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•  ETH	  and	  thermodynamics	  

•  Relaxa>on	  in	  integrable	  and	  weakly	  non-‐integrable	  systems	  

•  Emergence	  of	  macroscopic	  Hamiltonian	  dynamics	  	  
from	  non-‐adiaba>c	  response	  

•  Extension	  of	  Kibble-‐Zurek	  mechanism	  to	  dynamical	  fields.	  
Dynamical	  localiza>on	  transi>on	  near	  quantum	  cri>cal	  
points.	  

•  Floquet	  systems	  

Brief	  Outline	  



Non-‐equilibrium	  quantum	  systems	  	  

•  	  Chaos	  and	  thermaliza>on	  in	  classical	  and	  quantum	  isolated	  systems,	  
mostly	  aQer	  sudden	  quenches	  

•  Relaxa>on	  in	  weakly	  interac>ng	  systems.	  Prethermaliza>on	  and	  the	  
generalized	  Gibbs	  ensemble.	  

	  
•  Steady	  states:	  phases	  and	  phase	  transi>ons	  in	  driven	  systems	  (isolated	  or	  

dissipa>ve)	  

•  Many-‐body	  localiza>on:	  interplay	  of	  disorder	  and	  ergodicity	  

•  Universal	  non-‐equilibrium	  dynamics.	  

•  Dynamical	  phase	  transi>ons	  (in	  >me).	  

•  Many	  more:	  non-‐equilibrium	  Stat.	  Mech.,	  biological	  systems,	  ac>ve	  maWer,
…	  

J.	  Von	  Neumann:	  Non-‐equilibrium	  theory	  is	  a	  “theory	  of	  non-‐elephants”.	  	  



Classical	  chao>c	  systems	  
3

chaos implies strong usually exponential sensitivity of the trajectories to small perturbations. In

FIG. 1 Examples of trajectories of a particle bouncing in a cavity (i) non-chaotic circular (top left image)

and (ii) chaotic Bunimovich stadium (top right image). The bottom panel shows evolution of two initially

close trajectories in the chaotic regime. The images are taken from scholarpedia and wikimedia.

Fig. 1 we illustrate the motion of a particle in a regular and chaotic two-dimensional cavity. The

top left panel illustrates long time trajectory of a particle in a regular circular cavity. It is visually

clear that the motion of the particle is completely regular and thus non-ergodic. Indeed long time

average is clearly not-equivalent to the micro-canonical ensemble average with all points in real

space and all directions in the momentum space being equally probable. On the other hand the top

right figure showing the trajectory chaotic Bunimovich stadium looks much less regular. Moreover

in this chaotic regime if we compare two trajectories, which are initially close to each other then

we see that after few bounces they become completely uncorrelated both in terms of positions and

direction of motion (bottom graph). This is a consequence of the chaotic dynamics in the system.

There are many examples of dynamical systems exhibiting chaotic behavior. In this course we

Regular	  vs.	  chao>c	  mo>on:	  like	  beauty.	  When	  we	  see	  it	  we	  recognize	  it.	  	  

No	  mathema>cally	  rigorous	  
defini>on	  of	  chaos.	  	  
	  
Standard	  prac>cal	  defini>on:	  
Divergent	  trajectories.	  
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No	  chaos	  in	  one-‐dimension.	  

Ensures	  unique	  rela>on	  between	  p	  and	  x.	  	  

Simplest	  chao>c	  system	  –	  kicked	  
rotor	  (kicked	  Josephson	  junc>on).	  	  
Break	  energy	  conserva>on	  by	  kicks.	  

Equa>ons	  of	  mo>on:	  Chirikov	  standard	  map	  
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clearly gives |λ2| > 1 implying it is unstable: any small fluctuation exponentially grows without

bound with time, at least in the linearized regime. This exponential growth does not prove the

chaos yet but this is a strong indicator that the dynamics is chaotic. The exponent characterizing

the rate of growth log(λ) is called the Lyapunov exponent. In chaotic systems with many degrees

of freedom there are many Lyapunov exponents and typically the largest of them determines the

rate of divergence of nearby phase space trajectories.

The analysis of the other attractor with φ = π is even simpler

λ1,2 = 1 +
K

2
±
√
K +

K2

4
. (I.15)

Clearly for any positive K there are two real solutions with one larger than one. So this point is

always unstable. This is not very surprising since this attractor corresponds to the situation, where

a mass sits on top of the potential. It is interesting that if instead of δ kicks one applies fast periodic

motion of the pendulum: K = K0 + a sin(νt) then one can stabilize the top equilibrium φ = π.

