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Quantum Quenches

A. Consider an isolated quantum system in the thermodynamic 
limit; Hamiltonian H(h) (short-ranged), h e.g. bulk magnetic field

B. Prepare the system in the ground state |ψ〉of H(h0)

C. At time t=0 change the Hamiltonian to H(h)

D. (Unitary) time evolution |ψ(t)〉= exp(-iH(h)t) |ψ〉

E. Goal: study time evolution of local (in space) observables 
〈ψ(t)|Ο(x)|ψ(t)〉,  〈ψ(t)|O1(x)Ο2(y)|ψ(t)〉etc



Time evolution after a quantum quench

Density matrix of entire system: ρ(t)

Reduced density matrix: ρB(t)=trA ρ(t)

A

B

ρB contains all local correlation functions in B:

for B=[1,...,ℓ] in a spin-1/2 quantum spin chain

αj=0,x,y,z



Late time behaviour in generic systems: Thermalization

 

• β fixed by: 

• Define Gibbs ensemble for 
  the entire system A∪B :

• Reduced density matrix for B:

ρB(∞)= ρG,B

The system thermalizes if for any finite subsystem B

Deutsch ’91, Srednicki ’94,...



Rigol et al ’07t→∞ behaviour in integrable systems: GGE

ρgG=exp(-Σ λm Im)/ZgG

Let Im be integrals of motion [Im, In]=[Im, H(h)]=0

Define GGE density matrix by:

λm fixed by

ρB(∞)= ρgG,B

The system is described by a GGE if for any finite subsystem B

ρgG,B=trA [ρgG]Reduced density matrix of B:

Barthel & Schollwöck ’08

Cramer, Eisert et al ’08



Thermalization: 
A acts as a heat 
bath with Teff

A

B

Integrable models: A is not a standard 
heat bath: ∞ information about the 
initial state is retained.

Physical Picture



What happens if we “weakly” break integrability?

Question:

time
T

thermalization?

0

remnants of integrability?



What happens if we “weakly” break integrability?

Question:

time
T

thermalization?

0

remnants of integrability?

Moeckel&Kehrein ’08
Kollar et al ’11
Marcuzzi et al ’13
Brandino et al ’13
Nessi et al ’14

Manmana et al ’07
Kollath et al ’07
Rigol& Santos ’09, ’10



Interacting Peierls Insulator

• Want a D=1 model so that we can do tDMRG;
• Preserve U(1) to aid tDMRG;
• 2 tuneable parameters: one for quench in integrable model, 
one to break integrability;
• integrable model = free theory for simplicity

2

bles. The continuous unitary transformation technique
is introduced and used to study a weakly nonintegrable
quench of the model in Sec. IV. In Sec. V we establish
the existence of the prethermalized regime and describe
the approximately stationary behavior in this regime by
constructing a “deformed GGE”. The dynamics in the
presence of strong integrability-breaking interactions is
studied numerically in Sec. VI. Sec. VII contains a sum-
mary and discussion of our main results. Technical de-
tails underpinning our analysis are consigned to several
appendices.

II. THE MODEL

We consider the following Hamiltonian of spinless
fermions with dimerization and density-density interac-
tions

H(�, U) = �J

L
X

l=1

⇥

1 + (�1)l�
⇤

⇣

c†l cl+1

+ h.c.
⌘

+U
L

X

l=1

c†l clc
†
l+1

cl+1

, (1)

with periodic boundary conditions. Here {c†l , cj} = �l,j
and we restrict our attention to the parameter regime
J > 0, U � 0 and 0 < � < 1. We work at half-filling
throughout, i.e. the total number of fermions is L/2.
When showing results for the time evolution of observ-
ables we measure time in units of J�1 throughout. An
important characteristic of H(�, U) is that fermion num-
ber is conserved by virtue of the U(1) symmetry

cj �! ei'cj , ' 2 [0, 2⇡]. (2)

The presence of the U(1) symmetry is a crucial feature
of our model: on the one hand it leads to dramatic sim-
plifications in our analytical calculations, while at the
same time it enables us to access very late times in our
t-DMRG computations (as compared to existing studies
of other nonintegrable one dimensional models).

We note that the Hamiltonian (1) is equivalent to a
spin-1/2 Heisenberg XXZ chain with dimerized XX term
as can be shown by means of a Jordan-Wigner trans-
formation. The model with finite U, � has previously
been studied in order to investigate the e↵ect of inter-
actions on the equilibrium dimerization of the chain.39,40

Density matrix renormalization group calculations sug-
gest that for large values of the interaction parameter
U & 4, the Peierls transition to a dimerized ground state
is suppressed.40

There are several limits, in which exact results on
the equilibrium phase diagram of H(�, U) are available.
Firstly, in the absence of interactions (U = 0) and for any
value of the dimerization parameter � we obtain a model

of a noninteracting Peierls insulator. Secondly, for van-
ishing dimerization � = 0 and U � 0 a Jordan-Wigner
transformation maps the model to the spin-1/2 Heisen-
berg XXZ chain. Finally, in the regime of small |�| and
U < J , the low-energy limit of the model is given by the
integrable sine-Gordon model.41

A. Peierls insulator

The special case H(�, 0) describes a Peierls insulator
and can be solved by means of a Bogoliubov transforma-
tion

cl =
1p
L

X

k>0

X

↵=±
�↵(l, k|�)a↵(k) . (3)

Here a↵(k) are fermion annihilation operators fulfilling

{a↵(k), a�(q)} = 0 , {a↵(k), a†
�(q)} = �↵,��k,q. (4)

The coe�cients are chosen as

�↵(l, k|�) = e�ikl
h

u↵(k, �) + v↵(k, �)(�1)l
i

, (5)

where

v↵(k, �) =

"

1 +

�

�

�

�

2J cos(k) � ✏↵(k)

2�J sin(k)

�

�

�

�

2

#�1/2

,

u↵(k, �) = iv↵(k)
2J cos(k) � ✏↵(k)

2�J sin(k)
, (6)

✏↵(k, �) = 2↵J
p

�2 + (1 � �2) cos2(k) . (7)

The “+” and “�” bands are separated by an energy gap
of 4�J . Finally,

P

k>0

is a shorthand notation for the
momentum sum

X

k>0

f(k) =

L/2
X

n=1

f
�2⇡n

L

�

. (8)

In terms of the Bogoliubov fermions the Peierls Hamil-
tonian is diagonal:

H(�, 0) =
X

k>0

✏↵(k, �)a†
↵(k)a↵(k). (9)

B. Integrability-breaking interactions

Adding interactions to the Peierls Hamiltonian leads
to a theory that is not integrable. An exception is the
low-energy limit for |�| ⌧ 1, which is described by a
quantum sine-Gordon model.41 In the following we will
be interested in the regime 0.4  �  0.8, which is far
away from this limit. It is useful to express the density-
density interaction in H(�, U) in terms of the Bogoliubov
fermions diagonalizing H(�, 0)

2 bands of free fermions



Quenches in the free theory

Prepare the system in the ground state      of 

At t=0 quench

Single particle Green’s function

3

H
int

= U

L
X

l=1

c†l clc
†
l+1

cl+1

= U
X

kj>0
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†
↵1

(k
1

)a↵2(k2)a
†
↵3

(k
3

)a↵4(k4) ,

V↵(k) =
1

L2

X

l

�⇤
↵1

(l, k
1

|�)�↵2(l, k2

|�)�⇤
↵3

(l + 1, k
3

|�)�↵4(l + 1, k
4

|�) ,

=
1

L
ei(k3�k4)

n

�k1+k3,k2+k4 [w↵1↵2(k1, k2)w↵3↵4(k3, k4) � x↵1↵2(k1, k2)x↵3↵4(k3, k4)]

+�k1+k3+⇡,k2+k4 [x↵1↵2(k1, k2)w↵3↵4(k3, k4) � w↵1↵2(k1, k2)x↵3↵4(k3, k4)]
o

. (10)

Here we have defined

w↵�(k, p) = u⇤
↵(k, �)u�(p, �) + u ! v, (11)

x↵�(k, p) = u⇤
↵(k, �)v�(p, �) + u $ v. (12)

III. INTEGRABLE QUANTUM QUENCHES

We first consider a quantum quench of the dimerization
parameter � in the limit of vanishing interactions U = 0.
The system is initially prepared in the ground state | 

0

i
of H(�i, 0), and at time t = 0 the dimerization is suddenly
quenched from �i to �f . At times t > 0 the system evolves
unitarily with the new Hamiltonian H(�f , 0).

