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Gravitational Waves

Einstein’s Equations:
When matter moves, or changes its configuration, its gravitational

field changes. This change propagates outward as
a ripple in the curvature of space-time : a gravitational wave.

NASA/Dana Berry, Sky Works Digital
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GW Astronomy Science 
Goals

• Fundamental Physics
– Is GR the correct theory of gravity?
– Do black holes really have “no hair” ?
– What is the neutron star equation of state?

• Astrophysics
– What is the black hole mass distribution?
– How did supermassive BHs grow?
– What are the progenitors of GRBs?

• Cosmology
– Can we directly see past the CMB?
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The wave’s field

• “Ripples in Space-Time”

• Measureable effect:
– Stretches/contracts distance between 

test masses perpendicular to 
propagation

Image credit: Google

Amplitude:

dL/L = h

+ polarization x polarization



LIGO Livingston
Observatory

LIGO Hanford
Observatory





The Layout
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The Advanced LIGO Detectors
The Test Masses

Diameter 34 cm
Thickness 20 cm
Mass 40 kg
1/e Beam 
Size

6.2 cm

Reduce to photon pressure noise
‐large!

Reduce Brownian noise
Lower Mechanical Loss 
Large surface area
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The Advanced LIGO Detectors
Seismic Isolation
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Last two stages are monolithic
to improve Brownian noise
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Test Masses are not the only thing that 
needs isolation…

Interferometer is a zoo of seismic isolation!

The Advanced LIGO Detectors
Seismic Isolation



Advanced LIGO installation almost complete



Currently installing
and aligning              



Interferometer commissioning progress



Lock Acquisition

• All 5 main cavities/path length need to be 
brought to resonance. (“Locking”) 
– Too many degrees of freedom
– Non-linear error signal, “false” locks
– Too small actuation

range on test masses



Controlled approach:
Arm length stabilization

Lock arms first
and hold them off resonance

The lock central interferometer
Finally bring arms slowly to resonance



1st Lock!

• May 27 2014 at Livingston Observatory



Advanced LIGO project goals:









The KAGRA Tunnel
in the Kamioka mine
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Interferometer Sensitivity:
Quantum noise

Laser

end test mass

4 km Fabry‐Perot cavity

recycling
mirror input test mass

50/50 beam splitter

Michelson
Interferometer
+ Fabry‐Perot
Arm Cavities

+ Power Recycling
+ Signal Recycling

GW signal

125 W

6kW 800kW
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~2x10-12Hz-1/2

200

4000 m

2/124103  Hz

(Numbers for aLIGO design)

2/120  102.1  HzmdL



Advanced LIGO
Noise Budget



Key technological 
hurdles

• Quantum noise (radiation pressure/shot)
– Quantum mechanical measurement 

limitations

• Thermal noise (coating)
– Thermal motion of the mirror surface

• Newtonian (Gravity Gradient) noise
– Newtonian gravity short-circuits suspensions

(not this talk)



Quantum Noise

• Go heavy…

• Squeezing
– External squeezed light injection
– Filter cavities



Squeezed light 
source

• Quantum trade-off between 
phase and amplitude noise

• Strain sensing is only sensitive 
to one of them

Schematic representation
of Electric field, various statesEx-quadrature

Ep-quadrature



Why does squeezing 
work?

Laser

Readout quadrature



Filter cavities

• Concept:
– A cavity operated

in reflection:
 frequency dependent phase shift

– No delay above cavity pole

– Used on squeezed light: frequency dependent 
rotation on squeezing ellipse

• Keep squeezing ellipse in correct 
orientation

• Draw-back: very sensitive to optical losses

Φ(f)



Thermal Noise -
basics

• Fluctuation-dissipation theorem: It’s the loss!
– Equipartition theorem.:

• Fluctuation-dissipation theorem

– The energy loss per cycle (normalized by the driving 
force squared) is proportional to the velocity power 
spectrum
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Crystal coatings -
AlGaAs

• Recent result:
– Tenfold reduction of Brownian noise in optical 

interferometry (G. Cole et. al.,arXiv:1302.6489)
– Loss angle < 4e-5

G.Cole, W. Zhang, M. Martin, J. Ye,
M. Aspelmeyer



Cryogenic operation
• Thermal Noise? Cool!

– Young’s modulus, mech. loss, thermal
conductivity and capacity need to be
well-behaved at low T.

– New substrate material
e.g. crystalline Si (aLIGO uses SiO2)

• Implications:
– Need to change laser wavelength to 1.6u (band 

edge)
– Affects coating choice
– Technical integration challenge

• Vibrations, cooling beam pipes, etc.



Long is good!
• Coating thermal noise

– Gain: L1.5

– Cryogenic/Crystal: no need
• Displacement noise

– Gain: L
– Newtonian N. irrelevant

• Radiation pressure
– Becomes irrelevant

• Shot noise
– Gain: ~sqrt(L)
– Freq. indep. Squeezing

• Vertical susp. Thermal
– Gain: constant
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Einstein Telescope
Design Study

www.et-gw.eu
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What else can 
interferometers

be good for?
• Dark matter: What if no WIMPS?

R. Adhikari (CIT), A. Derevianko (UNR), V. Frolo (LLO), M. Giesler (CIT), E. Hall (CIT), J. Hunacek (CIT), H. 
Muller (UCB), M. Pospelov (PI/UVIC)

• Earthquake early warning
M. Barsuglia (APC-CNRS) J-.P Ampuero (Caltech), E. Chassande-Mottin (APC-CNRS), J. Harms (INFN 

Firenze/Urbino), J.-P. Montagner (IPGP), S. N. Somala (Caltech), B. F. Whiting (U. Florida)



Alternative to WIMPS? 

• DM clumps?

– E.g. conglomerates of DM particles (dust), 
bound my gravity or other force

– Bound on size from Micro-lensing: <~MEarth

– Encounter at galactic orbital velocity (230m/s) 
produces characteristic acceleration signal



V. Frolov, GWADW 2014



V. Frolov, GWADW 2014



Extra slides

V. Frolov, GWADW 2014
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Earthquake
early warning

• Gravimeters already see local gravity 
changes due to mass dislocations in earth 
quakes

• Can this change be seen promptly, 
providing an early warning system?

• Early warning time increased by ~ p-wave 
propagation time



Earthquake
early warning



Low frequencies!



Example with
torsion bar





Conclusion

• Advanced LIGO was locked. Sensitivity 
commissioning started. Observing soon (within 2 
years).

• Further significant sensitivity improvements (z=1 
for NS/NS) seems possible, but requires 
research.

• Unexpected applications of GW interferometers 
do also exist.



Thank you!