This is known as the Kapitza effect (or Kapitza pendulum) and there are many demonstrations

how it works. In Fig. 2 we show the phase space portrait of the kicked rotor at different values of

K. It is clear that as K increases the system becomes more and more chaotic. At K = Kc ≈ 1.2

there is a delocalization transition, where the chaotic region becomes delocalized and the system

increases its energy without bound.

Transition from regular (localized) to chaotic 
(delocalized) motion as K increases. Chirikov, 
1971 

K=0.5 K=Kg=0.971635 K=5 (images taken 
from 
scholarpedia.org) 

FIG. 2 Phase space portrait (Poincare cross-section) for the kicked rotor at different values of the parameter

K. Note that the opposite convention K → −K or θ → θ + π is used in the images.

To summarize this section we note that dynamics of Hamiltonian systems can be both regular

and chaotic. Chaotic dynamics usually leads to ergodicity and thermalization. It is characterized

by exponential sensitivity of the phase space trajectories to the initial conditions: small changes
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Quantum	  systems.	  Linear	  equa>ons	  of	  mo>on	  no	  chaos?	  
Linear	  equa>ons	  of	  mo>on	  like	  harmonic	  chains	  are	  non-‐chao>c.	  
Any	  solu>on	  is	  a	  superposi>on	  of	  normal	  modes	  (eigenstates).	  

von	  Neumann	  (1929):	  chaos	  (and	  ergodicity)	  are	  encoded	  in	  observables.	  

Wigner	  (1955),	  thinking	  about	  spectrum	  of	  complex	  nuclei:	  Hamiltonians	  of	  the	  
nuclei	  are	  essen>ally	  like	  random	  matrices.	  	  
Any	  ini>al	  structure	  is	  rapidly	  lost	  once	  we	  start	  diagonalizing	  it.	  

Famous	  predic>on:	  level	  repulsion.	  Wigner-‐Dyson	  sta>s>cs	  (Wigner	  Surmize)	  

Non-‐chao>c	  “generic	  systems”.	  Expect	  Poisson	  sta>s>cs	  (Berry-‐Tabor	  conjecture,	  1977)	  
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where λ is the average number of these levels in this interval (e.g. averaged over many nearby

intervals). This Poisson statistics is very different from the Wigner - Dyson statistics. In particular,

there is no level repulsion since the Hamiltonian is completely diagonal in the single-particle basis.

The probability that within the given interval δE = ω there are no levels is simply expressed by

P0(ω) = exp[−ω], (II.10)

which is very different from the Wigner Surmize (II.7). This statement is in fact known in literature

as the Berry-Tabor conjecture (1977), which states that in the ”generic” case the quantum energy

eigenvalues behave like a sequence of independent random variables (i.e. have Poisson statistics)

provided that the underlying classical dynamics is completely integrable. In Fig. 5 we show level
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Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .

January 2008 Notices of the AMS 33

FIG. 5 Level statistics in a rectangular cavity with the ratio of sides a/b = 4
√
5 (Z. Rudnick, What Is

Quantum Chaos?, Notices of the AMS 55, 32 (2008)). The levels are given by a simple formula: En,m =

π2(m2/a2 + n2/b2).

statistics for a rectangular cavity with sides a and b, which have the following ratio: a/b = 4
√
5.

Clearly they agree perfectly well with the Poisson statistics. Yet the Berry-Tabor conjecture is not



Examples	  of	  level	  sta>s>cs	  
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FIG. 5 Level statistics in a rectangular cavity with the ratio of sides a/b = 4
√
5 (Z. Rudnick, What Is

Quantum Chaos?, Notices of the AMS 55, 32 (2008)). The levels are given by a simple formula: En,m =

π2(m2/a2 + n2/b2).

statistics for a rectangular cavity with sides a and b, which have the following ratio: a/b = 4
√
5.

Clearly they agree perfectly well with the Poisson statistics. Yet the Berry-Tabor conjecture is not

Incommensurate	  2D	  box.	  	  
Z.	  Rudnik,	  2008	  
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FIG. 7 Sinai billiard, which is a classical chaotic systems, similar to the Bunimovich stadium considered

earlier. Left panel illustrates the Billiard and the classical trajectory (image source Wikipedia). Right

panel shows level spacing statistics for the same billiard together with the Poisson and the Wigner-Dyson

distributions (image source O. Bohigas, M.J. Giannoni, C. Schmit Phys. Rev. Lett. 52, 1 (1984)).

energy levels in classical chaotic systems are typically well described by the Wigner-Dyson statistics.

In Fig. 8 we show another example of the level statistics for a classical chaotic system also analyzed

0.7r

0.4
r

Ω

(1, 1)

(0, 0)

Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .

