New Directions and Developments in Dark Matter Searches with Solid-State Detectors

Sunil Golwala

Caltech

Workshop on Frontiers of New Physics: Colliders and Beyond 2014/06/25

Experimental generalities

Past and present innovations in solid-state detectors and impact on sensitivity

Future directions to lower masses and cross sections

Dark Matter Direct Detection: Nuclear Recoil Signature

Nuclear recoil paradigm

Non-relativistic limit: all interactions reduce to spin-independent or spin-dependent couplings of DM to quarks Though now understood that one should not take non-rel limit for nucleons (Fitzpatrick, Haxton et al) has only x2 impact (Gresham and Zurek) Coherently sum over quarks in nucleon and nucleons in nucleus to obtain coupling proportional to A^2 or J^2 Scattering with nuclei much higher rate than scattering with electrons: signature of WIMPs is nuclear recoils Billiard ball scattering of WIMP with nucleus: search constrains σ Form factor describes breakdown of coherence: momentum transfer

probes structure of larger nuclear at lower E_r than for smaller nuclei

Electron recoils better for low-mass DM?

I/Xe

50

100

Recoil Energy [keV]

150

200

The Dark Matter "Beam" and Recoil Energy Spectrum

-----a

Backgrounds

Frontiers of New Physics

Nuclear Recoil Discrimination

Discrimination Techniques

Need sensitivity to energy deposition characteristics (density, energy) to discriminate nuclear recoils (NRs), electron recoils (ERs), and alphas

Solid-State Detectors

SuperCDMS/EDELWEISS Semiconducting crystals

lonization:

- Ionization produced in interactions drifted w/low electric field
- Phonons (thermal and athermal)

oV - ground -3V - electrode

Most energy goes into phonons. In Ge: 3.0 eV/e-h pair vs. 0.67 eV bandgap

Energies:

"keV_r" = recoil energy deposited by particle interaction = E_r "keV_{ee}" = "electron-equivalent" energy = $N_{e-h} \times 3.0$ eV in Ge = E_q ; $E_q = E_r$ for ERs Luke-Neganov energy = drift heating dissipation $= E_{drift} = N_{e-h} \times e \times V_b = E_q \times e \times V_b/3.0 \text{ eV (Ge)}$ lightabsorbing " keV_p " = phonon energy = E_r + E_{drift} crystal transparent CRESST scintillating target crystal Photons from scintillating crystals instead of ionization (e.g. CaWO₄) Photons detected with separate thermistor for thermistor for "absorber crystal" reflective total energy signal scintillation signal cavity

CDMS I: Event-by-Event NR Discrimination

phonons + ionization discriminate NRs from ERs at low bias (few V): first application of event-byevent nuclear recoil discrimination

ionization signal used to reject outer radius events that suffer poor ionization collection

CDMS I: Event-by-Event NR Discrimination

phonons + ionization discriminate NRs from ERs at low bias (few V): first application of event-byevent nuclear recoil discrimination

ionization signal used to reject outer radius events that suffer poor ionization collection

CDMS I: Surface Event Mitigation w/Electrodes

surface events suffer poor ionization collection

surface events suffer poor ionization collection

discovered surface events suffering poor ionization collection

new electrode structure (high bandgap blocking layer) mitigates by raising ionization yield

CDMS II: Surface Event Rejection w/Athermal Phonons

surface events suffer poor ionization collection

surface events suffer poor ionization collection

Athermal phonon sensors: ZIPs

CDMS II: Surface Event Rejection w/Athermal Phonons

surface events suffer poor ionization collection

surface events suffer poor ionization collection

- Athermal phonon sensors: ZIPs
- Surface events rejected using phonon pulse shape
 - phonons produced in interactions near surface downconvert to propagating phonons more quickly; faster rise time

CDMS II: Surface Event Rejection w/Athermal Phonons

surface events suffer poor ionization collection

- Athermal phonon sensors: ZIPs Surface events rejected using
 - phonon pulse shape
 - phonons produced in interactions near surface downconvert to propagating phonons more quickly; faster rise time

- Alternating ground and biased electrodes further improve rejection
- Field configuration:
 - Bulk events have symmetric hole/ electron collection
 - Surface ERs are asymmetric

Alternating ground and biased electrodes further improve rejection

Field configuration:

- Bulk events have symmetric hole/ electron collection
- Surface ERs are asymmetric

Alternating ground and biased electrodes further improve rejection

Field configuration:

- Bulk events have z symmetric hole/ electron collection
- Surface ERs are z asymmetric

DATA

Ionization Yield 6.0 8.0 8.0

0.2

n

20

Failing Charge Symmetry Selection

±2σ Nuclear Recoil Yield Selection

60

80

40

Cf-252 Calibration Neutrons

Low Yield Outliers

Alternating ground and biased electrodes further improve rejection

Field configuration:

- Bulk events have symmetric hole/ electron collection
- Surface ERs are asymmetric

Field strength

- High field near surface raises ionization collection for surface electron recoils
- ²⁰⁶Pb nuclear recoils visible

