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1 Preliminaries, context
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4 Discretization and atomic decomposition

5 Vanishing moment conditions

6 Verifying strong temperate embeddedness
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Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group
G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O. Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group

G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O. Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group
G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O. Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group
G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O. Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group
G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O. Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group
G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O. Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group
G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O.

Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Recall general setup: d -dimensional CWT

H < GL(d ,R), a closed matrix group
G = Rd o H

Define the translation and dilation operators via

(Tx f )(y) = f (y − x) , (Dhf )(y) = |det(h)|−1/2f (h−1y) .

Quasi-regular representation of G acts on L2(Rd) via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given f , ψ ∈ L2(Rd), we let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉 .

H is assumed to be irreducibly admissible, i.e. there exists a unique
open dual orbit O. Of particular importance for the following:
Oc = Rd \ O, the blind spot of the wavelet transform.

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 5 / 44



Aim: A consistent theory of wavelet-sparse vectors

Parts I,II: Continuous wavelet systems with inversion formula, criteria
for the groups behind the construction, admissibility
Part III: Notion of sparse vectors w.rt. ONB, explicit criteria of nice
wavelets, explicit characterization of sparse vectors for wavelet ONB’s,
consistency.

Needed: A bridge between continuous and discrete systems, and a
compatible consistent notion of sparsity.

This bridge exists: Coorbit theory! (Feichtinger/Gröchenig)

Programme for the remainder
explain and check prerequisites for coorbit theory;
make objects of coorbit theory explicit and accessible.
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Frame coefficients as sampled CWT

Given an admissible wavelet ψ ∈ L2(Rd), we want to pick a family
((xi , hi ))i∈I ⊂ G such that (π(xi , hi )ψ)i∈I is a frame of L2(Rd).
Thus we expect to obtain

‖f ‖2 �
∑
i∈I
|〈f , π(xi , hi )ψ〉|2 =

∑
i∈I
|Wψf (xi , hi )|2 ,

which should be viewed as Riemann sum approximation of the norm
equality

‖f ‖2 =

∫
H

∫
Rd

|Wψf (x , h)|2dx dh

|det(h)| .

By the same reasoning, we might expect also that∑
i∈I
|〈f , π(xi , hi )ψ〉| �

∫
H

∫
Rd

|Wψf (x , h)|dx dh

|det(h)| .

 introduce sparsity on continuous wavelet transforms, and sample!
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When does Riemann sum approximation work?

Intuitively: Sufficiently dense sampling together with sufficiently slow
variation of Wψf should enable sampling.
Challenge: Need to control this for all relevant signals f
simultaneously!
Central tool: Reproducing kernel relation for wavelet transforms:

Wψf = Wψf ∗Wψψ (convolution over G !).

⇒ Wψf “inherits” relevant behaviour from Wψψ, in a well-controlled
manner!
Main idea of coorbit theory: Define nice wavelets ψ in terms of the
properties of associated reproducing kernel Wψψ. This will yield

I consistency;
I discretization (of frames, of sparsity).
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properties of associated reproducing kernel Wψψ. This will yield

I consistency;
I discretization (of frames, of sparsity).
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3 Outline of coorbit theory: Analyzing vectors and consistency

4 Discretization and atomic decomposition

5 Vanishing moment conditions

6 Verifying strong temperate embeddedness

7 Coorbit spaces and decomposition spaces

8 References

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 10 / 44



Consistent definition of coorbit spaces

Fix a Banach space Y of functions on G (solid, two-sided invariant).
E.g., Y = Lp(G ), p ≥ 1.
Pick a suitable analyzing vector ψ ∈ L2(Rd)

Coorbit space norm on L2(Rd):

‖f ‖CoY = ‖Wψf ‖Y .

Define CoY as (completion of) {g ∈ L2(Rd) : ‖g‖CoY <∞}.
Control weight: Let v0(x , h) = max(1, |det(0, h)|−1∆H(h)).
(Reasonably nice) analyzing wavelets:
Av0 = {ψ ∈ L2(Rd) \ {0} : Vψψ ∈ L1

v0(G )}.
Consistency (Feichtinger/Gröchenig): If π is irreducible, CoY and its
norm are independent of the choice of ψ ∈ Av0 .
Other Banach function spaces Y can be employed. Necessary
adjustment: Change of weight ( Possibly smaller space Av0)
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Existence of analyzing vectors
Definition 1
We define F−1Cc(O) as the set of all Schwartz function whose Fourier
transform is compactly supported inside O.

