Quantum Quenches in Fermion Liquids

From the Generalized Gibbs Ensemble to Pre-thermalization

Miguel A. Cazalilla NTHU, Taiwan.

ICTP (Trieste)

July 2, 2014

What you can do with Quadratic Hamiltonians ...

Miguel A. Cazalilla NTHU, Taiwan.

ICTP (Trieste)

July 2, 2014

Collaborators

張明強 NCHU, Taiwan

Nicolas Nessi, La Plata, Anibal Iucci, La Plata, Argentina Argentina

> MAC, Phys. Rev. Lett. (2006) A Iucci & MAC, Phys. Rev. A (2009) MAC, A Iucci & MC Chung Physical Review E (2012) N Nessi, A Iucci & MAC, arXiv:1401.986

Fermion liquids in Equilibrium (a crash course)

Fermi Liquid Theory

One Dimension: The Tomonaga-Luttinger Liquid

Haldane

(There are more, but I simply couldn't fit in every one...)

Collective modes exhaust the low-energy spectrum

Power-law Momentum distribution

$$n(p) \sim \operatorname{sgn}(p - p_F) |p - p_F|^{\gamma_{eq}^2}$$

Out of Equilibrium Quantum (Fermi) Gases

Sudden Quantum Quenches

Some Important Questions

Does the system reach a steady state?

If so, what are its properties? Does it thermalize?

$$\bar{O} = \text{Tr} \rho_{\text{steady}} \hat{O},$$

 $\rho_{\text{steady}} \propto e^{-H/T_{\text{eff}}}$?

Fermions in 1D Out of Equilibrium

The Luttinger (Thirring) Model

Luttinger

Mattis & Lieb

[J. Math. Phys. (1965)]

'Anomalous' commutation relations $[\rho_R(q), \rho_R(-q')] = \frac{qL}{2\pi} \delta_{q,q'}$

Quantum Quench in the LM

$$H_{\rm kin} = \sum_{q \neq 0} \hbar v_F |q| a^{\dagger}(q) a(q) \quad H_{\rm LM} = \sum_{q \neq 0} \hbar v |q| b^{\dagger}(q) b(q)$$

Non-interacting fermions $(t \le 0)$

Interacting fermions (*t* > 0)

Equilibrium solution $b(q) = \cosh \varphi(q) a(q) + \sinh \varphi(q) a^{\dagger}(-q)$

Non-equilibrium (quench) solution:

 $a(q,t) = e^{iH_{LM}t/\hbar}a(q)e^{-iH_{LM}t/\hbar} = f(q,t)a(q) + g^*(q,t)a^{\dagger}(-q),$ $f(q,t) = \cos v|q|t - i\sin v|q|t \cosh 2\varphi(q),$ $g(q,t) = i\sin v|q|t \sinh 2\varphi(q) \qquad \text{MAC, PRL <u>97</u> (2006)}$

One-particle density matrix

$$C_{\psi_r}(x,t>0) = \langle 0|e^{iH_{LM}t/\hbar}\psi_r^{\dagger}(x)\psi_r(0)e^{-iH_{LM}t/\hbar}|0\rangle_{\text{Dirac}}$$

Interaction Quenches: Fermions in 1D

Momentum distribution at time t :

MAC Phys Rev Lett (2006) A Iucci & MAC Phys Rev A (2009)

Does this work for Tomonaga-Luttinger liquids?

Where does the system go?

The system does not thermalize! Why?

The GGE Conjecture

M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL (2007)

Apply the Maximum Entropy Principle [E.T. Jaynes, PR (1957)]

$$\bar{O} = \lim_{t \to +\infty} \langle \Psi(t) | \hat{O} | \Psi(t) \rangle = \operatorname{Tr} \rho_{GGE} \hat{O},$$

$$\rho_{GGE} = \frac{e^{\sum_{k} \lambda_{k} I(k)}}{Z_{GGE}}, \quad \langle I(k) \rangle_{GGE} = \langle \Psi(t=0) | I(k) | \Psi(t=0) \rangle$$
Need Integrals of Motion $[H, I(k)] = 0$
Luttinger Model Integrals of Motion $I(k) = b^{\dagger}(k)b(k)$
But only O(N) integrals are needed! Why?

Other Evidence for the GGE

Falikov-Kimball Model M Eckstein and M Kollar PRL 2008 1/r Hubbard Model in 1D M Eckstein and M Kollar PRA 2008 Sine-Gordon model A Iucci & MAC PRA 2009, NJP 2010 Sine-Gordon model D Fioretto and G Mussardo, NJP 2010 Quantum Ising Model P Calabrese, Fagotti, FHM Essler, PRL 2011 + Add your favorite paper here if not listed above ...

"All Science is either Physics or stamp collecting" Lord Kelvin

What principles behind the GGE?

