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Why are wavelets useful?

Nice features of wavelet systems:

Expansions of arbitrary vectors in terms of a “meaningful” system of
building blocks.
Resulting from that: Heuristics for signal processing and analysis
Underlying useful structures: Groups, multiresolution analysis, etc.
(Useful both for mathematics and applications)
Very important: Wavelet description of realistic signals is efficient, i.e.,
a realistic signal is well-described by a few building blocks.

Aim of this talk: Make the last statement precise.
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Recall: ONB’s and norm preservation

Theorem 1
Let H be a Hilbert space, and (xi )i∈I ⊂ H an ONS. Then the following are
equivalent:

(a) For all y ∈ H : ‖y‖2 =
∑

i∈I |〈y , xi 〉|2

(b) For all y ∈ H : y =
∑

i∈I 〈y , xi 〉xi
(c) The coefficient operator

H 3 y 7→ (〈y , xi 〉)i∈I ∈ `
2(I )

is unitary.
(d) For all y ∈ H: If 〈y , xi 〉 = 0, for all i ∈ I , then y = 0.
If the equivalent conditions hold, then the system is an orthonormal basis
(ONB).

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 7 / 25



Recall: ONB’s and norm preservation

Theorem 1
Let H be a Hilbert space, and (xi )i∈I ⊂ H an ONS. Then the following are
equivalent:
(a) For all y ∈ H : ‖y‖2 =

∑
i∈I |〈y , xi 〉|2

(b) For all y ∈ H : y =
∑

i∈I 〈y , xi 〉xi
(c) The coefficient operator

H 3 y 7→ (〈y , xi 〉)i∈I ∈ `
2(I )

is unitary.
(d) For all y ∈ H: If 〈y , xi 〉 = 0, for all i ∈ I , then y = 0.
If the equivalent conditions hold, then the system is an orthonormal basis
(ONB).

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 7 / 25



Recall: ONB’s and norm preservation

Theorem 1
Let H be a Hilbert space, and (xi )i∈I ⊂ H an ONS. Then the following are
equivalent:
(a) For all y ∈ H : ‖y‖2 =

∑
i∈I |〈y , xi 〉|2

(b) For all y ∈ H : y =
∑

i∈I 〈y , xi 〉xi

(c) The coefficient operator

H 3 y 7→ (〈y , xi 〉)i∈I ∈ `
2(I )

is unitary.
(d) For all y ∈ H: If 〈y , xi 〉 = 0, for all i ∈ I , then y = 0.
If the equivalent conditions hold, then the system is an orthonormal basis
(ONB).

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 7 / 25



Recall: ONB’s and norm preservation

Theorem 1
Let H be a Hilbert space, and (xi )i∈I ⊂ H an ONS. Then the following are
equivalent:
(a) For all y ∈ H : ‖y‖2 =

∑
i∈I |〈y , xi 〉|2

(b) For all y ∈ H : y =
∑

i∈I 〈y , xi 〉xi
(c) The coefficient operator

H 3 y 7→ (〈y , xi 〉)i∈I ∈ `
2(I )

is unitary.

(d) For all y ∈ H: If 〈y , xi 〉 = 0, for all i ∈ I , then y = 0.
If the equivalent conditions hold, then the system is an orthonormal basis
(ONB).

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 7 / 25



Recall: ONB’s and norm preservation

Theorem 1
Let H be a Hilbert space, and (xi )i∈I ⊂ H an ONS. Then the following are
equivalent:
(a) For all y ∈ H : ‖y‖2 =

∑
i∈I |〈y , xi 〉|2

(b) For all y ∈ H : y =
∑

i∈I 〈y , xi 〉xi
(c) The coefficient operator

H 3 y 7→ (〈y , xi 〉)i∈I ∈ `
2(I )

is unitary.
(d) For all y ∈ H: If 〈y , xi 〉 = 0, for all i ∈ I , then y = 0.
If the equivalent conditions hold, then the system is an orthonormal basis
(ONB).

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 7 / 25



`1-sparse vectors

Note
Given any infinite set I , one has `1(I ) ⊂ `2(I ) properly, i.e., the condition∑

i∈I
|ci | <∞⇒

∑
i∈I
|ci |2 <∞ .

Counterexample for converse: I = N, cn = 1/n.

Definition 2
Let X = (xi )i∈I ⊂ N denote an ONB. We call y ∈ `2(I ) an `1-sparse
vector(w.r.t. X ) if the coefficient sequence (〈y , xi 〉)i∈I is in `1. I.e., the
`1-sparse vectors are precisely those that have an expansion

y =
∑
i∈I

cixi ,
∑
i∈I
|ci | <∞ .
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Other notions of sparsity

Remark
There are many useful ways of measuring sparsity:

Replace `1 by `p, for 0 < p < 1. Quasi-norm on coefficients, more and
more restrictive as p → 0.
`0-“norm”, i.e, number of nonzero coefficients. See compressive
sensing!
Weighted versions, i.e. multiply coefficients by a suitable unbounded
sequence of numbers before taking the norm.

We concentrate on `1 in the following for simplicity.
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Nonlinear n-term approximation

Aim
Mathematical description of signals that are well approximated by a few
building blocks.

Definition 3
Let X = (xi )i∈I denote a system of vectors in a Hilbert space H. Given
y ∈ H and n ∈ N, we let

σn(y)X = inf

{∥∥∥∥∥y −∑
i∈J

cixi

∥∥∥∥∥ : J ⊂ I , ci ∈ C, |J| ≤ n

}

denote the (nonlinear) n-term approximation error of y with respect to the
system X .

