LHC SUSY searches: Pulling out all the stops

Andy Haas (NYU)

Workshop on Frontiers of New Physics: Colliders and Beyond ICTP, Trieste - June 23-27, 2014 http://cdsagenda5.ictp.it/full display.php?email=0&ida=a13203

"Science Drivers"

- Hierarchy problem
- Force unification
- Dark matter
- ..
- Should find SUSY near the EW scale?! (Many other solutions too... almost all predict new physics there!)

Directly Probing the EW Scale (and just beyond)

Center-of-mass energy 7-8 TeV (13-14 soon!)

~1 billion proton collisions / second ~100 Z bosons / second ~1 Higgs boson / minute ~1 Neutralino / day ?

Introduction

- SUSY is complicated many new particles and parameters
- For the first time in 40 years (?), no welldefined target in particle physics
- Must perform many many searches, find SUSY wherever it can be hiding
- I'll discuss *some* trickier searches underway and potential improvements

Mini-split SUSY

Searches for mini-split

- Only the sfermions (Gauginos and Higgsinos) are within LHC reach
 - Can go after gluinos or EW-inos
- Gluino lifetime depends on the squark masses (m₀)
- Gluino searches:
 - Prompt (standard!)
 - Displaced (Rhadron)
 - Mini-displaced + MET
 - Displaced jet + MET
 - Large dE/dx
 - Detector-stable
 - Escaping Rhadron
 - Stopped Rhadron

$$c\tau \approx 10^{-5} \text{m} \left(\frac{m_{\tilde{q}}}{\text{PeV}}\right)^4 \left(\frac{\text{TeV}}{m_{\tilde{g}}}\right)^5$$

 \tilde{g} q

Will talk about EW-ino searches later...

Prompt gluino decay + MET searches

- Gluinos are pair-produced
- Each gluino decays (promptly) to jets + MET
 - Possibly to ttbar + MET if top squark is a bit lighter than other squarks Can look for lepton(s), same-sign leptons, and/or b-jets + MET
- Limits on gluino mass: ~600–1400 GeV (depending on neutralino mass)

Mini-displaced gluino decays

- What if gluino (Rhadron) is just a little long-lived (~1 ns)?
 - Standard jets+MET searches should still apply (up to what lifetime?)
 - Leptons vetos may start to fail impact-parameter cuts (when?)
 - Jets will start to be identified as b-jets (when?)
 - Jets may fail cleaning cuts using track pT fraction, EM fraction (when?)
- So far, no explicit limits on gluinos with intermediate lifetimes...

Mini-displaced gluino decays

Generated fullly-simulated MC of decaying Rhadrons at ATLAS

- Reinterpretation of existing ATLAS prompt SUSY searches:
 - 7-10 jets and 0,1,2 b-jets and MET
 - 2-6 jets and MET
 - 3 b-jet and SS/3L searches also considered but don't add sensitivity

Mini-displaced gluino decays

- Will have limits on gluino mass vs. lifetime
- Also scan neutralino mass
- Study $g \rightarrow qqX/gX$ and $g \rightarrow ttX$ decays separately

- Would like to actually find them not exclude them!
- For moderate lifetimes, reconstruct the displaced vertex in tracker
- Current analysis requires a **high-pt muon** to trigger on and reduce backgrounds... sensitive to gluino \rightarrow ttbar decays
 - Now adding analysis based on MET trigger, for $g \to qq + x_1^0$ decays

Displaced jet search

- ATLAS default impact parameter cut in tracking is 10 mm (for speed)
 - Tracking is re-run with looser impact parameter requirements
 - Need access to special reconstruction output with all tracker hits saved
- Special secondary vertexing reconstructs displaced vertices
 - Good efficiency out to a radius of ~18 cm...

Displaced jet search

Background from hadronic interactions with material (or air!)

- Find where material is (from data) and reject the regions

Displaced jet search

- Require vertex to have at least 5 tracks and (visible) mass >10 GeV
- Total background expected: 0.02 events
- 0 events observed in signal region

• Sensitive to ~1–1.4 TeV gluino \rightarrow tt+ x_1^0 for ctau ~1 ns?

Detector-stable Rhadron searches

- Rhadron escapes the detector, can use timing in the calorimeter and/or muon system, gluino >1200 GeV
- Some stop in detector and decay later
 - Gluino >~800 GeV, lifetime 10us 10 h
- Need to continue in Run 2, and improve!
 - Data after/between runs
 - New "late" triggers (later slides)

Could study gluino decay!