 $H_{0} = \sum_{k,k'} \left[\epsilon_{0}(k) \delta_{k,k'} + V_{0}(k,k') \right] f^{\dagger}(k) f(k')$ $+ \sum_{k,k'} \left[\Delta_{0}^{*}(k,k) f(k) f(k') + \Delta_{0}(k,k') f^{\dagger}(k') f^{\dagger}(k) \right]$

Quantum Quench as a sudden change of Hamiltonian

System eigenmodes [O(L) bosons or fermions]

 $[H, f(k)] = \epsilon(k)f(k)$

Uncorrelated Initial states

(Clustering) Wick's theorem $\langle f^{\dagger}(k_1)f^{\dagger}(k_2)f(k_3)f(k_4)\rangle = \langle f^{\dagger}(k_1)f^{\dagger}(k_2)\rangle\langle f(k_3)f(k_4)\rangle$ $\pm \langle f^{\dagger}(k_1)f(k_3)\rangle\langle f^{\dagger}(k_2)f(k_4)\rangle + \cdots$

Gaussian reduced density matrices[M.C. Chung and I. Peschel PRB (2001)]
[S.-A. Cheong and C.~L. Henley, PRB (2004)] $\rho(k) = \operatorname{Tr}_{k' \neq k} \rho_0 = \frac{1}{Z(k)} e^{-\lambda(k) f^{\dagger}(k) f(k)}$ $\rho_{\mathrm{GGE}} = \bigotimes \rho(k)$ Physically, the other
modes act as a bathEigenmode dependent temperature
 $T(k) = \lambda(k)/\epsilon(k)$

For correlated (i.e. Chaotic) initial states thermalization occurs K He and M Rigol, PRA (2013)

$$\begin{aligned} \textbf{Correlations of Local Operators}\\ \textbf{Local Operator } O(x) &= \sum_{k} \varphi_k(x) f(k) \\ C_O^{(2)}(x_i, x_j, t) &= \langle O^{\dagger}(x_i, t) O(x_j, t) \rangle \\ &= \sum_{k,k'} \varphi_k^*(x_i) \varphi_{k'}(x_j) \underbrace{G_0(k,k')}_{G_0(k,k')} e^{-i[\epsilon(k) - \epsilon(k')]t/\hbar} \\ G_0(k,k') &= \langle f^{\dagger}(k) f(k') \rangle \ O(L^2) \end{aligned}$$
$$\begin{aligned} \underbrace{\lim_{t \to +\infty} C_0(x_i, x_j, t)}_{L \to +\infty} &= \sum_{k} \varphi_k^*(x_i) \varphi_k(x_j) \underbrace{N_0(k)}_{K \to +\infty} \\ \textbf{Dephasing Only L numbers} \end{aligned}$$
$$\begin{aligned} N_0(k) &= \langle f^{\dagger}(k) f(k) \rangle = \operatorname{Tr} \rho(k) \ f^{\dagger}(k) f(k) = \operatorname{Tr} \rho_{\text{GGE}} \ f^{\dagger}(k) f(k) \\ \rho_{\text{GGE}} &= \bigotimes \rho(k) \end{aligned}$$

MAC, A Iucci, MC Chung Phys. Rev. E (2012)

How about Nonlocal Operators?

Momentum distribution $S(k,t) = \frac{1}{L} \sum_{i=1}^{L} \langle \sigma_i^-(t) \sigma_j^+(t) \rangle e^{ik(x_i - x_j)}$

j < i

Non-local operator $\sigma_i^+ = \prod (1 - 2f_j^\dagger f_j) f_i,$

Using Wick's theorem $\lim_{t \to +\infty} \langle \sigma_i^-(t) \sigma_j^+(t) \rangle = \frac{1}{2}$

Tricky points with Wick's th.

MAC, A Iucci, MC Chung PRE (2012)

S Ziraldo and GE Santoro PRB 2013

$$a_{i-j+1} = \delta_{ij} - 2\sum_{k} \varphi_k^*(x_i)\varphi_k(x_j)N_0(k)$$

Depends only on diagonal correlations $N_0(k) = \langle f^{\dagger}(k)f(k) \rangle$

Toeplitz determinant

a_0	a_1	•••	a_{-n+1}
a_1	a_0	•••	a_{-n+2}
• •	• •	•	• •
a_{n-1}	a_{n-2}	•••	a_0

Pre-thermalization of Fermion fluids

Prethermalization [...] describes the very rapid establishment of [..] a kinetic temperature based on average kinetic energy [...] the occupation numbers of individual momentum modes still show strong deviations from the late-time Bose-Einstein or Fermi-Dirac distribution.