Note: The optimal set J will depend on y (hence nonlinear approximation).
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Nonlinear approximation over ONB’s

Theorem 4
Let X = (xi )i∈I denote an ONB of the Hilbert space H, and let y ∈ H.
Given n ∈ N, let Jn denote the set of indices of the n largest expansion
coefficients 〈y , xi 〉. Then

yn =
∑
i∈Jn

〈y , xi 〉xi

is the optimal n-term approximation of y , and we have

σn(y)2
X =

∑
j 6∈Jn

|〈y , xj〉|2 .

Alternatively, let (cn)n∈N denote the sequence of expansion coefficients of
y , sorted by decreasing modulus. Then

σn(y)2
X =

∑
k>n

|ck |2 .
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`1-Sparsity and nonlinear approximation rate

Theorem 5
Let X = (xi )i∈I ⊂ H denote an ONB, and y ∈ H. Then the following
statements are equivalent:

(a) y is `1-sparse with respect to X .
(b) The n-term approximation errors fulfill∑

n∈N
n−1/2σn(y)X <∞ .

Informal (slightly incorrect) interpretation:
y is `1-sparse iff σn(y)X → 0 faster than n−1/2.
Can be extended to other sparsity measures.
E.g., p < 1 will lead to faster decay.
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For later use: Frame version

Theorem 6
Let X = (xi )i∈I ⊂ H denote a frame, and y ∈ H. Assume that

y =
∑
i∈I

cixi ,
∑
i∈I
|ci | <∞ .

Then the n-term approximation errors fulfill∑
n∈N

n−1/2σn(y)X <∞ .

Note
Only one direction of the equivalence holds in the frame case.
The `1-coefficients are not assumed to come from a dual frame.
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Modulus of continuity

Definition 7
For h ∈ R, f : R→ C, the (forward) difference operator of step h is given
by

∆hf (x) = f (x + h)− f (x),

and for r ∈ N, define the difference operator of order r , step h, inductively
by

∆r
hf (x) = ∆h(∆r−1

h f (x)).

The r−th order modulus of smoothness of f in L2(R) is defined as the
mapping

ωr
2(f , t) = sup

h∈R,|h|<t
‖∆r

hf (·)‖2.
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Definition of Besov space

Definition 8
Let f be a measurable function on R. For 1 < p <∞, t ∈ R+, the r−th
order modulus of smoothness of f in Lp(R) is defined by

ωr
p(f , t) = sup

h∈R,|h|<t
‖∆r

hf (·)‖p.

For α > 0, 1 ≤ p, q <∞, r = bαc+ 1, a function f defined on R is said to
be in the homogeneous Besov space Ḃαp,q(R), if

‖f ‖Ḃαp,q := (

∫ ∞
0

(t−αωr
p(f , t))q

dt

t
)1/q <∞.

Note
This definition extends the scale of homogeneous Sobolev spaces:
Ẇ k

2 (R) = Ḃk
2,2(R).
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Ẇ k

2 (R) = Ḃk
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Aims of this section

Setup

Given: Wavelet ONB Ψ = (ψj ,k)j ,k∈Z of L2(R).
Question 1: Can we identify the `1-sparse vectors with respect to Ψ?
Question 2: Different wavelets may have different sparse vectors!
Can we control that, i.e., can we isolate a class of good wavelets
which all have the same sparse vectors?
Answers: Good wavelets will be described in terms of smoothness,
decay and vanishing moments; the associated space of sparse vectors
will be a suitable homogeneous Besov space.
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Nice wavelets

Desirable properties of wavelets
A nice wavelet ψ ∈ L2(R) typically has three properties
(a) Fast decay, e.g. |ψ(x)| ≤ C (1 + |x |)−n;
(b) Smoothness, e.g. ψ(j) ∈ L1(R), for all 1 ≤ j ≤ m;
(c) Vanishing moments, e.g.

∀0 ≤ j < k :

∫
R
x jψ(x)dx = 0

with absolute convergence of the integral
Shortly: Nice wavelets have good time-frequency localization.
Note: Frequency-side localization is understood away from zero.
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Cartoon: Fourier side decay of wavelets

Plot of |ψ̂|.
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Characterization of sparse vectors

Theorem 9 (DeVore/Jawerth/Popov)

Let f ∈ L2(R).

Assume that the wavelet ψ has suitably many vanishing
moments, degrees of smoothness and decay, and let Ψ = (ψj ,k)j ,k denote
the associated wavelet ONB. Then

f is `1-sparse w.r.t. Ψ⇐⇒ f ∈ Ḃ
1/2
1,1 (R) .

Observations
Characterization of sparse vectors is independent of the wavelet.
Characterization extends to arbitrary Besov spaces Ḃαp,q  weighted
mixed summability condition on the coefficients.
Wavelet basis is a joint unconditional basis of a whole scale of Besov
spaces.
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1/2
1,1 (R) .

Observations
Characterization of sparse vectors is independent of the wavelet.
Characterization extends to arbitrary Besov spaces Ḃαp,q  weighted
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Significance of wavelet characterization

In mathematics:
Approximation theory and its applications (numerical analysis, etc.);
Functional analysis: Study of operators;
Statistics, etc.

In applications
Important source of heuristics for signal processing applications, most
prominently

compression;
denoising.
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Summary

Systematic way of predicting wavelet coefficient decay from analytic
properties of the signal, i.e., a method of spotting the sparse signals.
Important concept: Consistency, i.e., one needs to develop a theory of
sparse signals that is independent of the wavelet, as long as the latter
is chosen from a suitably defined and accessible class of nice wavelet.
Here: Nice wavelets defined in terms of decay, smoothness, vanishing
moments.
Plan for the following: Develop an analogous theory for wavelets in
higher dimensions.
Challenge: The notion will have to depend on the dilation group!
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