Important goals achieved

Surface ER rejection ~ 1 x 10⁻⁵ shown at Soudan > 8 keV_r, sufficient for SuperCDMS_SNOLAB high-mass WIMP search ²¹⁰Pb electrons from ²¹⁰Pb source

106

Alternating ground and biased electrodes further improve rejection

Field configuration:

- Bulk events have symmetric hole/ electron collection
- Surface ERs are asymmetric

Field strength

- High field near surface raises ionization collection for surface electron recoils
- ²⁰⁶Pb nuclear recoils visible

Important goals achieved

Surface ER rejection ~ $I \times 10^{-5}$ shown at Soudan > 8 keV_r, sufficient for SuperCDMS_SNOLAB high-mass WIMP search

Phonon energy resolution much better than ionization 200 eV_p vs. 300 eV_{ee} (I keV_r) lonization asymmetry only useful > 8 keV_r, 10 GeV WIMP mass At low mass, define asymmetry using phonons only Rejects outliers from ionization asymmetry cut at low keV_{ee}

outlier event at 42 keV_r, 8 keV_{ee} in prior slide; easily rejected using phonon asymmetry

Phonon Collection Side 2 (keV

Phonon energy resolution much

better than ionization

200 eV_p vs. 300 eV_{ee} (1 keV_r)

Ionization asymmetry only useful above 8 keVr, 10 GeV WIMP mass

At low mass, define asymmetry using phonons only

Rejects outliers from ionization asymmetry cut at low keV_{ee}

But can't use ionization to define fiducial volume (radial)

Use phonon radial partition instead; but phonon radial rejection of outer wall events not as good, yields analysis limited by radially misid'd ²¹⁰Pb; 30% fiducial volume

Low mass analysis down to 2 keV_r using E_p , E_{ee} , phonon radial and z asymmetry from Soudan data published, excludes new parameter space down to 4 GeV WIMP mass

Phonon energy resolution much better than ionization

but phonon radial rejection of outer wall events not as good, yields analysis limited by radially misid'd ²¹⁰Pb; 30% fiducial volume

Low mass analysis down to 2 keV_r using E_p , E_{ee} , phonon radial and z partition from Soudan data published, excludes new parameter space down to 4 GeV WIMP mass

SuperCDMS: Accessing Lower Masses with HV Operation

Path to SuperCDMS SNOLAB Low-Mass Searches

Path to SuperCDMS SNOLAB Low-Mass Searches

Better energy resolution

- Recently developed HEMT amplifiers + modified amplifier design: $\sigma_q = 300 \text{ eV}_{ee}$ will improve to σ_q = 100 eV_{ee} for SuperCDMS SNOLAB
- $T_c = 60 \text{ mK}$ phonon sensors are baseline for SuperCDMS SNOLAB
 - $\rightarrow \sigma_{\rm p}$ = 200 eV_p will be improved to $\sigma_{\rm p}$ = 50 eV_p
- These resolutions extend Ge low-mass search to ~2-3 GeV
- Addition of Si pushes to < I GeV
- HV search extends down to < I GeV with Ge, to 0.5 GeV with Si

 10^{-37}

Also, need to reduce backgrounds (lower cross sections)

Compton background reduced by improved materials selection, shielding (200x) ²¹⁰Pb background from Cu will be reduced to levels observed on Ge (20x)Should enable reach approaching coherent solar neutrino scattering background ³²Si (225 keV endpoint, 150 yr half-life) contamination in detector-grade Si unknown

Innovations Beyond SuperCDMS SNOLAB Baseline

Lower transition temperature? If the cryostat operates well, then $T_c = 40 \text{ mK}$ yields $\sigma_p \sim 3x$ improved $\sim 10 \text{ eV}_p$ Higher voltage operation Initial tests of CoGeNT/Majorana-style p-type point contact (PPC) Ge detectors suggests $V_b \sim 400 \text{ V}$ achievable \rightarrow lower threshold, lower WIMP masses

Single e-h pair detection?

At $\sigma_p \sim 10 \text{ eV}_p$ and $V_b = 100 \text{ V}$, single e-h pair peaks become resolvable at $V_b = 100 \text{ V}$

At $\sigma_p \sim 3 \text{ eV}_p$ and $V_b = 100 \text{ V}$, single e-h pair peaks are separated and NRs can occupy empty space (because more recoil energy per e-h pair)

Conclusion: Sub-GeV dark matter at CNS limit accessible with reasonable extrapolations of current technology

Conclusions and Discussion

There is a long history of innovations in solid-state detectors to reject backgrounds and reduce thresholds

These developments promise accessibility of sub-GeV masses at solar neutrino CNS limit

Questions to the audience:

How hard should we push on thresholds vs. backgrounds?

- Lower threshold \rightarrow lower mass reach
- Lower backgrounds \rightarrow lower cross section reach
- (w/ some level of complementarity)

Do we understand the response at single e-h pair detection?

i.e., what surprises do nuclear/atomic/condensed matter physics hold for us What new backgrounds might arise?