The diagonal form of our initial Hamiltonian is

H(�i, 0) =
X

↵=±

X

k>0

✏↵(k, �i)b
†
↵(k)b↵(k), (13)

and describes two bands of noninteracting fermions. The
ground state is obtained by completely filling the “�”
band; i.e.,

| 
0

i =
Y

k

b†�(k)|0i, (14)

where |0i is the fermion vacuum defined by b↵(k)|0i = 0,
↵ = ±, k 2 (0, ⇡]. At times t > 0 the system is in the
state

| 
0

(t)i = e�iH(�f ,0)t| 
0

i. (15)

The new Hamiltonian is diagonalized by the Bogoliubov
transformation (3)

H(�f , 0) =
X

↵=±

X

k>0

✏↵(k, �f )a†
↵(k)a↵(k), (16)

and by virtue of (3) the Bogoliubov fermions a↵(k), a†
↵(k)

are linearly related to b↵(k), b†↵(k). Using this relation
it is a straightforward exercise to obtain an explicit ex-
pression for the time evolution of the fermion Green’s
function (see Fig. 1)

G
0

(j, `, t) = h 
0

(t)|c†jc`| 0

(t)i

=
1

L

X

k>0

X

↵�

�⇤
↵(j, k|�f )��(`, k|�f ) ⇥

ei(✏↵(k)�✏�(k))tS�
↵ (k)S�

� (k)⇤ (17)

where

S�
↵(k) = u↵(k, �f )u⇤

�(k, �i) + u $ v. (18)
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FIG. 1. (Color online) Green’s function G0(j, l, t) for a quench
with �i = 0.75, �f = 0.25 and a lattice with L = 100 sites.

The late-time behavior can be determined by a sta-
tionary phase approximation, which gives

lim
t!1

G
0

(j, `, t) ⇠ g
1

(j, `) + g
2

(j, `)t�3/2 + . . . (19)

A. Generalized Gibbs ensemble (GGE)

The stationary state of the dimerization quench is de-
scribed by a GGE.30 We now briefly review the construc-
tion of the GGE following Refs. 9, 11, and 12. In the
thermodynamic limit the system after the quench pos-

sesses an infinite number of local conservation laws I
(n)
a

(a = 1, 2, 3, 4, n 2 N)

[I(n)a , I
(m)

b ] = 0 , I
(1)

1

= H(�f , 0). (20)

An explicit construction of these conservation laws is pre-
sented in Appendix A. Given these conserved quantities
we defined a density matrix

%
GGE

=
1

Z
GGE

exp



�
4

X

a=1
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j�1
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a I(j)a

�

, (21)
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FIG. 1. (Color online) Green’s function G0(j, l, t) for a quench
with �i = 0.75, �f = 0.25 and a lattice with L = 100 sites.

The late-time behavior can be determined by a sta-
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A. Generalized Gibbs ensemble (GGE)

The stationary state of the dimerization quench is de-
scribed by a GGE.30 We now briefly review the construc-
tion of the GGE following Refs. 9, 11, and 12. In the
thermodynamic limit the system after the quench pos-

sesses an infinite number of local conservation laws I
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given by a GGE

G(j, `, t) = h 0(t)|c†jc`| 0(t)i
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where Z
GGE

ensures normalization.42 The Lagrange mul-
tipliers are fixed by the requirements that the expecta-
tion values of the conserved quantities are the same in
the initial state and in the GGE

lim
L!1

1

L
h 

0

|I(j)a | 
0

i = lim
L!1

1

L
tr

h

%
GGE

I(j)a

i

. (22)

We then bipartition the system into a segment B of ` con-
tiguous sites and its complement A and form the reduced
density matrix

%
GGE,B = trA [%

GGE

] . (23)

On the other hand the reduced density matrix of segment
B after our quantum quench is simply

%B(t) = trA
h

| 
0

(t)ih 
0

(t)|
i

. (24)

At late times after the quench it can be shown by using
free fermion techniques (see, e.g., Ref. 11) that

lim
t!1

lim
L!1

%B(t) = %
GGE,B. (25)

An alternative9,14,30 but equivalent12 construction of the
GGE is based on the mode occupation numbers

n̂↵(k) = a†
↵(k)a↵(k). (26)

By construction these commute with H(�f , 0) and among
themselves, and we can express the density matrix in the
form

%
GGE
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Z
GGE

exp



�
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k>0

X

↵=±
�
(↵)
k n̂↵(k)

�

. (27)

The Lagrange multipliers are fixed by the conditions

h 
0

|n̂↵(k)| 
0

i = tr [%
GGE

n↵(k)] , (28)

which are solved by

e��
(+)
k =

|S�
+

(k)|2

1 � |S�
+

(k)|2
,

e��
(�)
k =

|S�
�(k)|2

1 � |S�
�(k)|2

. (29)

Here the functions S↵
� (k) are defined in (18).

B. GGE vs. thermal expectation values

In the following it will be important to quantify the dif-
ference between the GGE constructed above and a Gibbs
ensemble (GE)

%G =
1

Z
G

exp(��
e↵

H(�f , 0)) , (30)

constructed by requiring that the average thermal energy
density is equal to the energy density in the initial state

lim
L!1

h 
0

|H(�f , 0)| 
0

i
L

= lim
L!1

tr [%
G

(�
e↵

) H(�f , 0)]

L
.

(31)
Using the fact that the fermions diagonalizing H(�f , 0)
and H(�i, 0) are linearly related by

a†
↵(k) = S�

↵(k) b†�(k), (32)

we can rewrite (31) in the form
X

k>0

✏
+

(k, �f )
⇥

|S�
�(k)|2 � |S�

+

(k)|2
⇤

=
X

k>0

✏
+

(k, �f ) tanh



�
e↵

2
|✏
+

(k, �f )|2
�

. (33)

1. Mode occupation numbers

In order to exhibit the di↵erence between Gibbs and
generalized Gibbs ensembles it is useful to consider the
mode occupation numbers, which are given by

hn̂↵(p)i =

8

<

:

1

1+exp

�

�eff✏↵(k,�f )
� for GE,

1

1+exp

�

�
(↵)
k

� for GGE.
(34)

Clearly the mode occupation numbers shown in
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FIG. 2. (Color online) Comparison between the mode oc-
cupation numbers hn+(k)i for Gibbs and generalized Gibbs
ensembles for a quench with �i = 0.75, �f = 0.25. The e↵ec-
tive inverse temperature for this quench is �e↵ = 2.95782J .

Figs. 2 & 3 are very di↵erent in the two ensembles.

2. Green’s function

As has been emphasized in Ref. 11, as we are dealing
with the nonequilibrium dynamics of an isolated quan-
tum system, we should focus on the expectation values

5
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FIG. 3. (Color online) Comparison between the mode oc-
cupation numbers hn�(k)i for Gibbs and generalized Gibbs
ensembles for a quench with �i = 0.75, �f = 0.25. The e↵ec-
tive inverse temperature for this quench is �e↵ = 2.95782J .

of local (in space) operators, as descriptions in terms of
statistical ensembles most naturally apply to them (see
also12,43). We therefore consider the fermionic Green’s
function in position space, and furthermore focus on its
short-distance properties. The Green’s functions in the
GGE and thermal ensembles are

hc†jcli =
1

L

X

p>0

X

↵

�⇤
↵(j, p|�f )�↵(l, p|�f )hn̂↵(p)i, (35)

where the mode occupation numbers are given by (34). In
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FIG. 4. (Color online) Green’s function hc†L/2cL/2+ji calcu-
lated in the Gibbs and generalized Gibbs ensembles for a
quench with �i = 0.75, �f = 0.25 and a lattice with L = 100
sites. The e↵ective inverse temperature for this quench is
�e↵ = 2.95782J .

Fig. 4 we show a comparison between the results for the
fermion Green’s function calculated in the appropriate
Gibbs and generalized Gibbs ensembles. We observe that
in contrast to the mode occupation numbers, the di↵er-
ence between the short-distance behavior of the Green’s
function in the two ensembles is fairly small.

IV. QUENCHING TO A WEAKLY
INTERACTING MODEL

We now modify our quantum quench as follows. We
still start out our system in the ground state | 

0

i of the
pure Peierls Hamiltonian H(�i, 0) given by Eq. (14), but
we now quench to H(�f , U), where we consider U/J to
be small compared to min(�i, �f ). Our main interest is to
quantify how a non-zero value of U modifies the dynamics
after the quench.

To tackle the quench problem in the nonintegrable
weakly interacting model we employ the continuous
unitary transformation (CUT) technique44,45 which has
been applied extensively to nonequilibrium problems
(see, for example, Refs. 32 and 46). We provide a brief
overview of the CUT technique for out-of-equilibrium
many-body systems and proceed to calculate the time-
dependent Green’s function and the four-point function.

A. Time evolution of observables by CUT

For a nonintegrable interacting model it is no longer
possible to calculate the time evolution induced by the
Hamiltonian (1) exactly. We use the CUT technique to
obtain a perturbative expansion in U of the time-evolved
observables.