Theorem 2 (Kaniuth/Taylor,HF)

The quasiregular representation is v0-integrable: If ψ ∈ F−1Cc(O), then
Wψψ ∈ L1

v0(G ).

Sketch of proof:
Since v0 only depends on h-variable,

‖Wψψ‖L1
v0
≤
∫
H

∥∥∥∥(ψ̂ · Dhψ̂
)∨∥∥∥∥

L1
v0(h)| det(h)|−1/2dh .

The vector-valued mapping

H 3 h 7→ ψ̂ · Dhψ̂ ∈ Cc(O)

is continuous with respect to the Schwartz topology.
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Proof concluded.

Then the mapping

h 7→ ‖(ψ̂ · Dhψ̂)∨‖L1w(h)| det(h)|−1/2

is continuous as well.
There exists a compact set C ⊂ H s.t. ψ̂ · Dhψ̂ vanishes for all h 6∈ C .
Thus the function

h 7→ ‖(ψ̂ · Dhψ̂)∨‖L1v0(h)| det(h)|−1/2

is also compactly supported.
In summary: ‖Wψψ‖L1

v0
<∞.

Essentially by the same proof:

Corollary 3
F−1Cc(O) ⊂ Co(Lp(G )).
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Frame atoms

Definition 4
Let v : G → R+ be continuous and submultiplicative. We call ψ ∈ L2(Rd)
v -frame atom if Wψψ ∈W R(L∞,L1

v ),

i.e., the function

G 3 (x , h) 7→ sup
(y ,g)∈U

|Wψψ ((x , h)(y , g))| ∈ R+

is in L1
v (G ), for some compact neighborhood U ⊂ G of the identity.

The set of v -frame atoms is denoted by Bv .

Note that Bv ⊂ Av .

Use of Bv
If the weight v is a control weight for the Banach function space Y , then
choosing analyzing vectors from Bv guarantees (consistency and)
discretization.
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Sampling sets

Definition 5
Let U ⊂ G denote a neighborhood of the identity, and Z = (zi )i∈I ⊂ G .

The family (zi )i∈I is called U-dense, if
⋃

i∈I ziU = G .
The family (zi )i∈I is called U-separated, if ziU ∩ zjU = ∅, whenever
i 6= j . It is called separated, if there exists a neighborhood U of unity
such that it is U-separated.

Lemma 6
For any compact neighborhood U there exists a separated, U-dense family
Z ⊂ G .
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The usefulness of frame atoms

Theorem 7 (Feichtinger/Gröchenig)

Let 1 ≤ p <∞. Then the following are equivalent, for any f ∈ L2(Rd):

(a) Wψf ∈ Lp(G ), for some (equivalently: any) 0 6= ψ ∈ Bv .
(b) (〈f , π(z)ψ〉)z∈Z ∈ `p(Z ), for some (equivalently: any) 0 6= ψ ∈ Bv

and all separated subsets Z ⊂ G .
(c) For some (equivalently: any) 0 6= ψ ∈ Bv and all (right) separated,

sufficiently dense (depending on ψ) subsets Z ⊂ G :

f =
∑
z∈Z

czπ(z)ψ ,

with coefficients (cz)z∈Z ∈ `p(Z ) linearly depending on f .
In addition, the `p-norms of the coefficient sequences in (b) and (c) are
equivalent to the Co(Lp)-norm of f .
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Interpretation

The set Bv provides the desired consistency both for discrete and
continuous systems.
Drawback: The condition for f ∈ Bv is pretty hard to verify.
The sampling result is both weaker and stronger than the ONB-result
from the last talk:

I Weaker, because we only have a frame, and no unconditional basis;
I Stronger, because the sampling sets are extremely robust with respect

to jitter errors, at the prize of very conservative (and rather implicit)
sampling rates.

`1-summability of coefficients guarantees nonlinear approximation rate.
(Converse is unclear.)
Still open: Is Bv nonempty?
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Band-limited Schwartz functions are atoms

Theorem 8 (HF, ’12)
For all control weights v satisfying v(x , h) ≤ (1 + |x |)tw(h), with suitable
t > 0 and continuous weights w on H, we have

F−1C∞c (O) ⊂ Bv .