J Berges et al Phys Rev Lett 2004

Prethermalization in the Hubbard Model

M Moeckel & S Kehrein PRL (2006)

Prethermalization in the Hubbard Model (in infinite dimensions)

Two stage evolution to the Steady State

1D conductor

Chiral Anomaly

Quench of the electric field $\frac{dj(t)}{dt} + \frac{j(t)}{\tau} = \frac{e^2 \rho_0}{m} E_0 \theta(t)$ $j(t \ge 0) = \frac{e^2 \rho_0 \tau}{m} E(1 - e^{-t/\tau})$

Pre-thermalization in a 2D Fermi gas with long range interactions

Quench in a 2D interacting Fermi Gas

N Nessi, A Iucci & MAC, arXiv:1401.1986

$$H_{\text{int}} = 0 \longrightarrow H_{\text{int}} \neq 0$$
Hamiltonian for $t \leq 0$ $H_0 = \sum_k \epsilon(k) c_k^{\dagger} c_k$

Hamiltonian for t > 0

$$H = H_0 + H_{\text{int}} = \sum_{\boldsymbol{k}} \epsilon(\boldsymbol{k}) c_{\boldsymbol{k}}^{\dagger} c_{\boldsymbol{k}} + \frac{1}{V} \sum_{\boldsymbol{k} p q} f(q) c_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}-\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}} c_{\boldsymbol{k}}$$

Long-range (non-singular) interaction $q_c^{-1} \gg k_F^{-1}$

 $f(q) = f_0 F(q)$ $F(q \gg q_c) \sim e^{-q/q_c}$ F(q = 0) = const.

Pre-thermalization, perturbative? **YES!**

PT tell us there is a pre-thermalization plateau, but WHY?

Making an Interacting Gas Exactly Solvable

Hamiltonian for t > 0

Contains inelastic processes

$$H = H_0 + H_{\text{int}} = \sum_{\boldsymbol{k}} \epsilon(\boldsymbol{k}) c_{\boldsymbol{k}}^{\dagger} c_{\boldsymbol{k}} + \frac{1}{V} \sum_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}} f(\boldsymbol{q}) c_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}-\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}} c_{\boldsymbol{k}}$$

Fermi-liquid-like truncation of the bare Hamiltonian

(= Neglect inelastic processes at short times)

Eigenmodes
$$H = \sum_{l,q} \omega(q) \alpha^{\dagger}(q) \alpha_{l}(q)$$

FS Bosonization
$$J_{\mathbf{S}}(\mathbf{q}) \sim \sum_{\mathbf{k}\in\mathbf{S}} c^{\dagger}_{\mathbf{k}+\mathbf{q}} c_{\mathbf{k}}$$

$$H = \frac{1}{2} \sum_{\mathbf{S},\mathbf{T},\mathbf{q}} J_{\mathbf{S}}(\mathbf{q}) \left(\frac{v_F}{\Omega} \delta_{\mathbf{S},\mathbf{T}} + \frac{f(q)}{V}\right) J_{\mathbf{T}}(-\mathbf{q})$$

$$[J_{\boldsymbol{S}}(\boldsymbol{q}), J_{\boldsymbol{T}}(\boldsymbol{p})] = \delta_{\boldsymbol{S},\boldsymbol{T}} \delta_{\boldsymbol{q}+\boldsymbol{p}} \,\Omega \,\hat{\boldsymbol{n}}_{\boldsymbol{S}} \cdot \boldsymbol{q}$$

Houghton, Kwon & Marston Adv. in Phys. (2000) +Haldane, Castro Neto & Fradkin, Kim & Wen & Lee, ...

Interaction quench in a 2D Fermi Gas

N Nessi, A Iucci, and MAC, arXiv:1401.1986

$$\langle K(t) \rangle \rightarrow \langle \Psi_0 | (H - E_{\rm gs}) | \Psi_0 \rangle + O(g^3)$$

Momentum distribution

Prethermalized State = GGE

How do we describe the pre-thermalized state?

Eigenmodes
$$H = \sum_{l,q} \omega(q) \alpha^{\dagger}(q) \alpha_{l}(q)$$

Generalized Gibbs Ensemble

 $\rho_{\rm GGE} = \frac{1}{Z_{\rm GGE}} \exp\left[\sum_{l,\boldsymbol{q}} \lambda_l(\boldsymbol{q}) I_l(\boldsymbol{q})\right]$

 $I_l(\boldsymbol{q}) = \alpha_l^{\dagger}(\boldsymbol{q}) \alpha_l(\boldsymbol{q}) \underbrace{Fermi \ Surface}_{eigenmodes}$

Interaction quench in a 2D Dipolar Gas

Conclusions

- Fermions in 1D exhibit very slow relaxation dynamics following a quantum quench. At T = 0, the discontinuity at the Fermi energy vanishes as a power law.
- Generally speaking, systems that can be described in terms of quadratic Hamiltonians of Bosonic or Fermionic elementary excitations thermalize to a Generalized Gibbs Ensemble (GGE).
- **Dephasing** is the key mechanism and erases information about off diagonal normal mode correlations and leads to an asymptotic state described by the GGE.
- Even systems that eventually do thermalize can exhibit an intermediate regime known as pre-thermalization. The system dynamics may be describable for short times by a quadratic Hamiltonian, and therefore the pre-thermal state will be described by the GGE
- A dipolar Fermi liquid subject to a weak to moderate interaction quench should exhibit a pre-thermalized regime characterized by the kinetic energy rapidly reaching a constant value whilst the momentum distribution has not.