The central idea of the CUT method is to construct
a sequence of infinitesimal unitary transformations, cho-
sen such that the Hamiltonian becomes successively more
energy-diagonal. A family of unitarily equivalent Hamil-
tonians H(B) characterized by the parameter B can be
constructed from the solutions of the di↵erential equation

dH(B)

dB
=

h

⌘(B), H(B)
i

, (36)

where ⌘(B) is the anti-Hermitian generator of the unitary
transformation. Wegner44 showed that the Hamiltonian
in the final basis H(B = 1) is energy diagonal if ⌘(B) =
[H

0

(B), H
int

(B)], where H
0

is the quadratic part of the
Hamiltonian and H

int

is the remainder. In practice (36)
is used by expanding all operators in power series in an
appropriate small parameter, which in our case will be
the interaction strength U .

Following the transformation with an appropriate
choice of generator, the Hamiltonian is energy diagonal
(but not integrable). To perform the time evolution we
must introduce an additional approximation: We normal
order the interaction term with respect to the initial state
| 

0

i and neglect the normal-ordered quartic (and higher
order) terms

H(B = 1) = H
0

(B = 1) + H
int

(B = 1)

= H 0+ : H
int

(B = 1) : ,

U(t) ⇡ exp(�iH 0t) ,

where the time evolution operator U(t) depends only on
the quadratic Hamiltonian H 0 whose single particle en-

Momentum occupation numbers for the two bands:
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where Z
GGE

ensures normalization.42 The Lagrange mul-
tipliers are fixed by the requirements that the expecta-
tion values of the conserved quantities are the same in
the initial state and in the GGE

lim
L!1

1

L
h 

0

|I(j)a | 
0

i = lim
L!1

1

L
tr

h

%
GGE

I(j)a

i

. (22)

We then bipartition the system into a segment B of ` con-
tiguous sites and its complement A and form the reduced
density matrix

%
GGE,B = trA [%

GGE

] . (23)

On the other hand the reduced density matrix of segment
B after our quantum quench is simply

%B(t) = trA
h

| 
0

(t)ih 
0

(t)|
i

. (24)

At late times after the quench it can be shown by using
free fermion techniques (see, e.g., Ref. 11) that

lim
t!1

lim
L!1

%B(t) = %
GGE,B. (25)

An alternative9,14,30 but equivalent12 construction of the
GGE is based on the mode occupation numbers

n̂↵(k) = a†
↵(k)a↵(k). (26)

By construction these commute with H(�f , 0) and among
themselves, and we can express the density matrix in the
form

%
GGE

=
1

Z
GGE

exp



�
X

k>0

X

↵=±
�
(↵)
k n̂↵(k)

�

. (27)

The Lagrange multipliers are fixed by the conditions

h 
0

|n̂↵(k)| 
0

i = tr [%
GGE

n↵(k)] , (28)

which are solved by

e��
(+)
k =

|S�
+

(k)|2

1 � |S�
+

(k)|2
,

e��
(�)
k =

|S�
�(k)|2

1 � |S�
�(k)|2

. (29)

Here the functions S↵
� (k) are defined in (18).

B. GGE vs. thermal expectation values

In the following it will be important to quantify the dif-
ference between the GGE constructed above and a Gibbs
ensemble (GE)

%G =
1

Z
G

exp(��
e↵

H(�f , 0)) , (30)

constructed by requiring that the average thermal energy
density is equal to the energy density in the initial state

lim
L!1

h 
0

|H(�f , 0)| 
0

i
L

= lim
L!1

tr [%
G

(�
e↵

) H(�f , 0)]

L
.

(31)
Using the fact that the fermions diagonalizing H(�f , 0)
and H(�i, 0) are linearly related by

a†
↵(k) = S�

↵(k) b†�(k), (32)

we can rewrite (31) in the form
X

k>0

✏
+

(k, �f )
⇥

|S�
�(k)|2 � |S�

+

(k)|2
⇤

=
X

k>0

✏
+

(k, �f ) tanh



�
e↵

2
|✏
+

(k, �f )|2
�

. (33)

1. Mode occupation numbers

In order to exhibit the di↵erence between Gibbs and
generalized Gibbs ensembles it is useful to consider the
mode occupation numbers, which are given by

hn̂↵(p)i =

8

<

:

1

1+exp

�

�eff✏↵(k,�f )
� for GE,

1

1+exp

�

�
(↵)
k

� for GGE.
(34)

Clearly the mode occupation numbers shown in
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FIG. 2. (Color online) Comparison between the mode oc-
cupation numbers hn+(k)i for Gibbs and generalized Gibbs
ensembles for a quench with �i = 0.75, �f = 0.25. The e↵ec-
tive inverse temperature for this quench is �e↵ = 2.95782J .

Figs. 2 & 3 are very di↵erent in the two ensembles.

2. Green’s function

As has been emphasized in Ref. 11, as we are dealing
with the nonequilibrium dynamics of an isolated quan-
tum system, we should focus on the expectation values
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of local (in space) operators, as descriptions in terms of
statistical ensembles most naturally apply to them (see
also12,43). We therefore consider the fermionic Green’s
function in position space, and furthermore focus on its
short-distance properties. The Green’s functions in the
GGE and thermal ensembles are

hc†jcli =
1

L

X

p>0

X

↵

�⇤
↵(j, p|�f )�↵(l, p|�f )hn̂↵(p)i, (35)

where the mode occupation numbers are given by (34). In
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FIG. 4. (Color online) Green’s function hc†L/2cL/2+ji calcu-
lated in the Gibbs and generalized Gibbs ensembles for a
quench with �i = 0.75, �f = 0.25 and a lattice with L = 100
sites. The e↵ective inverse temperature for this quench is
�e↵ = 2.95782J .

Fig. 4 we show a comparison between the results for the
fermion Green’s function calculated in the appropriate
Gibbs and generalized Gibbs ensembles. We observe that
in contrast to the mode occupation numbers, the di↵er-
ence between the short-distance behavior of the Green’s
function in the two ensembles is fairly small.

IV. QUENCHING TO A WEAKLY
INTERACTING MODEL

We now modify our quantum quench as follows. We
still start out our system in the ground state | 

0

i of the
pure Peierls Hamiltonian H(�i, 0) given by Eq. (14), but
we now quench to H(�f , U), where we consider U/J to
be small compared to min(�i, �f ). Our main interest is to
quantify how a non-zero value of U modifies the dynamics
after the quench.

To tackle the quench problem in the nonintegrable
weakly interacting model we employ the continuous
unitary transformation (CUT) technique44,45 which has
been applied extensively to nonequilibrium problems
(see, for example, Refs. 32 and 46). We provide a brief
overview of the CUT technique for out-of-equilibrium
many-body systems and proceed to calculate the time-
dependent Green’s function and the four-point function.

A. Time evolution of observables by CUT

For a nonintegrable interacting model it is no longer
possible to calculate the time evolution induced by the
Hamiltonian (1) exactly. We use the CUT technique to
obtain a perturbative expansion in U of the time-evolved
observables.

The central idea of the CUT method is to construct
a sequence of infinitesimal unitary transformations, cho-
sen such that the Hamiltonian becomes successively more
energy-diagonal. A family of unitarily equivalent Hamil-
tonians H(B) characterized by the parameter B can be
constructed from the solutions of the di↵erential equation

dH(B)

dB
=

h

⌘(B), H(B)
i

, (36)

where ⌘(B) is the anti-Hermitian generator of the unitary
transformation. Wegner44 showed that the Hamiltonian
in the final basis H(B = 1) is energy diagonal if ⌘(B) =
[H

0

(B), H
int

(B)], where H
0

is the quadratic part of the
Hamiltonian and H

int

is the remainder. In practice (36)
is used by expanding all operators in power series in an
appropriate small parameter, which in our case will be
the interaction strength U .

Following the transformation with an appropriate
choice of generator, the Hamiltonian is energy diagonal
(but not integrable). To perform the time evolution we
must introduce an additional approximation: We normal
order the interaction term with respect to the initial state
| 

0

i and neglect the normal-ordered quartic (and higher
order) terms

H(B = 1) = H
0

(B = 1) + H
int

(B = 1)

= H 0+ : H
int

(B = 1) : ,

U(t) ⇡ exp(�iH 0t) ,

where the time evolution operator U(t) depends only on
the quadratic Hamiltonian H 0 whose single particle en-

Momentum occupation numbers for the two bands:

Very non-thermal!
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of local (in space) operators, as descriptions in terms of
statistical ensembles most naturally apply to them (see
also12,43). We therefore consider the fermionic Green’s
function in position space, and furthermore focus on its
short-distance properties. The Green’s functions in the
GGE and thermal ensembles are
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Fig. 4 we show a comparison between the results for the
fermion Green’s function calculated in the appropriate
Gibbs and generalized Gibbs ensembles. We observe that
in contrast to the mode occupation numbers, the di↵er-
ence between the short-distance behavior of the Green’s
function in the two ensembles is fairly small.

