \subset \mathbb{R}$ :

$$\lambda(B) = \sum_{k \in \mathbb{Z}} \lambda(B \cap 2^k T)$$

- Consider the group  $H = 2^{\mathbb{Z}}$ .
- The  $H^T$ -orbit of  $\xi \in \mathbb{R}$  is given by  $\mathcal{O} = \{2^k \xi : k \in \mathbb{Z}\}.$
- Transversal for the orbit space:  $T = [1,2) \cup (-2,-1]$ .
- We let  $\beta_{\mathcal{O}}$  denote counting measure, weighted by  $2^k$ , and let  $\overline{\lambda}$  be Lebesgue measure on T
- Then, for all Borel sets  $B \subset \mathbb{R}$ :

$$\lambda(B) = \sum_{k \in \mathbb{Z}} \lambda(B \cap 2^k T)$$
$$= \sum_{k \in \mathbb{Z}} 2^k \int_{\pm [1,2)} \mathbf{1}_B(2^k \xi) d\xi$$

- Consider the group  $H = 2^{\mathbb{Z}}$ .
- The  $H^T$ -orbit of  $\xi \in \mathbb{R}$  is given by  $\mathcal{O} = \{2^k \xi : k \in \mathbb{Z}\}.$
- Transversal for the orbit space:  $T = [1,2) \cup (-2,-1]$ .
- We let  $\beta_{\mathcal{O}}$  denote counting measure, weighted by  $2^k$ , and let  $\overline{\lambda}$  be Lebesgue measure on T
- Then, for all Borel sets  $B \subset \mathbb{R}$ :

$$\lambda(B) = \sum_{k \in \mathbb{Z}} \lambda(B \cap 2^k T)$$

$$= \sum_{k \in \mathbb{Z}} 2^k \int_{\pm [1,2)} \mathbf{1}_B(2^k \xi) d\xi$$

$$= \int_{\mathbb{R}/H^T} \beta_{\mathcal{O}}(B) d\overline{\lambda}(\mathcal{O}).$$





• Consider the group H = SO(2).

- Consider the group H = SO(2).
- The  $H^T$ -orbit  $\mathcal{O}$  of  $\xi \in \mathbb{R}^2$  is given by the circle with center 0 and radius  $|\xi|$ .

- Consider the group H = SO(2).
- The  $H^T$ -orbit  $\mathcal{O}$  of  $\xi \in \mathbb{R}^2$  is given by the circle with center 0 and radius  $|\xi|$ .
- Transversal to the orbit space:  $\mathbb{R}^+ \cdot (1,0)^T$ .

- Consider the group H = SO(2).
- The  $H^T$ -orbit  $\mathcal{O}$  of  $\xi \in \mathbb{R}^2$  is given by the circle with center 0 and radius  $|\xi|$ .
- Transversal to the orbit space:  $\mathbb{R}^+ \cdot (1,0)^T$ .
- We let  $\beta_{\mathcal{O}}$  denote the rotation invariant measure on the sphere, and let  $\overline{\lambda}$  be given by rdr.

- Consider the group H = SO(2).
- The  $H^T$ -orbit  $\mathcal{O}$  of  $\xi \in \mathbb{R}^2$  is given by the circle with center 0 and radius  $|\xi|$ .
- Transversal to the orbit space:  $\mathbb{R}^+ \cdot (1,0)^T$ .
- We let  $\beta_{\mathcal{O}}$  denote the rotation invariant measure on the sphere, and let  $\overline{\lambda}$  be given by rdr.
- Then, for all Borel sets  $B \subset \mathbb{R}^2$ :

$$\lambda(B) = \int_{\mathbb{R}^+} \int_{|\xi|=r} \mathbf{1}_B(\xi) d\xi \ rdr$$



- Consider the group H = SO(2).
- The  $H^T$ -orbit  $\mathcal{O}$  of  $\xi \in \mathbb{R}^2$  is given by the circle with center 0 and radius  $|\xi|$ .
- Transversal to the orbit space:  $\mathbb{R}^+ \cdot (1,0)^T$ .
- We let  $\beta_{\mathcal{O}}$  denote the rotation invariant measure on the sphere, and let  $\overline{\lambda}$  be given by rdr.
- Then, for all Borel sets  $B \subset \mathbb{R}^2$ :

$$\lambda(B) = \int_{\mathbb{R}^+} \int_{|\xi|=r} \mathbf{1}_B(\xi) d\xi \ r dr$$
$$= \int_{\mathbb{R}^2/H^T} \beta_{\mathcal{O}}(B) d\overline{\lambda}(\mathcal{O}) \ .$$



A characterization of admissibility

## Theorem 4 (HF, '10)

Let  $H < \operatorname{GL}(d,\mathbb{R})$  be closed. Then H is weakly admissible iff only almost every stabilizer is compact, and in addition, one of the following equivalent conditions hold:

- (a)  $\lambda$  decomposes over the orbits.
- (b)  $\mathbb{R}^d/H^T$  admits a  $\lambda$ -transversal.