Remaining challenge
Find simple criteria for compactly supported functions to be in Bv .
Can one explicitly construct these functions?
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Summary so far

Coorbit theory provides a general consistent theory for the
quantification of wavelet transforms.
Applicable to all discrete series representations in higher dimensions.
So far only studied for a handfull of dilation groups.
Obstacles:

I Sampling rate is not easy to compute, and it quite possibly too
conservative.

I No easily checked criteria for nice wavelets (so far).
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Overview

1 Preliminaries, context

2 Wavelet frames from sampling continuous wavelet systems: Heuristics

3 Outline of coorbit theory: Analyzing vectors and consistency

4 Discretization and atomic decomposition

5 Vanishing moment conditions

6 Verifying strong temperate embeddedness

7 Coorbit spaces and decomposition spaces

8 References
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Picking up where we left

Remarks

Chief remaining question: Are there concrete criteria for ψ ∈ Bv?
Relevant feature of atoms: Decay of ψ̂(ξ), as ξ → Oc .
Aims of the following: Develop sufficient criteria in terms of
smoothness, decay, and vanishing moments. The last condition uses
the blind spot of the wavelet transform.
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Cartoon: Fourier side decay of wavelets

Plot of |ψ̂|.
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Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of Wψψ:

|Wψψ(x , s)| ≤
∥∥∥∂` (ψ̂ · ψ̂(s−1·)

)∥∥∥
1
|s|−1/2(1 + |x |)−`

Plot of ψ̂ and ψ̂(3·) Overlap ψ̂ · ψ̂(3·)

⇒ vanishing moments, smoothness govern decay of overlap, as |s| → 0,∞
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Strategy for the following

Adapt argument to higher-dimensional case.
Appropriate notion of vanishing moments: Decay of p̂si(ξ) (of a
certain rate) as ξ → Oc , the blind spot.
Wavelet coefficient decay can be measured employing suitably defined
auxiliary functions.
Still needed: Compatibility condition for Haar measure on H and
Lebesgue measure on O ( strong temperate embeddedness)
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Vanishing moment conditions

Definition 9

Let r ∈ N be given. f ∈ L1(Rd) has vanishing moments in Oc of order r if
all distributional derivatives ∂αf̂ with |α| < r are continuous functions,
identically vanishing on Oc .

Want to establish results of the form:

Theorem
A function ψ with suitably many degrees of smoothness, decay and
vanishing moments is in Bv .

This will depend on an additional technical assumption, involving auxiliary
functions.
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Fourier envelope

Definition 10
Let O ⊂ Rd denote the dual orbit. Given ξ ∈ O, let dist(ξ,Oc) denote the
euclidean distance of ξ to Oc . Let

A(ξ) = min

(
dist(ξ,Oc)

1 +
√
|ξ|2 − dist(ξ,Oc)2

,
1

1 + |ξ|

)
.

Oc

0

ξ
ξ − ξ′

ξ′

A(ξ) = min
(
|ξ − ξ′|
1 + |ξ′| ,

1
1 + |ξ|

)

with ξ′ = point in Oc closest to ξ
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Purpose of Fourier envelope

Vanishing moments and Fourier envelope
If ψ has ` vanishing moments, then

|ψ̂(ξ)| � |ψ̂|`,`A(ξ)` .

where |f |r ,m = supx∈Rd ,|α|≤r (1 + |x |)m|∂αf (x)|.

Definition 11
Let Φ` : H → R+ ∪ {∞} via

Φ`(h) =

∫
Rd

A(ξ)`A(hT ξ)`dξ

Informal meaning of Φ`

Φ` measures the overlap of two dilated copies of the wavelet with
smoothness, decay and vanishing moments of order `; compare
one-dimensional case.
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Overlap and vanishing moment decay

Sketch of ψ̂ and ψ̂(hT ·) Overlap ψ̂ · ψ̂(hT ·)

Vanishing moments and wavelet transform decay
If ψ has ` vanishing moments,
|Wψψ(x , h)| � |ψ̂|2`,`(1 + |x |)−`| det(h)|1/2(1 + ‖h‖∞)`Φ`(h) .
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Technical condition for vanishing moment criteria

Definition 12

Let w : H → R+ denote a weight, s ≥ 0. We call O strongly
(s,w)-temperately embedded (with index ` ∈ N) if Φ` ∈W (L∞,L1

m),
where the weight m : H → R+ is defined by

m(h) = w(h)|det(h)|−1/2(1 + ‖h‖)2(s+d+1) .