IV. QUENCHING TO A WEAKLY
INTERACTING MODEL

We now modify our quantum quench as follows. We
still start out our system in the ground state | 

0

i of the
pure Peierls Hamiltonian H(�i, 0) given by Eq. (14), but
we now quench to H(�f , U), where we consider U/J to
be small compared to min(�i, �f ). Our main interest is to
quantify how a non-zero value of U modifies the dynamics
after the quench.

To tackle the quench problem in the nonintegrable
weakly interacting model we employ the continuous
unitary transformation (CUT) technique44,45 which has
been applied extensively to nonequilibrium problems
(see, for example, Refs. 32 and 46). We provide a brief
overview of the CUT technique for out-of-equilibrium
many-body systems and proceed to calculate the time-
dependent Green’s function and the four-point function.

A. Time evolution of observables by CUT

For a nonintegrable interacting model it is no longer
possible to calculate the time evolution induced by the
Hamiltonian (1) exactly. We use the CUT technique to
obtain a perturbative expansion in U of the time-evolved
observables.

The central idea of the CUT method is to construct
a sequence of infinitesimal unitary transformations, cho-
sen such that the Hamiltonian becomes successively more
energy-diagonal. A family of unitarily equivalent Hamil-
tonians H(B) characterized by the parameter B can be
constructed from the solutions of the di↵erential equation

dH(B)

dB
=

h

⌘(B), H(B)
i

, (36)

where ⌘(B) is the anti-Hermitian generator of the unitary
transformation. Wegner44 showed that the Hamiltonian
in the final basis H(B = 1) is energy diagonal if ⌘(B) =
[H

0

(B), H
int

(B)], where H
0

is the quadratic part of the
Hamiltonian and H

int

is the remainder. In practice (36)
is used by expanding all operators in power series in an
appropriate small parameter, which in our case will be
the interaction strength U .

Following the transformation with an appropriate
choice of generator, the Hamiltonian is energy diagonal
(but not integrable). To perform the time evolution we
must introduce an additional approximation: We normal
order the interaction term with respect to the initial state
| 

0

i and neglect the normal-ordered quartic (and higher
order) terms

H(B = 1) = H
0

(B = 1) + H
int

(B = 1)

= H 0+ : H
int

(B = 1) : ,

U(t) ⇡ exp(�iH 0t) ,

where the time evolution operator U(t) depends only on
the quadratic Hamiltonian H 0 whose single particle en-

Green’s function at t=∞:

smaller differences.



Break integrability through Interactions

Prepare the system in the ground state      of 
At t=0 quench

Single particle Green’s function

δ

U



Analytic treatment through Continuous Unitary Transformation
method Glazek&Wilson ’93; Wegner ’93 

Moeckel&Kehrein ’08

• Express H in the form

• “Canonical” choice of generator

• Construct unitarily equivalent family of Hamiltonians

H(∞) is energy diagonal

• In practice expand H(B), η(B) in power series in U

• Local operators transform as



In our case:

energy diagonal at B=∞!
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of local (in space) operators, as descriptions in terms of
statistical ensembles most naturally apply to them (see
also12,43). We therefore consider the fermionic Green’s
function in position space, and furthermore focus on its
short-distance properties. The Green’s functions in the
GGE and thermal ensembles are
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Fig. 4 we show a comparison between the results for the
fermion Green’s function calculated in the appropriate
Gibbs and generalized Gibbs ensembles. We observe that
in contrast to the mode occupation numbers, the di↵er-
ence between the short-distance behavior of the Green’s
function in the two ensembles is fairly small.

IV. QUENCHING TO A WEAKLY
INTERACTING MODEL

We now modify our quantum quench as follows. We
still start out our system in the ground state | 

0

i of the
pure Peierls Hamiltonian H(�i, 0) given by Eq. (14), but
we now quench to H(�f , U), where we consider U/J to
be small compared to min(�i, �f ). Our main interest is to
quantify how a non-zero value of U modifies the dynamics
after the quench.

To tackle the quench problem in the nonintegrable
weakly interacting model we employ the continuous
unitary transformation (CUT) technique44,45 which has
been applied extensively to nonequilibrium problems
(see, for example, Refs. 32 and 46). We provide a brief
overview of the CUT technique for out-of-equilibrium
many-body systems and proceed to calculate the time-
dependent Green’s function and the four-point function.

A. Time evolution of observables by CUT

For a nonintegrable interacting model it is no longer
possible to calculate the time evolution induced by the
Hamiltonian (1) exactly. We use the CUT technique to
obtain a perturbative expansion in U of the time-evolved
observables.

The central idea of the CUT method is to construct
a sequence of infinitesimal unitary transformations, cho-
sen such that the Hamiltonian becomes successively more
energy-diagonal. A family of unitarily equivalent Hamil-
tonians H(B) characterized by the parameter B can be
constructed from the solutions of the di↵erential equation

dH(B)

dB
=

h

⌘(B), H(B)
i

, (36)

where ⌘(B) is the anti-Hermitian generator of the unitary
transformation. Wegner44 showed that the Hamiltonian
in the final basis H(B = 1) is energy diagonal if ⌘(B) =
[H

0

(B), H
int

(B)], where H
0

is the quadratic part of the
Hamiltonian and H

int

is the remainder. In practice (36)
is used by expanding all operators in power series in an
appropriate small parameter, which in our case will be
the interaction strength U .

Following the transformation with an appropriate
choice of generator, the Hamiltonian is energy diagonal
(but not integrable). To perform the time evolution we
must introduce an additional approximation: We normal
order the interaction term with respect to the initial state
| 

0

i and neglect the normal-ordered quartic (and higher
order) terms

H(B = 1) = H
0

(B = 1) + H
int

(B = 1)

= H 0+ : H
int

(B = 1) : ,

U(t) ⇡ exp(�iH 0t) ,

where the time evolution operator U(t) depends only on
the quadratic Hamiltonian H 0 whose single particle en-

6

ergies have O(U) contributions. By construction this ap-
proximation introduces a maximal time scale, on which
we expect our calculations to be accurate by virtue of
the smallness of U . Estimating this time scale within the
CUT formalism is di�cult, as it requires a reliable treat-
ment of the neglected energy diagonal interaction terms.
For this reason we extensively compare our CUT results
to t-DMRG computations (see Sec. IV E). Importantly,
we can perform our CUT calculations for very large sys-
tems of hundreds of sites, for which we have verified that
finite-size e↵ects do not play a role on time scales less
then the revival time (the results shown below are for
times less than the revival time). The procedure for cal-
culating the approximate time evolution of observables is
shown schematically in Fig. 5.

FIG. 5. (Color online) A schematic of the CUT method for
finding the approximate time evolution of the operator O to
order U .

B. The canonical generator and flow equations for
the Hamiltonian

We start by constructing the “canonical generator” of
the unitary transformation45 given by

⌘(B) = [H
0

(B), H
int

(B)]. (37)

The flow-dependent operators are defined by

H
0

(B) =
X

↵=±

X

k>0

✏↵(k|B)a†
↵(k)a↵(k), (38)

H
int

(B) =
X

kj>0

V↵(k|B)a†
↵1

(k
1

)a↵2(k2)a
†
↵3

(k
3

)a↵4(k4)

+ . . . . (39)

where the parameters in the Hamiltonian have been pro-
moted to functions of the flow parameter B and where
the dots indicate terms sextic and higher in creation and
annihilation operators. The canonical generator is given
by

⌘ = U
X

kj>0

W↵(k|B)a†
↵1

(k
1

)a↵2(k2)a
†
↵3

(k
3

)a↵4(k4)

+ O(U2), (40)
where

W↵(k|B) = V↵(k|B)E↵(k|B),

E↵(k|B) = ✏↵1(k1|B) � ✏↵2(k2|B)

+✏↵3(k3|B) � ✏↵4(k4|B).