# A characterization of admissibility

### Theorem 4 (HF, '10)

Let  $H < \operatorname{GL}(d,\mathbb{R})$  be closed. Then H is weakly admissible iff only almost every stabilizer is compact, and in addition, one of the following equivalent conditions hold:

- (a)  $\lambda$  decomposes over the orbits.
- (b)  $\mathbb{R}^d/H^T$  admits a  $\lambda$ -transversal.

## Theorem 5 (HF, '10)

Let  $H < \operatorname{GL}(d,\mathbb{R})$  be closed. Then H is admissible iff H is weakly admissible and in addition, G is nonunimodular.





• Admissibility condition is useful also in the reducible case.



- Admissibility condition is useful also in the reducible case.
- Usually, instead of a single integral condition infinitely many (usually uncountably many) such conditions are required.

- Admissibility condition is useful also in the reducible case.
- Usually, instead of a single integral condition infinitely many (usually uncountably many) such conditions are required.
- Weak admissibility 
   ⇔ well-behaved dual orbit space



- Admissibility condition is useful also in the reducible case.
- Usually, instead of a single integral condition infinitely many (usually uncountably many) such conditions are required.
- Weak admissibility 
   ⇔ well-behaved dual orbit space
- Strong admissibility 
   ⇔ well-behaved dual orbit space and non-unimodularity

- Admissibility condition is useful also in the reducible case.
- Usually, instead of a single integral condition infinitely many (usually uncountably many) such conditions are required.
- Weak admissibility 
   ⇔ well-behaved dual orbit space
- Strong admissibility 
   ⇔ well-behaved dual orbit space and non-unimodularity
- Abstract admissibility criteria → Plancherel theory, see remainder of this set of slides.

#### Overview

- 1 Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations
- 6 References



#### Abstract harmonic approach to admissibility

• Recall: If a representation has a weakly admissible vector, it is contained in the regular representation.

- Recall: If a representation has a weakly admissible vector, it is contained in the regular representation.
- Thus, we need to understand
  - ▶ leftinvariant subspaces of  $L^2(G)$ ,
  - and their admissible vectors.



- Recall: If a representation has a weakly admissible vector, it is contained in the regular representation.
- Thus, we need to understand
  - ▶ leftinvariant subspaces of L<sup>2</sup>(G),
  - and their admissible vectors.
- For well-behaved groups, representations and their invariant subspaces are best understood in terms of their decomposition into irreducibles.

- Recall: If a representation has a weakly admissible vector, it is contained in the regular representation.
- Thus, we need to understand
  - ▶ leftinvariant subspaces of  $L^2(G)$ ,
  - and their admissible vectors.
- For well-behaved groups, representations and their invariant subspaces are best understood in terms of their decomposition into irreducibles.

# Toy example $G = \mathbb{R}$ : Invariant subspaces

- Let  $G = \mathbb{R}$ ,  $\mathcal{H} \subset L^2(\mathbb{R})$  translation-invariant closed subspace.
- Theorem:  $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$  bounded, translationinvariant  $\Longrightarrow \exists$  unique  $\widehat{T} \in L^{\infty}(\widehat{\mathbb{R}})$  such that  $(Tf)^{\wedge}(\omega) = \widehat{T}(\omega)\widehat{f}(\omega)$ .
- Applied to projection P onto  $\mathcal{H}$ : There exists a measurable  $U \subset \widehat{\mathbb{R}}$ , unique up to nullsets, such that  $(Pf)^{\wedge}(\omega) = \chi_U(\omega)\widehat{f}(\omega)$ , or

$$\mathcal{H} = \mathcal{H}_U = \{ f \in \mathrm{L}^2(\mathbb{R}) : \mathrm{supp}(\widehat{f}) \subset U \}$$



# Toy example $G = \mathbb{R}$ : Admissible vectors

•  $\mathcal{H} = \mathcal{H}_U$  as on the previous slide,  $\eta \in \mathcal{H}$ . Then  $V_{\eta} \phi = \phi * \eta^*$ , and the convolution theorem yields

$$(V_{\eta}\phi)^{\wedge}(\omega) = \widehat{\phi}(\omega)\overline{\widehat{\eta}(\omega)}$$
.

