LIGO The Promise of Future Gravitational-Wave Interferometers

Colliders and Beyond

June 26 2014

Trieste, Italy

Stefan Ballmer Syracuse University for the LIGO collaboration

Outline

- Current status
 LIGO (with detail), Timeline
 - Virgo, Kagra
- Limitations for sensitivity
- Other applications of GW interferometers

NASA/Dana Berry, Sky Works Digital

Einstein's Equations:

When matter moves, or changes its configuration, its gravitational field changes. This change propagates outward as a *ripple in the curvature of space-time* : a gravitational wave.

GW Astronomy Science Goals

Fundamental Physics

- Is GR the correct theory of gravity?
- Do black holes really have "no hair" ?
- What is the neutron star equation of state?

Astrophysics

- What is the black hole mass distribution?
- How did supermassive BHs grow?
- What are the progenitors of GRBs?

Cosmology

- Can we directly see past the CMB?

The wave's field

CLUSE UNIVERSITY

"Ripples in Space-Time"

• Measureable effect:

LIGO

 Stretches/contracts distance between test masses perpendicular to

+ polarization

x polarization

Image credit: Google

LIGO Livingston Observatory

LIGO Hanford Observatory

The Advanced LIGO Detectors The Test Masses

Reduce to photon pressure noise -large! Reduce Brownian noise Lower Mechanical Loss Large surface area

Diameter Thickness Mass 1/e Beam Size 34 cm 20 cm 40 kg 6.2 cm

The Advanced LIGO Detectors

Seismic Isolation

Test Mass Quadruple Pendulum Suspension

- Test masses are suspended with fused silica fibers (d=400 um) to minimize thermal noise
- Main chain recoils against the quiet reaction chain. Magnet-coil actuators on top stages, electrostatic on the test mass.
- Laser welded
- Measured violin mode Q-factors ~10⁹ (f_{violin}~500 Hz)

Advanced LIGO installation almost complete

Installation Status

Linvingston

Hanford

Currently installing and aligning

Interferometer commissioning progress

LIGO Lock Acquisition

- All 5 main cavities/path length need to be brought to resonance. ("Locking")
 - Too many degrees of freedom
 - Non-linear error signal, "false" locks
 - Too small actuation range on test masses

Lock arms first and hold them off resonance

The lock central interferometer Finally bring arms slowly to resonance

1st Lock!

May 27 2014 at Livingston Observatory

LIGO

Time Line

WE ARE HERE

Advanced LIGO project goals:

- Fully locked interferometer.
- Stable operation for 2 hours.

Advanced Virgo sensitivity

- Start at low power, no signal recycling mirror
- Add signal recycling mirror in tuned configuration
- Slowly increase input power
- Detuned signal recycling

B. Swinkels - Adv. Virgo Commissioning - GWADW

Advanced Virgo status

- Heavy infrastructure works mostly finished: building modifications, new cleanrooms, upgraded air-conditioning, ...
- First large optics polished, good results so far (RMS < 1 nm)
- Most sub-systems near the end of construction
- First items already installed on site (MC, injection benches, cryotrap)
- Peak of installation starting in the next months, will last about 1 year

Cryogenic Mirror

Underground

ey features

of KAGRA

Technologies crucial for the 3rd-generation detectors; KAGRA can be regarded as a 2.5-generation detector.

The KAGRA Tunnel in the Kamioka mine

M

Outline

- Current status
 - LIGO (with detail), Timeline
 - Virgo, Kagra
- Limitations for sensitivity

Other applications of GW interferometers

Key technological hurdles

- Quantum noise (radiation pressure/shot)
 Quantum mechanical measurement limitations
- Thermal noise (coating)
 Thermal motion of the mirror surface

Newtonian (Gravity Gradient) noise

 Newtonian gravity short-circuits suspensions
 (not this talk)

Quantum Noise

• Go heavy...

160

$$x_{\rm SQL} = \sqrt{\frac{2\hbar}{m\pi^2 f^2}}$$

- Squeezing
 - External squeezed light injection
 - Filter cavities

Squeezed light source

Quantum trade-off between phase and amplitude noise
Strain sensing is only sensitive to one of them

Schematic representation of Electric field, various states

Laser

Why does squeezing work?

→ Readout quadrature

Filter cavities

 $\Phi(f)$ • Concept: A cavity operated in reflection: \rightarrow frequency dependent phase shift - No delay above cavity pole Used on squeezed light: frequency dependent rotation on squeezing ellipse Keep squeezing ellipse in correct orientation Draw-back: very sensitive to optical losses

Thermal Noise basics

- Fluctuation-dissipation theorem: It's the loss!
 - Equipartition theorem.:

Fluctuation-dissipation theorem

The energy loss per cycle (normalized by the driving force squared) is proportional to the velocity power spectrum

Crystal coatings -AlGaAs

- Recent result:
 - Tenfold reduction of Brownian noise in optical interferometry (G. Cole et. al.,arXiv:1302.6489)
 Loss angle < 4e-5

Cryogenic operation

- Thermal Noise? Cool!
 - Young's modulus, mech. loss, thern conductivity and capacity need to be well-behaved at low T.
 - New substrate material
 e.g. crystalline Si (aLIGO uses SiO₂
- Implications:
 - Need to change laser wavelength to 1.6u (band edge)
 - Affects coating choice
 - Technical integration challenge
 - Vibrations, cooling beam pipes, etc.