By inserting the canonical generator (40) and the flow
Hamiltonian

H(B) = H
0

(B) + H
int

(B) , (41)

into the flow equation (36) and integrating the resulting
di↵erential equations, we find the flow-dependent single
particle energies and interaction vertices

✏↵(k|B) = ✏↵(k|B = 0), (42)

V↵(k|B) = V↵(k|B = 0)e�BE2
↵(k) . (43)

Setting B = 1 we obtain the Hamiltonian in the energy-
diagonal basis

H(B = 1) =
X

↵=±

X

k>0

✏↵(k)a†
↵(k)a↵(k) +

X

kj>0

V̆↵(k)a†
↵1

(k
1

)a↵2(k2)a
†
↵3

(k
3

)a↵4(k4) + O(U2) , (44)

where indeed the interaction vertices conserve energy

V̆↵(k) ⌘ V↵(k|B = 1) = V↵(k)�E↵(k),0 . (45)

We note that to leading order in U the single particle
energies ✏↵(k) remain unchanged by the unitary trans-
formation. Having found the energy-diagonal form of the

Hamiltonian to leading order we now consider the unitary
transformation induced by the canonical generator (40)
on the Green’s function.
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• Good agreement between CUT and tDMRG up to U∼J/2 on
   time scales accessible by tDMRG (Jt<30)
   N.B. system size always large enough to avoid revivals

• Good agreement also for density-density correlator
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with %PT given in (77). As in the previous section, this trace is most easily performed in the B = 1 basis

tr
h

%PT Â↵(q)
i

=
1

ZPT
tr

h

e
P

k,↵ �
(↵)
k a†

↵(k)a↵(k)Â↵(q, B = 1)
i

=
1

ZPT
tr

h

e
P

k,↵ �
(↵)
k a†

↵(k)a↵(k)Â↵(q)
i

+
U
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X
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N�
↵3↵4

(k|q
3

, q
4

, 1)tr
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e
P

k,↵ �
(↵)
k a†
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(q
1
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i

+
U

ZPT
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, 1)tr
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k a†
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3
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i

+ O(U2), (85)
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where Â�(k) = a†
�1

(q
1

)a�2(q2)a
†
�3

(q
3

)a�4(q4). The GGE
expectation values are easily calculated using Wick’s the-
orem and (78). Retaining only terms up to O(U) and
substituting the result back into (84), we obtain the de-
formed GGE value for the four-point function on the
prethermalization plateau.

In Fig. 17 we plot the di↵erence between the deformed
GGE result obtained in this way and the stationary value
of the CUT result (found by projecting on to the station-
ary terms of Eq. (61)) for a number of system sizes and
separations. In all cases the di↵erence between the CUT
and deformed GGE results scales as 1

L and vanishes in
the thermodynamic limit L ! 1. This confirms that the
t ! 1 stationary value of the CUT four-point function is
reproduced by the deformed GGE (77). This is a rather
non-trivial check of our proposal that pre-thermalization
plateaux can be described in terms of a deformed GGE.

In Figs. 18 and 19 we present comparisons between
t-DMRG results and predictions of the deformed GGE
for nearest-neighbor and next-nearest-neighbor density-
density correlation functions (84) for the quench �i =
0.8 ! �f = 0.4 and U = 0 ! 0.4. Taking into account
that Uf is not particularly small, the observed agree-
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FIG. 18. Nearest neighbour density-density correlation func-
tion hn(L2 )n(

L
2 + 1)i for a quench from �i = 0.8 ! �f = 0.4

and U = 0 ! 0.4 computed by t-DMRG for system size
L = 100. For comparison we show CUT results for L = 40
and the asymptotic value predicted by the L = 50 deformed
GGE.

ment between the two results is quite satisfactory. This
supports our assertion that the deformed GGE provides
a good description of higher-order correlation functions
on the prethermalization plateau. We see similarly good
agreement for all separations (up to 4 sites) that we ex-
plicitly checked. The deformed GGE predictions and the
CUT result of Fig. 18 are calculated for system sizes
L = 40, 50 rather than L = 100, because the compu-
tational cost of carrying out the momentum sums in the
expression for the four-point function (61) increases very
rapidly with system size.

VI. T-DMRG RESULTS FOR LARGER VALUES
OF U AND ABSENCE OF THERMALIZATION

ON ACCESSIBLE TIMES SCALE

In this section we turn to numerical results obtained
for quenches to final Hamiltonians with both weak and
strong interactions, i.e., when U >⇠ |�i � �f |. As can be
seen, in all cases the time evolution seems to reach a
plateau and remains - on the accessible time scales - on

compatible with
differences ∼O(U2)



• Good agreement between CUT and tDMRG up to U∼J/2 on
   time scales accessible by tDMRG (Jt<30)
   N.B. system size always large enough to avoid revivals

• Good agreement also for density-density correlator

• t3/2 power-law decay to constant values
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hcL/2c

†
L/2+2i with the CUT results for the quench �i = 0.8 !

� = 0.4 and Ui = 0 ! U on the L = 100 chain.

carried out comparisons to results obtained with a target
discarded weight of " = 10�11, and in addition compared
to simulations using di↵erent time steps of �t = 0.005
or �t = 0.01, respectively. Some details are presented
in Appendix B. As shown there, the di↵erence between
the results at the end of the time evolution is ⇠ 10�4 or
smaller for L = 100 sites, which means t-DMRG errors
are negligible in our comparison to the CUT results.
The revival time ⌧r for measurements in the center of a
finite chain of noninteracting particles is L/2v

max

, where
L is the system size and v

max

is the maximal velocity.
In the small-U regime of interest here we can obtain a
good estimate of ⌧r by calculating it in the U = 0 limit.
The estimate can be improved by searching for features
associated with revivals at times close to the free fermion
estimate. By comparing data with di↵erent systems sizes
L, we have verified that finite-size e↵ects are negligible
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FIG. 8. (Color online) A comparison of the CUT Green’s
function |G(100, 101, t) � G(100, 101, t ! 1)| and the free
fermion asymptotic form, Eq. (19), on the L = 200 chain for
the quench �i = 0.75 ! � = 0.5 and Ui = 0 ! U = 0.15. The
prefactor of the power law t�3/2 is used as a fit parameter.
The revival time of the L = 200 chain is t ⇠ 50 and the
asymptotic value G(100, 101, t ! 1) = �0.482275.
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FIG. 9. (Color online) A comparison between the free fermion
asymptotic form of the Green’s function, Eq. (19), and the
CUT result for the quench �i = 0.75 ! � = 0.5 and Ui = 0 !
U = 0.15 on the L = 200 chain. The prefactor of the power
law t�3/2 is used as a fit parameter.

in the t-DMRG data for times less than the revival time
⌧r. Finally, we carry out a comparison between CUT and
t-DMRG results only for times t su�ciently smaller than
⌧r. We note that as far as the t-DMRG computations
are concerned, we have been able to reach times ⇠ 200
for system size L = 50. Whilst for short enough times
the error in the observable can be estimated as ⇠ p

",
at longer times, even if the discarded weight is kept con-
stant, the accumulation of errors in the course of the
sweeps needs to be taken into account. Therefore, for
the situations in which times > 20 are discussed, a more
detailed error analysis is necessary, which is presented in
Appendix B. In Figs. 10–12 we show a comparison of
the CUT and t-DMRG results for the time-dependence

Thermalization?



• CUT approach shows that they are neither thermal
   nor GGE

“Prethermalization Plateaux” Moeckel&Kehrein ’08
Kollar et al ’11

Marcuzzi et al ’13

D>1

D=1
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neighbour Green’s function at time t after the quench �i =
0.8 ! �f = 0.4 U = 0 ! 2. t-DMRG and QMC simulations
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L = 16 chain.

length, GGE expectation values of local observables
could be calculated by the method of Ref. 24. In or-
der to test our interpretation, we have investigated
the dependence of the plateau value on �f (�f = 0
corresponding to an integrable quench in the XXZ
chain). In Fig. 31 we show a comparison between
quenches to Uf � 1 and �f = 0 or �f > 0, respec-
tively. The correlator clearly approaches a plateau,
the value of which is only very weakly dependent
on the integrability-breaking parameter �f , which
supports our interpretation.

3. In the intermediate-U regime there is no prether-
malization plateau, but the system relaxes slowly
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FIG. 25. (Color online) Comparison of the t-DMRG,
time-averaged (t-av) ED and QMC results for the nearest-
neighbour Green’s function at time t after the quench �i =
0.8 ! �f = 0.4 U = 0 ! 3. t-DMRG and QMC simulations
are performed on the L = 100 chain, whilst ED studies the
L = 16 chain.
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FIG. 26. (Color online) Comparison of the t-DMRG,
time-averaged (t-av) ED and QMC results for the nearest-
neighbour Green’s function at time t after the quench �i =
0.8 ! �f = 0.4 U = 0 ! 4. t-DMRG and QMC simulations
are performed on the L = 100 chain, whilst ED studies the
L = 16 chain.

towards a Gibbs ensemble.