In particular,

$$\eta$$
 admissible  $\Leftrightarrow \widehat{\phi} \mapsto \widehat{\phi} \widehat{\widehat{\eta}}$  is an isometry on  $L^2(U)$   $\Leftrightarrow |\eta(\omega)| = 1$  a.e. on  $U$ .

ullet  $\Longrightarrow \mathcal{H}_U$  has admissible vectors iff  $|U| < \infty$ 



# Toy example $G = \mathbb{R}$ : CWT and Plancherel inversion

- For  $U \subset \mathbb{R}$  measurable, with  $|U| < \infty$ , let  $\pi_U$  be the restriction of left regular representation to  $\mathcal{H}_U$ .
- Under the Plancherel transform,  $\pi$  is equivalent to the representation  $\widehat{\pi}_U$  acting on  $\mathrm{L}^2(U)$  via

$$(\widehat{\pi}(x)f)(\omega) = e^{-2\pi i\omega x}f(\omega)$$
.

• Then, given  $\eta \in L^2(U)$ ,

$$V_{\eta}\phi = \int_{U} \phi(\omega) \overline{\eta(\omega)} e^{2\pi i \omega x} d\omega = (\phi \overline{\eta})^{\vee}(x)$$
.

→ wavelet transform coincides with Plancherel inversion.



#### Overview

- 1 Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations
- 6 References



## Operator-valued Fourier transform

#### Loose description:

Decompose regular representation by integrating functions against irreducible representations. Compare to the reals:

$$\widehat{f}(\omega) = \int_{\mathbb{R}} f(x) e^{-2\pi i \omega x} dx$$
,

uses the characters  $x \mapsto e^{-2\pi i \omega x}$ .

#### Definition 6

Let G be a locally compact group. From now on: G is assumed to be type

- (a)  $\hat{G}$  denotes the unitary dual, the set of (equivalence classes of) irreducible representations.
- (b) Given  $f \in L^1(G)$ ,  $\sigma \in \widehat{G}$ , let

 $\mathcal{F}(f)(\sigma) := \widehat{f}(\sigma) := \int_{\text{Group Theoretical Methods II}} f(x)\sigma(x)dx$  .

#### Plancherel Theorem

#### Theorem 7 (Duflo/Moore, '76)

There exist

- (i)  $\nu_G$ , positive  $\sigma$ -finite measure on  $\widehat{G}$ ,
- (ii)  $C_{\sigma}, C_{\sigma}^{-1}$  ( $\sigma \in \widehat{G}$ ), densely defined, positive operators, such that
- (a) \\( (c) \\ \( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\( \) \\
  - (a)  $\forall f \in L^1(G) \cap L^2(G) : \sigma(f) \circ C_{\sigma}^{-1} \in \mathcal{B}_2(\mathcal{H}_{\sigma}), \nu_G$ -a.e.
  - (b) The mapping  $L^1(G) \cap L^2(G) \ni f \mapsto (\sigma(f) \circ C_{\sigma}^{-1})_{\sigma \in \widehat{G}}$  extends to a unitary equivalence

$$\mathcal{P}: \mathrm{L}^2(G) \to \mathcal{B}_2^\oplus := \int \textit{HS}(\mathcal{H}_\sigma) \textit{d}\nu_G(\sigma) \;.$$

(c) G unimodular iff  $C_{\sigma}$  scalar  $\nu_{G}$ -almost everywhere. In this case picking  $C_{\sigma} = \operatorname{Id}_{\mathcal{H}_{\sigma}}$  determines  $\nu_{G}$  uniquely.



### Invariant subspaces

**Recall toy example:** Invariant subspace of  $L^2(\mathbb{R})$  correspond to Borel subsets  $U \subset \widehat{\mathbb{R}}$ .