January 2008 Notices of the AMS 33

s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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FIG. 8 Another chaotic system analyzed by Sinai (left panel) and illustration of classical trajectories (middle

panel). Right panel shows level spacing statistics, which again perfectly agrees with the Wigner-Dyson

ensemble (Z. Rudnick, What Is Quantum Chaos?, Notices of the AMS 55, 32 (2008)).

by Sinai.

As a next example we illustrate statistics of the level spacing of the high energy hydrogen atom

in a magnetic field. Fig. 9 shows statistics of calculated level spacings in a hydrogen atom in strong

external magnetic field. The top panel describes low energy spectra where the classical motion

is regular and the level statistics is Poissonian. The bottom panels shows the high energy region

corresponding to the classical chaotic motion. The plot clearly illustrates the crossover from the

Sinai	  Billiard.	  O.	  Bohigas	  et.	  al.	  1984	  
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motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .
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s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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FIG. 8 Another chaotic system analyzed by Sinai (left panel) and illustration of classical trajectories (middle

panel). Right panel shows level spacing statistics, which again perfectly agrees with the Wigner-Dyson

ensemble (Z. Rudnick, What Is Quantum Chaos?, Notices of the AMS 55, 32 (2008)).

by Sinai.

As a next example we illustrate statistics of the level spacing of the high energy hydrogen atom

in a magnetic field. Fig. 9 shows statistics of calculated level spacings in a hydrogen atom in strong

external magnetic field. The top panel describes low energy spectra where the classical motion

is regular and the level statistics is Poissonian. The bottom panels shows the high energy region

corresponding to the classical chaotic motion. The plot clearly illustrates the crossover from the

Another	  chao>c	  
billiard	  by	  Sinai.	  	  
Z.	  Rudnik,	  2008	  



Many-‐par>cle	  systems.	  Thermaliza>on	  through	  eigenstates.	  
J.	  Von	  Neumann	  (1929),	  J.	  Deutch	  (1991),	  M.	  Srednicki	  (1994),	  M.	  Rigol	  et.	  al.	  (2008)	  	  

Extension	  of	  Wigner	  ideas	  :	  Ergodic	  Hamiltonians	  within	  a	  Thouless	  energy	  shell	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  looks	  like	  a	  random	  matrix.	  	  
	  
This	  shell	  contains	  Exponen>ally	  many	  levels.	  Hence	  recover	  Wigner-‐Dyson	  sta>s>cs,	  all	  
eigenstates	  are	  sta>s>cally	  the	  same,	  so	  each	  one	  is	  a	  good	  microcanonical	  ensemble,	  …	  	  

Eigen-‐func>ons	  are	  random	  vectors	  in	  a	  large-‐dimensional	  space.	  
Observables	  (M.	  Srednicki	  1996,	  M.	  Rigol	  et.	  al.	  2008)	  

Natural	  extension	  beyond	  the	  Thouless	  energy	  shell	  



Interac>ng	  spin-‐chain	  with	  a	  single	  impurity	  
	  
(A.	  Gubin	  and	  L.	  Santos,	  2012)	   2

matrices are pseudo-random vectors; that is, their ampli-
tudes are random variables.20,21 All the eigenstates are
statistically similar, they spread through all basis vectors
with no preferences and are therefore ergodic.
Despite the success of random matrix theory in de-

scribing spectral statistical properties, it cannot capture
the details of real quantum many-body systems. The fact
that random matrices are completely filled with statisti-
cally independent elements implies infinite-range inter-
actions and the simultaneous interaction of many parti-
cles. Real systems have few-body (most commonly only
two-body) interactions which are usually finite range. A
better picture of systems with finite-range interactions
is provided by banded random matrices, which were also
studied byWigner.22 Their off-diagonal elements are ran-
dom and statistically independent, but are non-vanishing
only up to a fixed distance from the diagonal. There are
also ensembles of random matrices that take into account
the restriction to few body interactions, so that only the
elements associated with those interactions are nonzero;
an example is the two-body-random-ensemble23–25 (see
reviews in Refs. 21,26). Other models which describe sys-
tems with short-range and few-body interactions do not
include random elements, such as nuclear shell models,27

and the systems of interacting spins which we consider
in this article.
All the matrices we have mentioned can lead to level re-

pulsion, but differences are observed. For instance, eigen-
states of random matrices are completely spread (delo-
calized) in any basis, whereas the eigenstates of systems
with few-body interactions delocalize only in the middle
of the spectrum.26–30

In this paper we study a one-dimensional system
of interacting spins 1/2. The system involves only
nearest-neighbor interactions, and in some cases, also
next-nearest-neighbor interactions. Depending on the
strength of the couplings, the system may develop chaos,
which is identified by calculating the level spacing distri-
bution. We also compare the level of delocalization of the
eigenstates in the integrable and chaotic domains. It is
significantly larger in the latter case, where the most de-
localized states are found in the middle of the spectrum.
The paper is organized as follows. Section II provides

a detailed description of the Hamiltonian of a spin 1/2
chain. Section III explains how to compute the level
spacing distribution and how to quantify the level of de-
localization of the eigenstates. Section IV shows how
the mixing of symmetries may erase level repulsion even
when the system is chaotic. Final remarks are given in
Sec. V.