5. Initial-state dependence

A final issue we would like to address is whether our
findings are sensitive to our particular choices of initial
state. In order to assess this question we have carried
out t-DMRG computations for quenches starting in the
ground state of strongly interacting Peierls insulators, i.e.
Hamiltonians H(�i, Ui > 0). Results for quenches of the
form

(�i = 0.8, Ui = 5) �! (�f = 0.4, Uf ) (89)

• tDMRG suggests PPs exist in an extended U range

U=2

thermal value



Description of PPs: “Deformed GGE”
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and is characterized by a GGE, i.e.

g
1

(j, `) = tr[%
GGE

c†jc`]. (66)

2. As we showed in Sec. III B, the GGE expectation
values for the Green’s function are generally dif-
ferent from the thermal expectation values at the
appropriate e↵ective inverse temperature �

0

char-
acterizing the quench

tr[%
GGE

c†jc`] � tr[%
G

(�
0

)c†jc`] = O(1). (67)

3. If the stationary state after the quench (�i, 0) !
(�f , U) was described by a thermal distribution, its
e↵ective inverse temperature �

e↵

would be deter-
mined by

lim
L!1

h 
0

|H(�f , U)| 
0

i
L

= lim
L!1

tr [%
G

(�
e↵

) H(�f , U)]

L
.

(68)
On the other hand, given that Wick’s theorem
holds in the state | 

0

i, we conclude that

h 
0

|H(�f , U)| 
0

i = h 
0

|H(�f , 0)| 
0

i + O(U). (69)

Hence

�
e↵

= �
0

+ O(U). (70)

4. Combining (70) with (67) we conclude that

tr[%
GGE

c†jc`] � tr[%
G

(�
e↵

) c†jc`] = O(1). (71)

5. Finally, combining (65), (66) and (71), we conclude
that

g(j, `) � tr[%
G

(�
e↵

) c†jc`] = O(1), (72)

and hence g(j, `) is not described by a thermal dis-
tribution.

A. Characterization of the prethermalized regime
through approximate conservation laws

In the previous section we have shown that the CUT
result cannot produce an e↵ective thermal Gibbs ensem-
ble in the long time limit. Given that the CUT results
for the Green’s function are in excellent agreement with
t-DMRG data at intermediate times, this establishes the
existence of a “prethermalized stationary regime”. An
obvious question is then how to characterize the statisti-
cal ensemble describing the corresponding plateau values
of local observables.

1. Approximate conservation laws

In our CUT analysis of the nonequilibrium dynamics
the generator of time evolution was taken to be

H 0 =
X

↵=±

X

k>0

✏̃↵(k)a†
↵(k)a↵(k). (73)

Clearly the mode occupation number operators n↵↵(k)
commute with H 0, and hence constitute conservation
laws (to first order in U) within our CUT approach.
Their pre-images under the CUT, accurate to order
O(U), are simply

Q↵(k) = a†
↵(k)a↵(k) � U

X

qj>0

N�
↵↵(q|k, k, B = 1)

⇥ a†
�1

(q
1

)a�2(q2)a
†
�3

(q
3

)a�4(q4). (74)

By construction these operators approximately commute
with one another

[Q↵(k), Q�(p)] = O(U2). (75)

However, the commutator with the Hamiltonian is in fact

[Q↵(k), H(�f , U)] = O(U), (76)

i.e. the charges (74) are not (approximately) conserved
on an operator level, but only their expectation values
with respect to | 

0

(t)i are (approximately) time inde-
pendent. This is a fundamental di↵erence to the proposal
put forward in Ref. 33 for describing prethermalization
plateaus. The charges Q↵(k) have a very transparent
physical meaning: they are the number operators for ap-
proximately conserved “quasiparticles”, and the quartic
terms describe the leading contribution to the dressing
of the non-interacting fermions.

2. Approximate description by a “deformed GGE”

It is natural to attempt a description of the prether-
malized regime in terms of a statistical ensemble of the
form

%
PT

=
1

Z
PT

exp

0

@

X

k,↵

�
(↵)
k Q↵(k)

1

A . (77)

generator of time evolution in CUT:

mode occupation numbers conserved

pre-image under CUT

Physical interpretation as quasiparticle occupation numbers
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values for the Green’s function are generally dif-
ferent from the thermal expectation values at the
appropriate e↵ective inverse temperature �

0

char-
acterizing the quench

tr[%
GGE

c†jc`] � tr[%
G

(�
0

)c†jc`] = O(1). (67)

3. If the stationary state after the quench (�i, 0) !
(�f , U) was described by a thermal distribution, its
e↵ective inverse temperature �

e↵

would be deter-
mined by

lim
L!1

h 
0

|H(�f , U)| 
0

i
L

= lim
L!1

tr [%
G

(�
e↵

) H(�f , U)]

L
.

(68)
On the other hand, given that Wick’s theorem
holds in the state | 

0

i, we conclude that

h 
0

|H(�f , U)| 
0

i = h 
0

|H(�f , 0)| 
0

i + O(U). (69)

Hence

�
e↵

= �
0

+ O(U). (70)

4. Combining (70) with (67) we conclude that

tr[%
GGE

c†jc`] � tr[%
G

(�
e↵

) c†jc`] = O(1). (71)

5. Finally, combining (65), (66) and (71), we conclude
that

g(j, `) � tr[%
G

(�
e↵

) c†jc`] = O(1), (72)

and hence g(j, `) is not described by a thermal dis-
tribution.

A. Characterization of the prethermalized regime
through approximate conservation laws

In the previous section we have shown that the CUT
result cannot produce an e↵ective thermal Gibbs ensem-
ble in the long time limit. Given that the CUT results
for the Green’s function are in excellent agreement with
t-DMRG data at intermediate times, this establishes the
existence of a “prethermalized stationary regime”. An
obvious question is then how to characterize the statisti-
cal ensemble describing the corresponding plateau values
of local observables.

1. Approximate conservation laws

In our CUT analysis of the nonequilibrium dynamics
the generator of time evolution was taken to be

H 0 =
X

↵=±

X

k>0

✏̃↵(k)a†
↵(k)a↵(k). (73)

Clearly the mode occupation number operators n↵↵(k)
commute with H 0, and hence constitute conservation
laws (to first order in U) within our CUT approach.
Their pre-images under the CUT, accurate to order
O(U), are simply

Q↵(k) = a†
↵(k)a↵(k) � U

X

qj>0

N�
↵↵(q|k, k, B = 1)

⇥ a†
�1

(q
1

)a�2(q2)a
†
�3

(q
3

)a�4(q4). (74)

By construction these operators approximately commute
with one another

[Q↵(k), Q�(p)] = O(U2). (75)

However, the commutator with the Hamiltonian is in fact

[Q↵(k), H(�f , U)] = O(U), (76)

i.e. the charges (74) are not (approximately) conserved
on an operator level, but only their expectation values
with respect to | 

0

(t)i are (approximately) time inde-
pendent. This is a fundamental di↵erence to the proposal
put forward in Ref. 33 for describing prethermalization
plateaus. The charges Q↵(k) have a very transparent
physical meaning: they are the number operators for ap-
proximately conserved “quasiparticles”, and the quartic
terms describe the leading contribution to the dressing
of the non-interacting fermions.

2. Approximate description by a “deformed GGE”

It is natural to attempt a description of the prether-
malized regime in terms of a statistical ensemble of the
form

%
PT

=
1

Z
PT

exp

0

@

X

k,↵

�
(↵)
k Q↵(k)

1

A . (77)
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Here the Lagrange multipliers �
(↵)
k are fixed by the re-

quirements

tr [%
PT

Q↵(k)] = h 
0

|Q↵(k)| 
0

i. (78)

The left-hand side of (78) is most easily evaluated in the
B = 1 basis, where it becomes

1

Z
PT

tr
h

e
P

k,↵ �
(↵)
k a†

↵(k)a↵(k)a†
↵(k)a↵(k)

i

=
1

1 + e��
(↵)
k

.

(79)

The right-hand side of (78) is equal to

n↵↵(k) � U
X

qj>0

N�
↵↵(q|k, B = 1) [n�1�2(q1)n�3�4(q3)�q1,q2�q3,q4 + n�1�4(q1) [��2,�3 � n�3�2(q2)] �q1,q4�q2,q3 ] . (80)

Equating (80) with (79) and using (54) we obtain an

explicit expression for the Lagrange multipliers �
(↵)
k . The

fermion Green’s function evaluated with respect to the
density matrix (77) is

G
PT

(j, `) = tr
h

%
PT

c†jc`

i

=
1

L

X

q>0

X

↵=±
�⇤
↵(j, q|�f )�↵(`, q|�f )

⇥ tr
⇥

%
PT

a†
↵(q)a↵(q)

⇤

. (81)

We wish to show that this is equal to the infinite-time
limit of the CUT result up to order O(U2) corrections,
i.e.