H. Führ (RWTH Aachen) Group Theoretical Methods III Trieste, June 2014 30 / 44



Vanishing moment criteria for atoms

Theorem 13 (HF ’13)

Assume that O is strongly temperately (s,w0)-embedded with index `.
Then any function ψ ∈ L1(Rd) ∩ C `+d+1(Rd) with vanishing moments in
Oc of order t > `+ s + d and |ψ̂|t,t <∞ is contained in Bv0 , for any
weight v0 satisfying v0(x , h) ≤ (1 + |x |)sw0(h).

Theorem 14 (HF ’13)
There exists a partial differential operator D with constant coefficients such
that ψ = Dtρ has vanishing moments in Oc of order t, for every function ρ
with sufficient smoothness and decay.
In particular, if O is strongly temperately (s,w0)-embedded, there exist
compactly supported ψ ∈ Bv0 , for any weight v0 satisfying
v0(x , h) ≤ (1 + |x |)sw0(h).
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Overview

1 Preliminaries, context

2 Wavelet frames from sampling continuous wavelet systems: Heuristics

3 Outline of coorbit theory: Analyzing vectors and consistency

4 Discretization and atomic decomposition

5 Vanishing moment conditions

6 Verifying strong temperate embeddedness

7 Coorbit spaces and decomposition spaces

8 References
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When are dual orbits temperately embedded?

Strong temperate embeddness conditions have been checked for

all dilation groups in dimension 2 (check list of representatives modulo
conjugacy);
diagonal groups in any dimension;
similitude groups in any dimension;
all abelian strictly admissible matrix groups;
shearlet and Toeplitz shearlet groups in any dimension.

In fact, so far no examples are known where the dual orbit is not strongly
temperately embedded.
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A simplified criterion for strong temperate embeddedness

Theorem 15 (HF, R. Raissi-Toussi, ’14)

Let s > 0, and suppose that for suitable e1, . . . , e4 ≥ 0:

w(h±1)AH(h)e1 � 1 (1)
‖h±1‖AH(h)e2 � 1 (2)

|det(h±1)|AH(h)e3 � 1 (3)
∆H(h±1)AH(h)e4 � 1 . (4)

Then O is strongly (s,w)-temperately embedded, with index

` = be1 + e2(2s + 2d + 2) +
3
2
e3 + e4c+ d + 1 .

Lemma 16 (HF, R. Raissi-Toussi, ’14)

Condition (2) implies (3) and (4), with constants e3 = de2 and
e4 = 2e2dim(H).
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Sample class: Shearlet groups in arbitrary dimensions
(i) Classical shearlet group (Dahlke/Kutyniok/Maass/Sagiv/Teschke):

H =




a s1 . . . sd−1
aα2

. . .
aαd

 : a > 0, s1, . . . , sd−1 ∈ R

 .

α2, . . . , αd suitably chosen.

(ii) Toeplitz shearing subgroup (Dahlke,Teschke, Häuser)

H =





a s1 s2 . . . . . . sd−1
a s1 s2 . . . sd−2

. . . . . . . . .
...

. . . . . . s2
s1
a


: a > 0, s1, . . . , sd−1 ∈ R


.

We let Y denote the infinitesimal generator of the diagonal subgroup in H,
with first entry normalized to one.
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Unified criteria for admissible vectors and atoms

Theorem 17

Let H < GL(Rd) denote a generalized shearlet dilation group, and let Y
denote the infinitesimal generator of the diagonal part.
(a) The open dual orbit is (R \ {0})× Rd−1.

(b) ψ ∈ L2(Rd) is admissible iff∫
Rd

|ψ̂(ξ)|2
|ξ1|d

dξ <∞ .