II. SPIN-1/2 CHAIN

We study a one-dimensional spin 1/2 system (a spin
1/2 chain) described by the Hamiltonian

H = Hz +HNN, (1a)

where

Hz =
L
∑

i=1

ωiS
z
i =

(

L
∑

i=1

ωSz
i

)

+ ϵdS
z
d (1b)

HNN =
L−1
∑

i=1

[

Jxy
(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

+ JzS
z
i S

z
i+1

]

. (1c)

We have set ! equal to 1, L is the number of sites,
Sx,y,z
i = σx,y,z

i /2 are the spin operators at site i, and
σx,y,z
i are the Pauli matrices. The term Hz gives the

Zeeman splitting of each spin i, as determined by a static
magnetic field in the z direction. All sites are assumed
to have the same energy splitting ω, except a single site
d, whose energy splitting ω + ϵd is caused by a magnetic
field slightly larger than the field applied on the other
sites. This site is referred to as a defect.
A spin in the positive z direction (up) is indicated by

| ↑⟩ or by the vector
(

1
0

)

; a spin in the negative z direction

(down) is represented by | ↓⟩ or
(

0
1

)

. An up spin on site
i has energy +ωi/2, and a down spin has energy −ωi/2.
A spin up corresponds to an excitation.
The second term, HNN, is known as the XXZ Hamilto-

nian. It describes the couplings between nearest-neighbor
(NN) spins; Jxy is the strength of the flip-flop term
Sx
i S

x
i+1+Sy

i S
y
i+1, and Jz is the strength of the Ising inter-

action Sz
i S

z
i+1. The flip-flop term exchanges the position

of neighboring up and down spins according to

Jxy(S
x
i S

x
i+1 + Sy

i S
y
i+1)| ↑i↓i+1⟩ = (Jxy/2)| ↓i↑i+1⟩, (2)

or, equivalently, it moves the excitations through the
chain. We have assumed open boundary conditions as
indicated by the sum in HNN which goes from i = 1 to
L−1. Hence, an excitation in site 1 (or L) can move only
to site 2 (or to site L− 1). Closed boundary conditions,
where an excitation in site 1 can move also to site L (and
vice-versa) are mentioned briefly in Sec. IV.
The Ising interaction implies that pairs of parallel spins

have higher energy than pairs of anti-parallel spins, that
is,

JzS
z
i S

z
i+1| ↑i↑i+1⟩ = +(Jz/4)| ↑i↑i+1⟩, (3)

and

JzS
z
i S

z
i+1| ↑i↓i+1⟩ = −(Jz/4)| ↑i↓i+1⟩. (4)

For the chain described by Eqs. (1) the total spin in
the z direction, Sz =

∑L
i=1 S

z
i , is conserved, that is,

[H,Sz] = 0. This condition means that the total number
of excitations is fixed; the Hamiltonian cannot create or
annihilate excitations, it can only move them through the
chain.
To write the Hamiltonian in matrix form and diagonal-

ize it to find its eigenvalues and eigenstates, we need to
choose a basis. The natural choice corresponds to arrays
of up and down spins in the z direction, as in Eqs. (2),
(3) and (4). We refer to it as the site basis. In this basis,
Hz and the Ising interaction contribute to the diagonal

4

the local density of states is unity. This procedure is the
one we used.35

Given the unfolded spacings of neighboring levels, the
histogram can now be computed. To compare it with the
theoretical curves, the distribution needs to be normal-
ized, so that its total area is equal to 1.
Figure 1 shows the level spacing distribution when the

defect is placed on site 1 and on site ⌊L/2⌋. The first case
corresponds to an integrable model and the distribution
is a Poisson; the second case is a chaotic system, so the
distribution is Wigner-Dyson.



FIG. 1: (Color online) Level spacing distribution for the
Hamiltonian in Eqs. (1) with L = 15, 5 spins up, ω = 0,
ϵd = 0.5, Jxy = 1, and Jz = 0.5 (arbitrary units); bin size =
0.1. (a) Defect on site d = 1;(b) defect on site d = 7. The
dashed lines are the theoretical curves.