(somewhat)

Long-lived Chargino

- Chargino becomes long-lived when nearly-degenerate with the LSP
- Light Wino and Bino, heavy Higgsinos, Wino LSP
 - Lifetime ~50 mm, Δm~165 MeV from EW contribution
- Higgsino LSP, only light Higgsinos
 - Lifetime ~5 mm, $\Delta m = \frac{1}{2} \alpha m_z = ~355 \text{ MeV}$

$$pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 + \text{jet} , pp \to \tilde{\chi}_1^{+} \tilde{\chi}_1^{-} + \text{jet}$$

Need pT>90 GeV ISR for MET trigger:

~15% of cross-section

- Chargino travels through some layers then decays to a soft pion (not reconstructed) + MET
- Look for high-pt isolated track with few hits in outer tracking layer
 - Track needs at least 3 inner pixel hits and 1 silicon strip hit
 - Require <5 outer-tracker (TRT) hits

Improved disappearing track search

- Large improvement from customized track reconstruction
 - (Needs access to data with all tracker hits saved...)
- Require just 1 Si strip layer (instead of 3) and no TRT
 - Decay volume moves to r>~300 mm and widens
 - Efficiency 100x larger for cτ=100mm (165 MeV)

Disappearing track search

- Background track pT shapes fit to data
 - No excess seen at high pT :(
- Exclude chargino <270 GeV in AMSB with Δm~165 MeV

Improved disappearing track search

- Eventual sensitivity with 14 TeV and same short-track analysis ~500 GeV for Δm~165 MeV
- Going to need even shorter tracks to reach the ~10 mm lifetime case...

Improved disappearing track search

- Eventual sensitivity with 14 TeV and same short-track analysis ~500 GeV for Δm~165 MeV
- Going to need even shorter tracks to reach the ~10 mm lifetime case
 - Insertable B-Layer (IBL) added
 - Could have r>150 mm tracks using just 4 pixel hits?!

New IBL pixel layer at radius of ~26mm

IBL installation!

IBL installation!

Boosted Stuff

ullet Boosted particle o collimated decay products in detector

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

Gavin Salam

High- p_t regime: EW object X is boosted, decay is collimated, $q\bar{q}$ both in same jet

Happens for $p_t \gtrsim 2m/R$ $p_t > 400$ GeV for $m = m_W$, R = 0.4

"Giving New Physics a Boost" aka "BOOST" http://www-conf.slac.stanford.edu/Boost2009/ and each year following!

Fat jets

- Can look for boosted W and top-quark decays to hadrons
- Nicely calibrated in ttbar events at ATLAS and CMS

Boosted gluino \rightarrow jets decays JHEP12 (2012) 086

- If the gluino is highly boosted, all the decays can be recombined in a "fat" jet.
 - Use "N-subjettiness" substructure variables, τ_N to characterize how well a jet can be described as containing N or fewer k_t subjets

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, ..., \delta R_{Nk}) \ , \ \ \mathrm{with} \quad d_0 \equiv \sum_k p_{\mathrm{T}k} \times R$$

- τ₃₂ (= τ₃ / τ₂) measures how well the "fat" jet can be as containing 3 (τ₃₂≈1) or 2 (τ₃₂≈0) jets. Require τ₂₃>0.7.
- Use the mass of each fat jets to select gluino candidates.
- Main background: multi-jet, estimated data-driven.
 - Estimated using the "ABCD" method: event yields in orthogonal control regions in m_{J1} and/or m_{J2} are used to predict the total number of events expected in the signal region.
- Looking for a peak in the jet mass spectrum.

Boosted gluino \rightarrow jets decays JHEP12 (2012) 086

- If the gluino is highly boosted, all the decays can be recombined in a "fat" jet.
 - Use "N-subjettiness" substructure variables, τ_N to characterize how well a jet can be described as containing N or fewer k_t subjets

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, ..., \delta R_{Nk}) \ , \ \ \mathrm{with} \quad d_0 \equiv \sum_k p_{\mathrm{T}k} \times R$$

- τ₃₂ (= τ₃ / τ₂) measures how well the "fat" jet can be as containing 3 (τ₃₂≈1) or 2 (τ₃₂≈0) jets. Require τ₂₃>0.7.
- Use the mass of each fat jets to select gluino candidates.
- Main background: multi-jet, estimated data-driven.
 - Estimated using the "ABCD" method: event yields in orthogonal control regions in m_{J1} and/or m_{J2} are used to predict the total number of events expected in the signal region.
- Looking for a peak in the jet mass spectrum.

Collimated Leptons

Lepton jets: muon/electron jets

arXiv:0909.0290, et. al

Collimated Leptons

Collimated Leptons

- In the analysis model; pairs of squarks cascade decay through a dark sector into lepton jets
 - boson $\widetilde{q} \qquad \widetilde{\chi} \qquad \widetilde{h_d} \qquad \gamma_d \qquad \gamma_d$ $\gamma_d \qquad \gamma_d \qquad \gamma_d$ jet
- Lepton pairs are produced from dark photons
 - Energy and quantity of leptons in jet depend on:
 - Dark photon mass
 - **Dark sector gauge coupling** α_d (higher coupling \rightarrow more overlapping dark photons)
- □ Analysis uses 3 channels:
 - Single muon-jet with ≥4 muons
 - □ Pairs of muon-jets with ≥2 muons
 - □ Pairs of electron-jets with ≥2 electrons

	2 e-jet	1 mu-jet	2 mu-jet
Data	15	7	3
bkgd (ABCD)	15.2±2.7	3.0±1.0	0.5±0.3
bkgd (tag-probe)	14.55±0.23		2.2±0.9