Theorem 8 (Characterization of invariant subspaces)

 $P: \mathrm{L}^2(G) o \mathrm{L}^2(G)$  left-invariant projection operator iff  $\exists$  measurable family  $(\widehat{P}_\sigma)_{\sigma \in \widehat{G}}$  of projections, such that

$$(Pf)^{\wedge}(\sigma) = \widehat{f}(\sigma) \circ \widehat{P}_{\sigma}$$
 for  $\nu_{G}$  – almost every  $\sigma$ 

#### This is a generalisation:

Think of the characteristic function  $\chi_U$  in the real case as a field of projection operators, each acting on a one-dimensional space.



#### Existence of admissible vectors

### Theorem 9 (Admissibility criterion, HF '00)

Let  $\mathcal{H} \subset L^2(G)$  be left-invariant, with associated family  $(\widehat{P}_{\sigma})_{\sigma \in \widehat{G}}$  of projection operators.

Let  $a \in \mathcal{H}$  with Plancherel transform  $(A_{\sigma})_{\sigma \in \widehat{G}}$  fulfilling  $\nu_{G}$ -a.e.

- $A_{\sigma}^*C_{\sigma}$  extends to a bounded operator  $[A_{\sigma}^*C_{\sigma}]$
- $[A_{\sigma}^*C_{\sigma}]^* = C_{\sigma}A_{\sigma}$  is an isometry on range of  $\widehat{P}_{\sigma}$

Then a is admissible



#### Existence of admissible vectors

## Theorem 9 (Admissibility criterion, HF '00)

Let  $\mathcal{H} \subset L^2(G)$  be left-invariant, with associated family  $(\widehat{P}_{\sigma})_{\sigma \in \widehat{G}}$  of projection operators.

Let  $a \in \mathcal{H}$  with Plancherel transform  $(A_{\sigma})_{\sigma \in \widehat{G}}$  fulfilling  $\nu_G$ -a.e.

- $A_{\sigma}^*C_{\sigma}$  extends to a bounded operator  $[A_{\sigma}^*C_{\sigma}]$
- $[A_{\sigma}^*C_{\sigma}]^* = C_{\sigma}A_{\sigma}$  is an isometry on range of  $\widehat{P}_{\sigma}$

Then a is admissible

### Theorem 10 (HF'00)

H as in Theorem 9 has admissible vectors iff either

- (a) *G* is unimodular, and  $\int_{\widehat{G}} \operatorname{rank}(\widehat{P}_{\sigma}) d\nu_{G}(\sigma) < \infty$
- (b) G is nonunimodular



#### Overview

- 1 Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations
- 6 References





• Assume that Lebesgue measure decomposes over the  $H^T$ -orbits, via the measures  $\overline{\lambda}$  and  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$ .



- Assume that Lebesgue measure decomposes over the  $H^T$ -orbits, via the measures  $\overline{\lambda}$  and  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$ .
- We have that  $f \in L^2(\mathbb{R}^d)$  corresponds to a family of functions on the dual orbits, via

$$f \mapsto \left(\widehat{f}_{\mathcal{O}}\right)_{\mathcal{O} \in \mathbb{R}^d/H^T}$$

where each  $\widehat{f}_{\mathcal{O}}$  is the restriction of  $\widehat{f}$  to  $\mathcal{O}$ .

- Assume that Lebesgue measure decomposes over the  $H^T$ -orbits, via the measures  $\overline{\lambda}$  and  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$ .
- We have that  $f \in L^2(\mathbb{R}^d)$  corresponds to a family of functions on the dual orbits, via

$$f \mapsto \left(\widehat{f}_{\mathcal{O}}\right)_{\mathcal{O} \in \mathbb{R}^d/H^T}$$

where each  $\widehat{f}_{\mathcal{O}}$  is the restriction of  $\widehat{f}$  to  $\mathcal{O}$ .

• The measure decomposition formula entails that  $\widehat{f}_{\mathcal{O}} \in L^2(\mathcal{O}, d\beta_{\mathcal{O}})$ , for almost every  $\mathcal{O} \in \mathbb{R}^d/H^T$ , and that

$$\|f\|_2^2 = \int_{\mathbb{R}^d/H^T} \left\| \widehat{f}_{\mathcal{O}} \right\|_2^2 d\overline{\lambda}(\mathcal{O}) \ .$$

- Assume that Lebesgue measure decomposes over the  $H^T$ -orbits, via the measures  $\overline{\lambda}$  and  $(\beta_{\mathcal{O}})_{\mathcal{O} \in \mathbb{R}^d/H^T}$ .
- We have that  $f \in L^2(\mathbb{R}^d)$  corresponds to a family of functions on the dual orbits, via

$$f \mapsto \left(\widehat{f}_{\mathcal{O}}\right)_{\mathcal{O} \in \mathbb{R}^d/H^T}$$

where each  $\widehat{f}_{\mathcal{O}}$  is the restriction of  $\widehat{f}$  to  $\mathcal{O}$ .