B. Number of principal components

We now investigate how the transition from a Poisson
to a Wigner-Dyson distribution affects the structure of
the eigenstates. In particular, we study how delocalized
they are in both regimes.
To determine the spreading of the eigenstates in a par-

ticular basis, we look at their components. Consider
an eigenstate |ψi⟩ written in the basis vectors |ξk⟩ as
|ψi⟩ =

∑D
k=1 cik|ξk⟩. It will be localized if it has the par-

ticipation of few basis vectors, that is, if a few |cik|2 make
significant contributions. It will be delocalized if many
|cik|2 participate with similar values. To quantify this cri-
terion, we use the sum of the square of the probabilities,
|cik|4 (the sum of the probabilities would not be a good
choice, because normalization implies

∑D
k=1 |cik|

2 = 1),
and define the number of principal components of eigen-
state i as27,28

ni ≡
1

∑D
k=1 |cik|

4
. (7)

The number of principal components gives the number
of basis vectors which contribute to each eigenstate. It
is small when the state is localized and large when the
state is delocalized.
For Gaussian orthogonal ensembles, the eigenstates are

random vectors, that is, the amplitudes cik are indepen-
dent random variables. These states are completely de-
localized. Complete delocalization does not mean, how-
ever, that the number of principal components is equal to

D. Because the weights |cik|2 fluctuate, the average over
the ensemble gives number of principal components ∼
D/3.27,28

To study the number of principal components for
Eqs. (1), we need to choose a basis. This choice depends
on the question we want to address. We consider two
bases, the site- and mean-field basis. The site-basis is
appropriate when analyzing the spatial delocalization of
the system. To separate regular from chaotic behavior,
a more appropriate basis consists of the eigenstates of
the integrable limit of the model, which is known as the
mean-field basis.27 In our case the integrable limit corre-
sponds to Eqs. (1) with Jxy ̸= 0, ϵd ̸= 0, and Jz = 0.
We start by writing the Hamiltonian in the site-basis.

Let us denote these basis vectors by |φj⟩. In the absence
of the Ising interaction, the diagonalization of the Hamil-
tonian leads to the mean-field basis vectors. They are
given by |ξk⟩ =

∑D
j=1 bkj |φj⟩. The diagonalization of the

complete matrix, including the Ising interaction, gives
the eigenstates in the site-basis, |ψi⟩ =

∑D
j=1 aij |φj⟩. If

we use the relation between |φj⟩ and |ξk⟩, we may also
write the eigenstates of the total Hamiltonian in Eqs. (1)
in the mean-field basis as

|ψi⟩ =
D
∑

k=1

⎛

⎝

D
∑

j=1

aijb
∗

kj

⎞

⎠ |ξk⟩ =
D
∑

k=1

cik|ξk⟩. (8)

Figures 2 shows the number of principal components
for the eigenstates in the site-basis [(a), (b)] and in the
mean-field basis [(c), (d)] for the cases where the defect
is placed on site 1 [(a), (c)] and on site ⌊L/2⌋ [(b), (d)].
The level of delocalization increases significantly in the
chaotic regime. However, contrary to random matrices,
the largest values are restricted to the middle of the spec-
trum, the states at the edges being more localized. This
property is a consequence of the Gaussian shape of the
density of states of systems with two-body interactions.
The highest concentration of states appears in the middle
of the spectrum, where the strong mixing of states can
occur leading to widely distributed eigenstates.
An interesting difference between the integrable and

chaotic regimes is the fluctuations of the number of prin-
cipal components. For the regular system the number of
principal components shows large fluctuations. In con-
trast, in the chaotic regime the number of principal com-
ponents approaches a smooth function of energy. Chaotic
eigenstates close in energy have similar structures and
consequently similar values of the number of principal
components.

IV. SYMMETRIES

The presence of a defect breaks symmetries of the sys-
tem. In this section we remove the defect and have a
closer look at the symmetries.
We refer to the system in the absence of a defect

(ϵd = 0) as defect-free. Contrary to the case where

Onset	  of	  quantum	  chaos	  is	  the	  same	  as	  onset	  of	  thermaliza>on.	  

Numerical	  checks	  

Thermaliza>on:	  dephasing	  (=	  energy	  measurement)	  +	  ETH	  	  

Thermaliza>on:	  due	  to	  ETH	  delocaliza>on	  ini>al	  states	  in	  the	  space	  of	  
eigenstates	  (projec>on	  to	  exponen>ally	  many	  random	  vectors).	  	  	  
	  
Parallels	  with	  many-‐body	  localiza>on	  (Basko,	  Aleiner,	  Altshuler,	  2006),	  D.	  
Huse	  et.	  al.	  2008+	  



How	  robust	  are	  the	  eigenstates?	  