(c) H fulfills the estimates (2)-(4) from Theorem 15, with exponents

e2 = d − 1 + 2‖Y ‖∞ , e3 = |trace(Y )| , e4 = |d − trace(Y )| .

In particular, the associated dual orbit is strongly (s,w)-temperately
embedded.
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Explicit construction of shearlet atoms

1 Let a shearlet dilation group H < GL(d ,R) with generator Y of the
diagonal group be given; normalize Y to have one as first diagonal
entry.

2 Define e2, e3, e4 as in Theorem 17, and define

e1 = e3 + e4, r = be1 + e2(2s + 2d + 2) +
3
2
e3 + e4c+ 2d + 2

3 Let ρ be any function with suitable smoothness and decay, and define
ψ = d r

dx r1
ρ. Then ψ ∈ Bv0 , for a control weight v0 valid for all

Y = Lp(G ), 1 ≤ p <∞.
 Atomic decompositions valid in all spaces of the type Co(Lp(G )).

4 If ρ was chosen compactly supported, then ψ is compactly supported.
5 For the classical two-dimensional shearlets with hyperbolic scaling, we

have ‖Y ‖ = 1 and Trace(Y ) = 3/2, resulting in r = 28.
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Motivation: Besov spaces as spaces of sparse signals

Recall: The space of sparse 1D-signals w.r.t. a suitable wavelet ONB
has a description as smoothness space, which had in fact existed prior
to wavelets.
Would like to have a systematic way of relating coorbit spaces to
known smoothness spaces (e.g., via embeddings), or relating coorbit
spaces associated to different dilation groups.
Natural tool: Decomposition spaces. (Feichtinger/Gröbner)

Decomposition space

D (Q, Lp, `qu) :=
{
f ∈ D′ (O) : ‖f ‖D(Q,Lp ,`qu) <∞

}
,

where (ϕi )i∈I is a suitable partition of unity on O subordinate to Q and

‖f ‖D(Q,Lp ,`qu) =
∥∥∥(∥∥F−1 (ϕi f )

∥∥
p

)
i∈I

∥∥∥
`qu

=
∥∥∥(ui · ∥∥F−1 (ϕi f )

∥∥
p

)
i∈I

∥∥∥
`q
.
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From coorbit spaces to decomposition spaces

Co (Lp,qv )

Group H


(hi )i∈I well-spread in H

(continuous) weight v : H → (0,∞)

F

y o
y

pξ0 : H → O, h 7→ hT ξ0
proper orbit map

D (Q, Lp, `qu)

Dual orbit O


Q =

(
h−Ti Q

)
i∈I

admissible covering

ui := |det (hi )|
1
2−

1
q · v (hi ) discrete weight
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Example: Covering induced by the shearlet group
We consider the Shearlet type group with parameter c ∈ R,

S (c) :=

{
ε

(
a b
0 ac

)
: a ∈ (0,∞) , b ∈ R, ε ∈ {±1}

}
.

Dual orbit:
O = R∗ × R.

Well-spread family:

B
(c)
m,n :=

(
2n 0
0 2nc

)(
1 m
0 1

)
∈ S (c) where n,m ∈ Z.

Recall: Q =
(
h−Ti Q

)
i∈I

. Hence more important:

A
(c)
m,n :=

(
B

(c)
−m,−n

)−T
=

(
2n 0
0 2nc

)(
1 0
m 1

)
.
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Identifying wavelet coorbit spaces as decomposition spaces
Theorem 18 (Felix Voigtlaender, HF)

Let p, q ∈ [1,∞] and let Q =
(
h−Ti Q

)
i∈I

be a decomposition covering

induced by H.

For i ∈ I , define
ui := |det (hi )|

1
2−

1
q · v (hi ) .

Then the Fourier transform

F : Co (Lp,qv )→ D (Q, Lp, `qu)

is an isomorphism of Banach spaces.

Informal interpretation
The set of sparse signals only depends on the way in which the dual action
partitions the frequency space.
Different dilation groups may have the same sparse signals.
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Summary

Explicit vanishing moment conditions are available.
Chief obstacle: Temperate embeddedness condition. (Work in
progress).
Tool for embeddings, relationship to classical smoothness conditions:
Decomposition space view. (General embedding results for
decomposition spaces is work in progress.)
Common to all problems: Crucial role of the dual action.
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