• The measure decomposition formula entails that  $\widehat{f}_{\mathcal{O}} \in L^2(\mathcal{O}, d\beta_{\mathcal{O}})$ , for almost every  $\mathcal{O} \in \mathbb{R}^d/H^T$ , and that

$$\|f\|_2^2 = \int_{\mathbb{R}^d/H^T} \left\| \widehat{f}_{\mathcal{O}} \right\|_2^2 d\overline{\lambda}(\mathcal{O}) \ .$$

• Thus  $L^2(\mathbb{R}^d)$  decomposes as a direct integral

$$\int_{\mathbb{R}^d/H^T}^{\oplus} \mathrm{L}^2(\mathcal{O},d\beta_{\mathcal{O}}) d\overline{\lambda}(\mathcal{O}).$$





• In addition, we have representations  $\pi_{\mathcal{O}}$  acting on  $L^2(\mathcal{O}, d\beta_{\mathcal{O}})$  via

$$(\pi_{\mathcal{O}}(x,h)f_{\mathcal{O}})(\xi) = |\det(h)|^{1/2} \exp(2\pi i \langle \xi, x \rangle) f_{\mathcal{O}}(h^T \xi) .$$

ullet In addition, we have representations  $\pi_{\mathcal{O}}$  acting on  $L^2(\mathcal{O},deta_{\mathcal{O}})$  via

$$(\pi_{\mathcal{O}}(x,h)f_{\mathcal{O}})(\xi) = |\det(h)|^{1/2} \exp(2\pi i \langle \xi, x \rangle) f_{\mathcal{O}}(h^T \xi) .$$

• Each  $\pi_{\mathcal{O}}$  is irreducible.



ullet In addition, we have representations  $\pi_{\mathcal{O}}$  acting on  $L^2(\mathcal{O},deta_{\mathcal{O}})$  via

$$(\pi_{\mathcal{O}}(x,h)f_{\mathcal{O}})(\xi) = |\det(h)|^{1/2} \exp(2\pi i \langle \xi, x \rangle) f_{\mathcal{O}}(h^T \xi) .$$

- Each  $\pi_{\mathcal{O}}$  is irreducible.
- In summary:
  - ► The Fourier transform effects a unitary equivalence

$$\pi \simeq \int_{\mathbb{R}^d/H^T}^{\oplus} \pi_{\mathcal{O}} d\overline{\lambda}(\mathcal{O}) \; ,$$

ullet In addition, we have representations  $\pi_{\mathcal{O}}$  acting on  $L^2(\mathcal{O},deta_{\mathcal{O}})$  via

$$(\pi_{\mathcal{O}}(x,h)f_{\mathcal{O}})(\xi) = |\det(h)|^{1/2} \exp(2\pi i \langle \xi, x \rangle) f_{\mathcal{O}}(h^T \xi) .$$

- Each  $\pi_{\mathcal{O}}$  is irreducible.
- In summary:
  - ► The Fourier transform effects a unitary equivalence

$$\pi \simeq \int_{\mathbb{R}^d/H^T}^{\oplus} \pi_{\mathcal{O}} d\overline{\lambda}(\mathcal{O}) \; ,$$

decomposing  $\pi$  into irreducibles.

► Weak admissibility of *H* can now be related to absolute continuity of measures, and is essentially equivalent to almost everywhere compactness of the stabilizers.

ullet In addition, we have representations  $\pi_{\mathcal{O}}$  acting on  $L^2(\mathcal{O},deta_{\mathcal{O}})$  via

$$(\pi_{\mathcal{O}}(x,h)f_{\mathcal{O}})(\xi) = |\det(h)|^{1/2} \exp(2\pi i \langle \xi, x \rangle) f_{\mathcal{O}}(h^T \xi) .$$

- Each  $\pi_{\mathcal{O}}$  is irreducible.
- In summary:
  - ► The Fourier transform effects a unitary equivalence

$$\pi \simeq \int_{\mathbb{R}^d/H^T}^{\oplus} \pi_{\mathcal{O}} d\overline{\lambda}(\mathcal{O}) \; ,$$