Prepare	  the	  system	  in	  the	  energy	  eigenstate	  

Setup	  I:	  trace	  out	  few	  spins	  (do	  not	  
touch	  them	  but	  no	  access	  to	  them)	  

A	   B	  

Setup	  II:	  suddenly	  cutoff	  the	  link	  

A	   B	  I	   II	  

Same	  reduced	  density	  matrix	  at	  t=0	  

Define	  two	  relevant	  entropies	  (both	  are	  conserved	  in	  >me	  aQer	  quench):	  

Entanglement	  (von	  Neumann’s	  entropy)	  
Diagonal	  (measure	  of	  delocaliza>on),	  entropy	  
of	  >me	  averaged	  density	  matrix	  aQer	  quench	  

Both	  entropies	  are	  conserved	  in	  >me	  in	  both	  setups	  



I	   II	  A	   B	   A	   B	  

B>>A,	  trace	  out	  most	  of	  the	  system.	  Eigenstate	  is	  a	  typical	  state	  so	  expect	  that	  

B<<A,	  trace	  out	  few	  spins,	  perhaps	  only	  one	  (say	  out	  of	  1022).	  What	  happens?	  

Remove	  one	  spin.	  Barely	  excite	  the	  system.	  Density	  matrix	  is	  almost	  diagonal	  (sta>onary)?	  	  

Wrong	  (in	  nonintegrable	  case)	  

Use	  ETH:	  Perform	  quench,	  deposit	  non	  extensive	  energy	  	  δE.	  Occupy	  all	  states	  in	  this	  
energy	  shell.	  

Cusng	  one	  spin	  is	  enough	  to	  recreate	  equilibrium	  
(microcanonical)	  density	  matrix.	  (Numerical	  check	  
L.	  Santos,	  M.	  Rigol,	  A.P.	  2012	  



Sta>s>cal	  mechanics	  can	  be	  recovered	  from	  one	  postulate:	  	  
All	  states	  within	  a	  narrow	  shell	  are	  equally	  occupied	  
Thermodynamics	  (including	  this	  postulate)	  can	  be	  recovered	  from	  
ETH	  plus	  dephasing	  (relaxa>on	  to	  the	  diagonal	  ensemble).	  
Imagine	  the	  most	  integrable	  many-‐body	  system:	  collec>on	  of	  non-‐interac>ng	  Ising	  
spins.	  The	  dynamics	  is	  very	  simple:	  each	  spin	  is	  conserved.	  

A	  typical	  state	  with	  a	  fixed	  magne>za>on	  is	  thermal.	  	  Stat.	  Mech.	  works	  

Quantum	  typicality:	  Typical	  many-‐body	  state	  of	  a	  big	  system	  (Universe)	  locally	  look	  like	  
thermal	  (von	  Neumann	  1929,	  Popescu	  et.	  al.	  2006,	  Goldstein	  et.	  al.	  2009)	  

Flip	  10	  spins	  in	  the	  middle	  doing	  a	  Rabi	  pulse	  

By	  performing	  a	  local	  quench	  we	  create	  a	  very	  atypical	  state,	  which	  is	  not	  thermal,	  whether	  
the	  system	  is	  integrable	  or	  not.	  In	  an	  integrable	  system	  this	  state	  will	  never	  thermalize.	  



Fundamental	  thermodynamic	  rela>on	  for	  open	  and	  closed	  systems	  

Start	  from	  a	  sta>onary	  state.	  Consider	  some	  dynamical	  process	  

Assume	  ini>al	  Gibbs	  Distribu>on	  

Combine	  together	  

Recover	  fundamental	  rela>on	  with	  the	  only	  assump>on	  of	  Gibbs	  distribu>on	  	  



Imagine	  we	  are	  umping	  some	  energy	  into	  
an	  isolated	  system.	  Does	  fundamental	  
rela>on	  s>ll	  apply?	  	  	  

Recover fundamental relation if the density matrix is not exponentially 
sparse. 

Density	  matrix	  is	  not	  sparse	  aQer	  any	  quench	  by	  local	  operators	  due	  
to	  ETH.	  	  



Example: hardcore bosons in 1D (with L. Santos and M. Rigol) 

ETH	  and	  delocaliza>on	  in	  the	  Hilbert	  space	  come	  together!	  