G
PT

(j, `) = lim
t!1

G(j, `; t) + O(U2). (82)

The trace in (81) is most easily evaluated in the B = 1
basis

tr
⇥

%
PT

a†
↵(q)a↵(q)

⇤

=
1

Z
PT

tr
h

e
P

k,↵ �
(↵)
k a†

↵(k)a↵(k)n̂↵,↵(q, q|B = 1)
i

= n↵↵(q) � U
X

k1,2>0

N�
↵↵(k

1

, k
1

, k
2

, k
2

|q, q, B = 1)n�1�2(k1)n�3�4(k2)[1 � ��1,�2��3,�4 ]

� U
X

k1,2>0

N�
↵↵(k

1

, k
2

, k
2

, k
1

|q, q, B = 1)n�1�4(k1)
�

��2,�3 � n�3�2(k2)
�

[1 � ��1,�4��2,�3 ] . (83)

Substituting (83) into (81) we obtain an expression that
indeed agrees with the infinite-time limit of (60) in the
thermodynamic limit L ! 1. This establishes (82).
Hence the Green’s function G(j, `) (for fixed j, ` in the
thermodynamic limit) on the prethermalization plateau
is described by the GGE (77) with deformed charges (74).
This observation is consistent with a description of local
observables on the prethermalization plateau in terms of
a deformed GGE. On the other hand there are non-local
operators, n

+�(k) being a simple example, which in fact
do not relax at intermediate times and are therefore not
described by the ensemble %

PT

(without time-averaging).

3. “Deformed GGE” description of the four-point function

The preceding section shows that the value of the
Green’s function on the prethermalization plateau is
given by the deformed GGE %PT . We now show that the
deformed GGE also reproduces the t ! 1 expectation
value of the CUT result for the four-point function (61).
We wish to calculate

tr
h

%PT c†jcj0c
†
l cl0

i

=
1

L2

X

qj>0

X

↵j=±
�⇤
↵1

(j, q
1

)�↵2(j
0, q

2

)�⇤
↵3

(l, q
3

)�↵4(l
0, q

4

)tr
h

%PTa†
↵1

(q
1

)a↵2(q2)a
†
↵3

(q
3

)a↵4(q4)
i

,(84)

Define a density matrix (“deformed GGE”) by

fix Lagrange multipliers by

ρPT reproduces the prethermalization plateaux values to o(U)

for both two-point and 4-point functions.



At this stage the picture is as follows:

• Free theory: relaxation to a GGE

• Weakly interacting (non-integrable) theory: 

  relaxation to a prethermalization plateau

• PP can be described by a “deformed GGE”



Late time behaviour ?

Both CUT and tDMRG break down at late times.

try “equations of motion” approach in B=∞ basis

6

ergies have O(U) contributions. By construction this ap-
proximation introduces a maximal time scale, on which
we expect our calculations to be accurate by virtue of
the smallness of U . Estimating this time scale within the
CUT formalism is di�cult, as it requires a reliable treat-
ment of the neglected energy diagonal interaction terms.
For this reason we extensively compare our CUT results
to t-DMRG computations (see Sec. IV E). Importantly,
we can perform our CUT calculations for very large sys-
tems of hundreds of sites, for which we have verified that
finite-size e↵ects do not play a role on time scales less
then the revival time (the results shown below are for
times less than the revival time). The procedure for cal-
culating the approximate time evolution of observables is
shown schematically in Fig. 5.

FIG. 5. (Color online) A schematic of the CUT method for
finding the approximate time evolution of the operator O to
order U .

B. The canonical generator and flow equations for
the Hamiltonian

We start by constructing the “canonical generator” of
the unitary transformation45 given by

⌘(B) = [H
0

(B), H
int

(B)]. (37)

The flow-dependent operators are defined by

H
0

(B) =
X

↵=±

X

k>0

✏↵(k|B)a†
↵(k)a↵(k), (38)

H
int

(B) =
X

kj>0

V↵(k|B)a†
↵1

(k
1

)a↵2(k2)a
†
↵3

(k
3

)a↵4(k4)

+ . . . . (39)

where the parameters in the Hamiltonian have been pro-
moted to functions of the flow parameter B and where
the dots indicate terms sextic and higher in creation and
annihilation operators. The canonical generator is given
by

⌘ = U
X

kj>0

W↵(k|B)a†
↵1

(k
1

)a↵2(k2)a
†
↵3

(k
3

)a↵4(k4)

+ O(U2), (40)
where

W↵(k|B) = V↵(k|B)E↵(k|B),

E↵(k|B) = ✏↵1(k1|B) � ✏↵2(k2|B)

+✏↵3(k3|B) � ✏↵4(k4|B).

By inserting the canonical generator (40) and the flow
Hamiltonian

H(B) = H
0

(B) + H
int

(B) , (41)

into the flow equation (36) and integrating the resulting
di↵erential equations, we find the flow-dependent single
particle energies and interaction vertices

✏↵(k|B) = ✏↵(k|B = 0), (42)

V↵(k|B) = V↵(k|B = 0)e�BE2
↵(k) . (43)

Setting B = 1 we obtain the Hamiltonian in the energy-
diagonal basis

H(B = 1) =
X

↵=±

X

k>0

✏↵(k)a†
↵(k)a↵(k) +

X

kj>0

V̆↵(k)a†
↵1

(k
1

)a↵2(k2)a
†
↵3

(k
3

)a↵4(k4) + O(U2) , (44)

where indeed the interaction vertices conserve energy

V̆↵(k) ⌘ V↵(k|B = 1) = V↵(k)�E↵(k),0 . (45)

We note that to leading order in U the single particle
energies ✏↵(k) remain unchanged by the unitary trans-
formation. Having found the energy-diagonal form of the

Hamiltonian to leading order we now consider the unitary
transformation induced by the canonical generator (40)
on the Green’s function.
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We note that to leading order in U the single particle
energies ✏↵(k) remain unchanged by the unitary trans-
formation. Having found the energy-diagonal form of the

Hamiltonian to leading order we now consider the unitary
transformation induced by the canonical generator (40)
on the Green’s function.

“e.o.m.”

Consider O(B=∞)=quasiparticle mode occupation numbers: good
diagnostic for leaving the prethermalization plateau

Bertini, Essler & Robinson



Proceed as in derivation of quantum kinetic equation

Dropping the O(U2) terms precisely recovers the CUT PP results.



Structure is different from quantum kinetic equation:
• cannot remove integrals (E-diagonal interactions)
• mixture of first-/second order equations

work in progress on numerical integration Thermalization?



Quenches to strongly interacting systems
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FIG. 27. Comparison of the t-DMRG, time-averaged (t-
av) ED and QMC results for the nearest-neighbour Green’s
function at time t after the quench �i = 0.8 ! �f = 0.4
U = 0 ! 4. t-DMRG and QMC simulations are performed
on the L = 100 chain, whilst ED studies the L = 16 chain.
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FIG. 28. Comparison of the t-DMRG, time-averaged (t-
av) ED and QMC results for the nearest-neighbour Green’s
function at time t after the quench �i = 0.8 ! �f = 0.4
U = 0 ! 6. t-DMRG and QMC simulations are performed
on the L = 100 chain, whilst ED studies the L = 16 chain.

with several values of Uf are shown in Figs. 32 & 33.
Here the expectation values of both the diagonal and
Gibbs ensembles have been computed for L = 16 site
systems. Hence finite-size e↵ects should be taken into
account when making comparisons to the t-DMRG data.

The observed behaviour is qualitatively very similar to
that seen for quenches starting in non-interacting ground
states. Observables relax to plateaux values that are in-
compatible with thermalization when Uf is either small
or large.
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FIG. 29. Comparison of the t-DMRG, time-averaged (t-
av) ED and QMC results for the nearest-neighbour Green’s
function at time t after the quench �i = 0.8 ! �f = 0.4
U = 0 ! 8. t-DMRG and QMC simulations are performed
on the L = 100 chain, whilst ED studies the L = 16 chain.
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FIG. 30. Comparison of the t-DMRG, time-averaged (t-
av) ED and QMC results for the nearest-neighbour Green’s
function at time t after the quench �i = 0.8 ! �f = 0.4
U = 0 ! 10. t-DMRG and QMC simulations are performed
on the L = 100 chain, whilst ED studies the L = 16 chain.

VII. CONCLUSIONS

Using a combination of anaytical calculations based
on the continuous unitary transform technique and time-
dependent density matrix renormalization group com-
putations we have established the existence of a robust
prethermalization regime at intermediate times after a
quantum quench to the weakly non-integrable interact-
ing Peierls insulator Hamiltonian (1).

The CUT results allowed us to explicitly construct a
“deformed generalized Gibbs ensemble”, which provides
an approximate statistical description of the prether-
malization plateau. The deformed GGE is constructed
from charges Q↵(k) cf Eq. (74), that form a mutually
commuting set but do not commute with the Hamilto-

thermal value

PP

???



H(0,U) is integrable (spin-1/2 XXZ chain)

quench to XXZ chain with weak integrability-breaking term

No analytic understanding of this limit.