- ► Weak admissibility of H can now be related to absolute continuity of measures, and is essentially equivalent to almost everywhere compactness of the stabilizers.
- ► Concrete admissibility condition in Lemma 1 and abstract version in Theorem 9 coincide.



ullet In addition, we have representations  $\pi_{\mathcal{O}}$  acting on  $L^2(\mathcal{O},deta_{\mathcal{O}})$  via

$$(\pi_{\mathcal{O}}(x,h)f_{\mathcal{O}})(\xi) = |\det(h)|^{1/2} \exp(2\pi i \langle \xi, x \rangle) f_{\mathcal{O}}(h^T \xi) .$$

- Each  $\pi_{\mathcal{O}}$  is irreducible.
- In summary:
  - ► The Fourier transform effects a unitary equivalence

$$\pi \simeq \int_{\mathbb{R}^d/H^T}^{\oplus} \pi_{\mathcal{O}} d\overline{\lambda}(\mathcal{O}) \; ,$$

- Weak admissibility of H can now be related to absolute continuity of measures, and is essentially equivalent to almost everywhere compactness of the stabilizers.
- Concrete admissibility condition in Lemma 1 and abstract version in Theorem 9 coincide.
- Non-unimodularity condition in Theorem 4 is related to the same condition in Theorem 10.



• In addition, we have representations  $\pi_{\mathcal{O}}$  acting on  $L^2(\mathcal{O}, d\beta_{\mathcal{O}})$  via

$$(\pi_{\mathcal{O}}(x,h)f_{\mathcal{O}})(\xi) = |\det(h)|^{1/2} \exp(2\pi i \langle \xi, x \rangle) f_{\mathcal{O}}(h^T \xi) .$$

- Each  $\pi_{\mathcal{O}}$  is irreducible.
- In summary:
  - ► The Fourier transform effects a unitary equivalence

$$\pi \simeq \int_{\mathbb{R}^d/H^{\mathsf{T}}}^{\oplus} \pi_{\mathcal{O}} d\overline{\lambda}(\mathcal{O}) \; ,$$

- Weak admissibility of H can now be related to absolute continuity of measures, and is essentially equivalent to almost everywhere compactness of the stabilizers.
- Concrete admissibility condition in Lemma 1 and abstract version in Theorem 9 coincide.
- Non-unimodularity condition in Theorem 4 is related to the same condition in Theorem 10.
- ► All Plancherel-theoretic objects can be made explicit.



#### Overview

- 1 Some examples
- 2 Admissibility for reducible actions
- 3 A toy example
- 4 Plancherel theory
- 5 Back to quasi-regular representations
- 6 References



M. Duflo and Calvin C. Moore.
 On the regular representation of a nonunimodular locally compact group.

J. Functional Analysis, 21(2):209–243, 1976.

Hartmut Führ.

Hartmut Führ.

Wavelet frames and admissibility in higher dimensions.

J. Math. Phys., 37(12):6353–6366, 1996.

Continuous wavelet transforms with abelian dilation groups.

J. Math. Phys., 39(8):3974-3986, 1998.

Hartmut Führ.

Admissible vectors for the regular representation.

Proc. Amer. Math. Soc., 130(10):2959–2970 (electronic), 2002.

Hartmut Führ.

Abstract harmonic analysis of continuous wavelet transforms, volume 1863 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005.

Hartmut Führ.

Generalized Calderón conditions and regular orbit spaces.

Colloq. Math., 120(1):103-126, 2010.

Hartmut Führ and Matthias Mayer.

Continuous wavelet transforms from semidirect products: cyclic representations and Plancherel measure. J. Fourier Anal. Appl., 8(4):375–397, 2002.

C. J. Isham and J. R. Klauder.

Coherent states for n-dimensional Euclidean groups E(n) and their application. J. Math. Phys., 32(3):607–620, 1991.

J. R. Klauder and R. F. Streater.

A wavelet transform for the Poincaré group.

J. Math. Phys., 32(6):1609–1611, 1991.



A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal., 12(1):89-102, 2002.



Wavelet transform maxima and multiscale edges.

In Wavelets and their applications, pages 67-104. Jones and Bartlett, Boston, MA, 1992.



S. Twareque Ali, Hartmut Führ, and Anna E. Krasowska.

Plancherel inversion as unified approach to wavelet transforms and Wigner functions. Ann. Henri Poincaré, 4(6):1015-1050, 2003.