Fluctua>on	  theorems	  (Bochkov,	  Kuzovlev,	  Jarzynski,	  Crooks)	  

Ini>al	  sta>onary	  state	  +	  >me	  reversability:	  

Eigenstate	  thermaliza>on	  hypothesis:	  microscopic	  
probabili>es	  are	  smooth	  (independent	  on	  m,n)	  	  

Bochkov,	  Kuzivlev,	  1979,	  
Crooks	  1998	  

Jarzynski	  equality,	  1997	  

Integrate	  Crooks	  equality	  get	  	  	  	  

Jarzynski	  equality	  allows	  one	  to	  separate	  hea>ng	  from	  adiaba>c	  work	  for	  an	  arbitrary	  
protocol.	  Hard	  to	  measure	  if	  work	  is	  large	  (e.g.	  extensive)	  



Incremental	  hea>ng,	  do	  cumulant	  expansion	  

Infinitesimal	  version	  of	  the	  second	  law	  +	  Einstein	  like	  rela>ons	  from	  ETH	  

Two	  (or	  more	  conserved	  quan>>es):	  from	  ETH	  recover	  (non-‐
equilibrium)	  Onsager	  rela>ons	  	  

Open	  systems	  



Microcanonical	  ensemble	  +	  locality	  of	  interac>ons:	  recover	  sta>s>cal	  mechanics.	  
	  
ETH	  +	  dephasing:	  recover	  thermodynamics	  	  
	  
•  Second	  law	  of	  thermodynamics	  (ETH	  is	  not	  needed)	  

•  Fundamental	  thermodynamic	  rela>on	  

•  Fluctua>on-‐dissipa>on	  rela>ons	  	  

•  Einstein	  rela>ons	  (and	  universal	  microwave	  hea>ng	  laws)	  

•  Fluctua>on	  theorems	  (Jarzynski,	  Crooks)	  

•  Onsager	  rela>ons	  

•  Detailed	  balance	  

•  Finite	  size	  correc>ons	  to	  temperature	  

•  Delocaliza>on	  in	  periodically	  driven	  (Floquet)	  systems.	  Divergence	  of	  the	  Magnus	  
(Baker-‐Campbell-‐Hausdorff)	  expansion	  in	  the	  thermodynamic	  limit	  in	  ergodic	  
systems	  (P.	  Ponte	  et.	  al.	  2014)	  

•  Nontrivial	  long-‐range	  correla>ons	  in	  systems	  with	  flowing	  currents	  



Integrable vs. Non-integrable systems 

Chaotic system: rapid 
(exponential) relaxation to 
microcanonical ensemble 

Integrable system: relax to 
constraint equilibrium:  

Quantum language: in both cases relax to the diagonal ensemble 

Integrable systems: generalized Gibbs ensemble (Jaynes 1957, Rigol 2007, J. 
Cardy, F. Essler, P. Calabrese, J.-S. Caux, E. Yuzbashyan …) . What if integrability is 
slightly broken?  



Relaxation to equilibrium in integrable, and nearly integrable 
systems. Prethermalization 

.   .   .   .  
1 2 3 n-2 n-1 n 

Fermi-Pasta-Ulam problem 

Slow variables 

1.  Excite single normal mode 
2.  Follow dynamics of 

energies  
3.  Eventual energy 

equipartition 

Expectation: 

Found: 
1.  Quasiperiodic motion 
2.  Energy localization in q-space 
3.  Revivals of initial state 
4.  No thermalization! 



Prethermaliza>on	  of	  condensates	  
on	  atom	  chips.	  Gring	  et.	  al.	  2012	  

Image	  from	  J.	  Schmiedmayer	  page	  

Recent	  experiments	  on	  prethermaliza>on	  

1D	  condensates.	  
Quantum	  Newton	  cradle.	  
Kinoshita	  et.	  al.	  2006	  	  

Transmission	  coefficient	  for	  pump-‐probe	  
dynamics	  in	  VO2	  oxide	  	  

M. K. Liu, et al, Nature 487, 345 (2012)  

No	  equilibra>on	  between	  symmetric	  and	  
an>-‐symmetric	  modes.	  	  



Theory.	  	  
•  Original	  proposal	  by	  Berges	  et.	  al.	  (2004).	  Some	  of	  it	  is	  well	  known	  from	  long	  >me	  

(	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  semiconductor	  lasers)	  	  	  	  Pinned	  the	  term	  prethermaliza>on.	  

•  Apparent	  connec>ons	  to	  Kolmogorov	  turbulence	  (V.	  Gurarie,	  1994).	  

•  Possible	  understanding	  through	  renormaliza>on	  group	  (T.	  Gasenser,	  J.	  Berges,	  L.	  
Mathey,	  A.P.,	  A.	  Mitra,	  R.	  Vosk,	  E.	  Altman,	  …	  recent)	  

•  Connec>on	  to	  quantum	  kine>c	  equa>ons	  and	  GGE	  (S.	  Kehrein,	  M.	  Kollar,	  M.	  
Eckstein,…	  recent).	  