Summary and Outlook

1. Nice prethermalization plateaux in quenches to weakly 
interacting (weakly non-integrable) models in D=1
2. Statistical description of these plateaux through “deformed 
GGE” (charges do not commute with H)
3. Derived differential equations that hopefully describe both
the plateaux and the eventual thermalization.
4. How general is all this? PPs in interacting integrable theories 
with weak integrability breaking terms?





Yesterday: I. Bloch, U. Schollwoeck

“Light-cone” effects after quantum quenches
L. Bonnes, FE& A. Laeuchli arXiv:1404.4062
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FIG. 2. Space-time plot of the Sz correlation functions for the
quench from � = 4 to cos(⇡/4). The upper panel shows ground
state data whereas the lower quench is performed starting from a
thermal density matrix at T/J = 1. This illustrates that the light-
cone effect persists also at finite temperatures.

mixed state dynamics is simulated by extending a recently
proposed algorithm utilizing an optimized wave function en-
semble called Minimally Entangled Typical Thermal States
(METTS) [38, 39] implemented with the matrix product state
(MPS) framework.

Results.— In the following we consider quenches to the
spin-1/2 Heisenberg XXZ chain with anisotropy �

H(�) = J
L�1X

i=1

�
Sx

i S
x
i+1 + Sy

i S
y
i+1 + �Sz

i S
z
i+1

�
. (1)

Initially, the system is prepared in a Gibbs state corresponding
to an XXZ Hamiltonian with anisotropy �i at a temperature
T , i.e.

⇢(t = 0) = Z�1
� exp[��H(�i)] , � =

1

kBT
, (2)

where Z� = Tr exp[��H(�i)] (we set kB = 1). The
anisotropy is then quenched at time t = 0

+ from �i to
0  �f  1, as depicted in Fig. 1, and the system subse-
quently evolves unitarily with Hamiltonian H(�f ) [40]. In
order to probe the spreading of correlations we consider the
longitudinal spin correlation functions

Sz
(j; t) = hSz

L/2(t)S
z
j (t)i � hSz

L/2(t)ihSz
j (t)i (3)

centered around the middle of the chain. Results for Sz
(j; t)

are most easily visualized in space-time plots, and typical re-
sults are shown in Fig. 2. The most striking feature observed
in these plots is the light-cone effect: at a given separation j
connected correlations Sz

(j; t) arise fairly suddenly at a time
that scales linearly with j.

These results demonstrate that the light-cone effect persists
for mixed initial states, although the visibility of the signal is
of course diminished with increasing temperature (until it van-
ished completely at � = 0 since the initial density matrix is
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FIG. 3. a) Extracted inflection points versus distance for different
initial temperatures for the quench from � = 4 to cos(⇡/4). The
straight lines correspond to the velocities extracted from the GGE
where only the offset of the time axis has been fitted and the orange
dashed line denotes the Bethe ansatz velocity for the ground state of
the final interaction. b) Rescaled spin correlation functions for the
quench from � = 4 to cos(⇡/4) for T/J = 1 and the ground state
(dashed line) and different distances j. The time axis is shifted by
extracting the arrival time for j = XX . One can clearly see that the
signal is delayed as the initial temperature is increased.

trivial). Comparing the time evolution of the correlation func-
tions for different initial temperatures, we see (cf Fig. 2 and
Fig. 3) that the wave front is delayed when the temperature
of the initial state is increased, signalling that the spreading
slows down. We further observe that the spreading velocity is
sensitive to the strength of the quench, i.e. the value of the ini-
tial interaction: the velocity decreases with increasing energy
density.

Having established the unexpected result that the spreading
velocity depends both on the initial density matrices and the
final Hamiltonian, an obvious question is which properties of
⇢(t = 0) are relevant in this context. In order to quantify this
aspect we follow Ref. 35 and define the precise location of
the light-cone as the first inflection point of the “wave front”
observed in Sz . This allows us to extract a spreading velocity
vs by performing a linear fit to the largest accessible time,
where expected finite-distance effects [41] are small.

Our main result, shown in Fig. 4, is that the spreading ve-
locity is mainly determined by the final energy density

ef =

Tr[H(�f )⇢(t = 0)]

L
. (4)

Plotting the velocities against ef leads to a remarkable data
collapse for a variety of quenches from thermal as well as pure
initial states. This holds in spite of the fact that the system is
integrable and thus its dynamics is constrained by an infinite
set of conserved quantities. As we will show in the follow-
ing, the observed velocities can be explained quantitatively by
considering excitations in an appropriately defined general-
ized Gibbs ensemble. Focusing on the quenches to �f = 1/2
as well as cos(⇡/4), we observe that the spreading velocity vs

increases significantly as the final energy density is reduced by

Results for quenches

http://arxiv.org/abs/1404.4062
http://arxiv.org/abs/1404.4062


Light-cone velocity depends on initial state 
(and not just final Hamiltonian):

Observation:
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FIG. 4. (Color online) Spreading velocity vs extracted from the
spin correlation function Sz as a function of the final energy Ef

for �f = 1/2 and cos⇡/4. The symbols denote numerical results
obtained from either thermal or pure initial states with different �i.
GGE results for the spreading velocities using the first two conserved
quantities are drawn as dashed lines. The inset shows the velocity at
� = 0 extracted from the thermodynamic Bethe ansatz for � =

cos⇡/n.

increasing T . The numerical data suggests that vs approaches
a non-trivial velocity in the infinite-temperature limit that de-
pends in �f , shown in the inset of Fig. 4, that can in fact
be obtained from Bethe ansatz (see discussion below). For
very weak quenches, where only the low-energy (relative to
the ground state of H(�f )) degrees of freedom become pop-
ulated, one expects that the spreading velocity is given by the
maximal mode velocity v� = ⇡[(1��2

)/(2 arccos�)]

�1/2.
In fact, the spreading velocity extrapolates to v�f , when the
final energy approaches the ground state energy of H(�f ).

For the non-interacting case �f = 0 which reduces essen-
tially to free fermions, we find that the spreading velocity for
all initial conditions is compatible with the maximal mode ve-
locity, v0 = 2. This is consistent with results we obtained
for quenches to the critical point of a one-dimensional Ising
model in a transverse field, which is essentially also a free
theory, where also no significant dependence of the spreading
velocity on the initial conditions was observed.

Excitations in a Generalized Gibbs Ensemble.— A recent
work [42] proposed that correlation functions of local opera-
tors after a quench to an integrable model, prepared in a pure
state | i, are given by

lim

L!1
hO(t)i = lim

L!1

 h |O(t)|�si
2h |�si + �s $  

�
. (5)

Here |�is is a simultaneous eigenstate of the post-quench
Hamiltonian and all local, higher conservation laws In, such
that

in ⌘ lim

L!1

1

L
Tr[⇢(t = 0)In] = lim

L!1

1

L

h�s|In|�si
h�s|�si . (6)
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FIG. 5. Scheme for the extraction of the velocities from the GGE.
See text for details.

In the case of interest here we have O(t) = Sz
L/2(t)S

z
j (t).

Importantly, the state |�si can be constructed by means of a
generalized Thermodynamic Bethe Ansatz (gTBA) [43, 44]
It was argued in Ref. 42 that states obtained by making mi-
croscopic changes to |�si are most important to describe the
dynamics at (sufficiently) late times. This is motivated by em-
ploying a Lehmann representation in terms of energy eigen-
states H(�)|ni = En|ni

h |O(t)|�si =

X

n

h |nihn|O|�sie�i(En�E�s )t, (7)

and noting that at sufficiently late times only states with
(En � E�s)/J = O(1) are likely to contribute due to the
otherwise rapidly oscillating phase. It is then tempting to
conjecture that spreading of correlations occurs through these
“excited states”, and the light-cone effect propagates with the
maximum group velocity that occurs amongst them. The
method for calculating such excited state velocities is depicted
schematically in Fig. 5, and details of the calculations are
provided in the Supplementary Material. The basic idea is
to use TBA methods to determine the macrostate minimiz-
ing the generalized Gibbs free energy. This is characterized
by appropriate Bethe Ansatz root densities ⇢p,h

j (x) for parti-
cles and holes of elementary excitations labelled by the in-
dex j. One then goes over to an appropriate microcanonical
description, in which one considers the particular simultane-
ous eigenstate |�si of the Hamiltonian and the higher con-
servation laws, which is described by the set {⇢p,h

j (x)} in
the thermodynamic limit. One then considers small changes
of this microstate, and determines the resulting O(1) (i.e.
non-extensive) changes in energy and momentum. These can
be described by additive “elementary excitations” relative to
|�si. Finally, one determines the dispersion relations and
hence the group velocities of these excitations. The most sig-
nificant qualitative features of the “GGE excitation spectrum”
obtained in this way are as follows. (i) There are several types
of infinitely long-lived elementary excitations. (ii) Their num-
ber depends only on the anisotropy�f [45], but their disper-

Have a theory for this effect in terms of “excitations at finite
energy density”