- Main background contribution from fake muon-jets in multi-jet events
 - Limits on applicable HV model couplings set: (value depends on model parameters)

Excluded: σ×BR > 0.017 — 1.2 pb

Collimated Taus

- Special case: taus are more complicated
 - Two overlapping hadronic tau decays looks very much like QCD jet
- Good separation when one tau (or both) decays leptonically (especially muon)

Events with a µ

Upgraded (ATLAS) Trigger

New Run 2 L1 capabilities for topological combinations of objects and kinematics

VBF SUSY

- Vector-Boson Fusion (VBF) isn't just for Higgs anymore!
- VBF SUSY xs is reasonable at 13-14 TeV, and we'll be able to trigger on it

arXiv:1210.0964

- Can help the disappearing track search:
 - ▶ Total signal x-sec @14TeV (m_{wino}~400GeV): ~10fb
 - ▶ The ISR requirement reduces the signal efficiency down to 10~20% (w/o track requirements)
 - VBF @14TeV (m_{wino}~400GeV, Deta(jj)>4.2): ~1fb
 - Orthogonal to the ISR signal events and small efficiency loss due kinematic selection cuts.
 - Di-chargino events enhanced
- Also a new handle for compressed EW SUSY spectra
 - Trigger on VBF, look for soft leptons, like-sign, some MET, etc.

VBF SUSY

Nice measurement of SM backgrounds in this channel

ATLAS-CONF-2014-013

Run Number: 207490, Event Number: 33152138

Date: 2012-07-26 04:16:35 UTC

"Late" triggers

- Can also combine info from multiple bunch crossings in Run2 trigger
 - Recall, bunch spacing will be just 25 ns in Run2 (was 50 ns)
- Heavy, slow (beta~0.5), charged long-lived particle (like Chargino)
 - Too slow to reach muon trigger in bunch 1 (production crossing)
 - Reaches muon trigger in next bunch
 - Would not fire muon trigger by itself
 - Can combine with jet/MET in previous bunch crossing

General Search Methods

Look in every final-state possible...

as theory-blind (theorist-deaf?) as possible

- Compare data/backgrounds:
 - Number of events
 - Excesses in Meff, Minv, or MET distributions
- 697 final-states...

Higgs (125 GeV)

General Search Methods

- Compare to "look-elsewhere" effect
- Sensitive to new physics...
- Good way to search when you don't know what to look for!
- How to improve for Run2?

Higher Energy – Next Year!

Higher Energy – Next Year!

Cross section ratios

Hugely increased potential for discovery of heavy particles at 13~14 TeV

But life can become harder for states lighter than tt

Higher Energy – Next Year!

Summary

- To find SUSY at the LHC, we might have to look harder (smarter)!
 (Or maybe we just need 13-14 TeV? Or 100 TeV? Or 1000 TeV?)
- Let's keep working on new ways to find new physics at the LHC
 - New final-state signatures
 - New triggers
 - Even new (sub-)detectors!

- Gave some examples of new and improved SUSY searches underway
- Have to find SUSY by ~2018...

... the studios are pushing for a sequel!

The good stuff (backup)

- Has always been high at LHC (ATLAS and CMS)
- (N)NLO corrections needed?
- Stop / Chargino production?!

Curtin, Meade, Tien: arXiv:1406.0848; Kim, Rolbiecki, Sakurai, Tattersall: arXiv:1406.0858

• If you want to sound smart in an Astronomy seminar...

"So have you checked for complications from dust?"

• If you want to sound smart in an Astronomy seminar...

"So have you checked for complications from dust?"

• If you want to sound smart in a High-Energy Physics seminar... "So have you checked for systematics arising from your *jet veto* "?

Dominant experimental systematic uncertainty...

Color flow

- Higgs is color-singlet
- H → jets: color-singlet configuration
 - Backgrounds often not...e.g. gluon splitting

- Useful as additional variable for separating signal from backgrounds
- Does not bias jet kinematics to 1st order
 - Can perhaps be used to measure background shapes with small syst.

Phys.Rev.Lett.105:022001

Color flow

Method was tested at D0 (Tevatron) using ttbar events

Successfully used in D0 Higgs→bb search

 Will soon be tested with large statistics at ATLAS

Stopped Gluino

Leading jet	R-hadron	Gluino/squark	Neutralino	Gluino/squark	mass limit (GeV)
energy (GeV)	model	decay	mass (GeV)	Expected	Observed
100	Generic	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	$m_{\tilde{g}} - 100$	526	545
100	Generic	$\tilde{g} ightarrow \ t \bar{t} + \tilde{\chi}^0$	$m_{\tilde{g}} - 380$	694	705
300	Generic	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	731	832
300	Generic	$\tilde{g} ightarrow \ t \bar{t} + \tilde{\chi}^0$	100	700	784
300	Intermediate	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	615	699
300	Regge	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	664	758
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	$m_{\tilde{t}} - 200$	389	397
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	100	384	392
100	Regge	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	100	371	379
100	Regge	$\tilde{b} \rightarrow b + \tilde{\chi}^0$	100	334	344