EXPERIMENTS BIG AND SMALL

Savas Dimopoulos Stanford University

Why Small?

Theoretical

Why Small?

Theoretical

• Experimental

Precision Frontier

Why Small?

• Theoretical

• Experimental

Precision Frontier

Sociological

Time and Money

Outline

• Small Numbers and Big Experiments

• Big Answers from Small Experiments

PROBING SMALL NUMBERS WITH LARGE MACHINES

Small Numbers and Coincidences

Naturalness - Dynamics

Problem

Solution

Hydrogen Binding Energy

$$E_b = \frac{1}{2} \frac{e^4}{(4\pi)^2} m_e$$

Deuteron Binding Energy Nuclear Binding Energy

$$E_b \approx \frac{1}{2} \frac{1}{(4\pi)^2} \frac{m_N}{2}$$

 π^+ - π^0 mass difference

Symmetry/Dynamics

 $K - \bar{K}$ mixing

Flavor Symmetry

Electron Mass

Chiral Symmetry

Small Numbers and Coincidences

Something else...

Problem Solution Solution

Earth-Sun Distance Environmental Selection 10²² suns

Cosmological Constant Environmental Selection? 10⁵⁰⁰ universes!

7 eV line of ²²⁹Th nucleus "Look-elsewhere" effect

Solar-Lunar Eclipse Plain Luck!

Small Numbers and Coincidences

What about the Electroweak Scale?

The hierarchy Problem

Supersymmetry

Standard Model

Multiverse

Naturalness

arge / Supersymmetry

Technicolor

The Hard Facts

The Hard Facts

The connection with the hierarchy problem is diminished

Why Supersymmetry?

Gauge Coupling running at two loops

Why Supersymmetry?

Gauge Coupling running at two loops

The Missing Superpartner Problem

The Status of Naturalness in SUSY

Arvanitaki, Baryakhtar, Huang, Van Tilburg, Villadoro (2013)

• In the MSSM: Tuning more than 1%

 Natural SUSY and RPV: Gluino bounds above a TeV imply significant tuning

Maximally Natural Theory

S.D., K. Howe, J. March-Russell 2014 Antoniadis, S.D., Pomarol, Quirros 1998

Maximally Natural Theory

Multiple Protection

• SUSY

• TeV dimensions: Locality

Natural SUSY (Split Families)

Non-Local SUSY breaking: No Logs

Dirac Gauginos and Higgsinos: No μ term

Bottom Line: Can be as 50% tuned! Unification sacrificed for Naturalness

SS SUSY Breaking Spectrum

Experimental Signatures

• 'Vanilla' signature

Stop decay to Goldstino

$$\tilde{t} \to t + \text{MET}$$
 $m_{\tilde{t}} \gtrsim 700 \text{ GeV}$

Experimental Signatures

'Vanilla' signature

Stop decay to Goldstino

$$\tilde{t} \to t + \text{MET}$$
 $m_{\tilde{t}} \gtrsim 700 \text{ GeV}$

CMS SUS-13-004,-011 ATLAS-CONF-2013-024,-037 • 3-body off-shell

Stop decay to possibly long-lived stau NLSP

$$\tilde{t}(\tilde{b}) \rightarrow b + (1\tau, 2\tau) + \text{MET}$$
 $m_{\tilde{t}} \gtrsim 450 \text{ GeV}$

(gmsb motivated ATLAS-CONF-2014-014)

$$\tilde{t}(\tilde{b}) \to t + (1\tau, 2\tau) + \text{MET}$$

BIG ANSWERS FROM SMALL EXPERIMENTS

80% of the energy scale left to explore Dark Matter, Strong CP, String theory suggests there is more

The Low Energy Frontier

- In the Standard Model
 - Gravitons
 - Cosmic Neutrinos

- In String Theory
 - Axion(s) Also DM and Strong CP!
 - Photons kinetically mixing with our photon $\epsilon F_{\mu\nu}^{EM} F^{\mu\nu'}$
 - Dilaton, moduli, new dimensions

Optically Levitated Objects

- •Short Range Forces
- Gravitational Wave detection at high frequencies
- Tests of Quantum Mechanics

 Axion Field Detection

- Equivalence principle at 15 decimals
- Gravitational Wave detection at low frequencies
- •EDM searches
- Tests of Atom Neutrality at 30 decimals

•Short Distance Tests of Gravity

•Extra Dimensions

Optically Levitated Objects

- •Short Range Forces
- Gravitational Wave detection at high frequencies
- Tests of Quantum Mechanics

 Axion Field Detection

- Equivalence principle at 15 decimals
- Gravitational Wave detection at low frequencies
- •EDM searches
- Tests of Atom Neutrality at 30 decimals

•Short Distance Tests of Gravity

•Extra Dimensions

Light vs Atom Interferometry

LIGHT

accuracy of measurement

$$\frac{\delta L}{L} \approx \frac{\lambda}{L} \times \text{ phase resolution}$$

ATOMS

For atoms T~ 1 sec

 \Rightarrow L= cT ~ Earth-Moon distance!

10 m Atom Interferometer (2013)

Hogan, Kasevich et. al.

Maximum Wavepacket Separation

Testing Gravity at Large Distances

SD, Graham, Hogan, Kasevich 2006

• Tests of the equivalence principle

Galileo
$$\sim g$$

Future
$$\sim 10^{-17} g$$

Tests of General Relativity

$$\frac{dv}{dt} = -\nabla\phi$$

$$-\nabla \phi^2$$

$$-\vec{v}^2 \nabla \phi$$

Gravitational Wave Detection with Atom Interferometry

SD, Graham, Hogan, Kasevich, Rajendran 2008

 $L \sim 1000 \text{ km}$

Physical Distances between atoms oscillate with the GW amplitude: $L=Lo(1+h\cos(\omega t))$

 Currently funded by NASA NIAC grant (NASA Innovative Advanced Concepts)

 MIGA - Philip Bouyer: Ground based GW detector in Bordeaux

Projected Sensitivity in Space

AGIS: 1000 km

LISA: 5000000 km

Precision Magnetometry

Nuclear Magnetic Resonance

Cosmic Axion Detection

Budker, Graham, Rajendran, et. al.

Oscillating Source Mass

NMR

SQUID

Short-range axion exchange

Arvanitaki and Geraci

Scattered Experiments

Scattered Experiments

Scattered Experiments

Super-Lab for Fundamental Physics?

 Super-Lab: A Laboratory housing ≥ 20 small scale experiments on fundamental physics

• Fundamental Physics: New Forces, New Particles, New Dimensions, New phenomena...

ANY Experimental Technique

• HEP Model of a Users Facility plus Local Personnel

Super-Lab for Fundamental Physics?

Opportunity for Physics

Ideas' Incubator Shared Lab Resources

Sociological Opportunities

Private funding can have big impact

New vision for investing public resources

Length Scales in the Universe

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

- Hamlet