Ligo Long is good!

- Coating thermal noise
 - Gain: L^{1.5}
 - Cryogenic/Crystal: no need
 - Displacement noise
 - Gain: L
 - Newtonian N. irrelevant
- Radiation pressure
 - Becomes irrelevant
- Shot noise
 - Gain: ~sqrt(L)
 Freq. indep. Squeezing
- Vertical susp. Thermal
 Gain: constant

Nic we change in the second se

Range: 190Mpc; L: 4 km (aLIGO: 178 Mpc)

Outline

- Current status
 - LIGO (with detail), Timeline
 - Virgo, Kagra
- Limitations for sensitivity

Other applications of GW interferometers

What else can interferometers be good for?

Dark matter: What if no WIMPS?

R. Adhikari (CIT), A. Derevianko (UNR), V. Frolo (LLO), M. Giesler (CIT), E. Hall (CIT), J. Hunacek (CIT), H. Muller (UCB), M. Pospelov (PI/UVIC)

Earthquake early warning

LIGO

M. Barsuglia (APC-CNRS) J-.P Ampuero (Caltech), E. Chassande-Mottin (APC-CNRS), J. Harms (INFN Firenze/Urbino), J.-P. Montagner (IPGP), S. N. Somala (Caltech), B. F. Whiting (U. Florida)

LIGO Alternative to WIMPS?

• DM clumps?

 E.g. conglomerates of DM particles (dust), bound my gravity or other force

Bound on size from Micro-lensing: <~M_{Earth}

 Encounter at galactic orbital velocity (230m/s) produces characteristic acceleration signal

LIGO Encounters with DM Clumps

Signal is due to Newtonian force - no GW involved

Choose clump mass M as a parameter Number density can be obtained:

$$\rho_{DM} = nM$$

t - time between encounters

A - cross section

v = 230 km/s velocity w.r.t galactic rest frame 1

$$vt = \frac{1}{An}$$

Characteristic area(distance):

$$A = \frac{M}{\rho_{DM} vt}$$

Clump size < d, L_{arm}

A DINK

Signal from a clump moving along X arm

Random angle and position

Signal from gravitational interaction is small but DM may have long range non-minimal interaction - lot of room for model building and testing

SNR was obtained by integration. Searches should be done using templates.

No coincidences between non-colocated interferometers due to solid angle

Signal in aLIGO

V. Frolov, GWADW 2014

Signal in ET

LIGO

Three interferometers are co-located. Coincidence and wave form analysis allows background rejection.

Signal in LISA

LIGO

Earthquake early warning

- Gravimeters already see local gravity changes due to mass dislocations in earth quakes
- Can this change be seen promptly, providing an early warning system?
- Early warning time increased by ~ p-wave propagation time

Earthquake early warning

Main motivations: Earthquake early-warning systems

For example, for some densities: P-waves ~ 5 km/s S-waves~ 2.5 km/s

Matteo Barsuglia GWADW 2014

LIGO Low frequencies!

Gravity signals: simulation vs calculation

computation of gravity field implemented in the program SPECFEM3D

Example with torsion bar

Possible sensitivity curve

Matteo Barsuglia GWADW 2014

Matteo Barsuglia GWADW 2014

500

Madariaga, R. (1976), Dynamics of an expanding circular fault, Bulletin of the Seismological Society of America, 66(3), 639-666

Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of geophysical research, 75(26), 4997-5009

 $M(f) = \frac{1}{2\pi f} \frac{M_0}{1 + (f/f_{\rm c})^2}$

$$|h_{+}(\boldsymbol{r}_{0},t)\rangle = \langle h_{\times}(\boldsymbol{r}_{0},t)\rangle = rac{6\sqrt{14/5}\,G}{r_{0}^{5}}I_{4}[M_{0}](t)$$

1000

100 NS

10

 $\mathrm{SNR}^2 = \int \mathrm{d}f \; \frac{|H(\vec{r}_0, f)|^2}{S(f)}$

300

Distance [km]

1000

100

400

200

100

LIGO

8

7.5

Magnitude

6

5.5

5

7 10000

Conclusion

- Advanced LIGO was locked. Sensitivity commissioning started. Observing soon (within 2 years).
- Further significant sensitivity improvements (z=1 for NS/NS) seems possible, but requires research.
- Unexpected applications of GW interferometers do also exist.

Thank you!