No	  general	  theore>cal	  framework	  yet,	  but	  a	  few	  ideas	  are	  very	  promising.	  	  

damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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Fermi	  surface	  discon>nuity	  for	  the	  
interac>on	  quench.	  M.	  Eckstein	  et	  al	  2009	  
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(“quench”). In this situation the time evolution for t ≥
0 is governed by a time-independent Hamiltonian Ĥ, but
the initial state at t = 0 is not an eigenstate of Ĥ . Rather
the system is typically prepared in the ground state or a
thermal state of some other initial Hamiltonian Ĥ0. Re-
garding the behavior of isolated interacting quantum sys-
tems after a global quench, three main cases can be dis-
tinguished: (a) Integrable systems which relax to a non-
thermal steady state,28–44 which often can be described
by generalized Gibbs ensembles (GGE) that take their
large number of constants of motion into account;1,2,34

(b) nearly integrable systems that do not thermalize di-
rectly, but instead are trapped in a prethermalized state
on intermediate timescales, which can be predicted from
perturbation theory;45–48 and (c) nonintegrable systems
which thermalize directly.13,27,36,47,49 We review these
three cases in Sec. II.
Fig. 1 shows two examples for the cases (a) and (b) for

which the transient behavior is qualitatively rather simi-
lar. In particular, both the integrable and the nearly in-
tegrable system enter a long-lived nonthermal state. This
leads us to the question whether and how the two cases
are related and which properties they share. Our main
claim in this article is that (a) nonthermal steady states
in integrable systems and (b) prethermalized states in
nearly integrable systems are in precise correspondence,
in the sense that both these nonthermal states are due
to the existence of exact (in case (a)) or approximate
(in case (b)) constants of motion (see Table I). We sup-
port this claim by two types of evidence. On the one
hand (Sec. III A) we discuss several examples for which
the predicted prethermalization plateau of an observable,
when evaluated for an integrable system, yields precisely
its nonthermal stationary value. In other words, nonther-
mal steady states in integrable systems can be understood
as prethermalized states that never decay. On the other
hand (Sec. III B) we obtain perturbed constants of mo-
tion that are approximately conserved in a nearly inte-
grable system, use them to construct the corresponding
GGE, and show that it describes the prethermalization
plateau for a certain class of observables.50 It follows that
integrable and nearly integrable systems are connected
in the sense that their relaxation dynamics involve long-
lived nonthermal states that are described by the same
statistical theory.

II. INTEGRABILITY VS. THERMALIZATION

A. Integrable systems: Nonthermal steady states

If Ĥ is integrable it has a large number of constants
of motion, and the system then usually relaxes to a non-
thermal steady state.28–44 This behavior is due to the fact
that expectation values of all the constants of motion do
not change with time. Therefore not all microstates in
the relevant energy shell are in fact accessible, so that
the above-mentioned fundamental postulate of statisti-
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Quench to U=0.5 (from U=0, T=0)
Long-time limit up to order U2  [Eq. (8)]

FIG. 1. Relaxation of the momentum occupation nkσ af-
ter an interaction quench from U = 0 to U = 0.5 in (a)
the Falicov-Kimball model40 and (b) Hubbard model in it-
erated perturbation theory,47 obtained in dynamical mean-
field theory (DMFT) for a momentum k which is outside
the Fermi surface (ϵk = 0.5, half-filled band with semiellip-
tic density of states, bandedges at −2 and 2). In the inte-
grable Falicov-Kimball model a nonthermal long-time limit
is observed, whereas in the nearly-integrable weak-coupling
Hubbard model a prethermalization plateau occurs (which
is predicted to good accuracy by second-order perturbation
theory,46 cf. Sec. II B), with subsequent relaxation towards
the thermal value. For technical reasons the time evolution
in (a) starts from a low-temperature thermal state. Further
results for Falicov-Kimball and Hubbard models are discussed
in Sec. IIIA.

cal mechanics cannot be expected to give a reliable de-
scription of the steady state. In contrast to the classi-
cal case it is not obvious whether a given Hamiltonian
is integrable, because any quantum Hamiltonian always
has as many constants of motion as the dimension of
the Hilbert space, e.g., its powers, or the projectors onto
its eigenstates.13,37,51,52 Many solvable Hamiltonians Ĥ ,
however, are integrable in a stronger sense, namely they
can be mapped, Ĥ → Ĥeff, onto a effective Hamiltonian
of the form

Ĥeff =
L∑

α=1

ϵαÎα , (1)

with [Îα, Îβ ] = 0 for all α and β and thus [Ĥ, Îα] = 0,
where L is proportional to the system size rather than

Explana>on	  through	  the	  GGE	  ensemble.	  
M.	  Kollar	  et	  al	  2011	  	  



More	  familiar	  examples	  of	  GGE:	  Kolmogorov	  turbulence	  	  

A.	  N.	  Kolmogorov	  

Images	  from	  Wikipedia	  

Pump	  energy	  at	  long	  wavelength.	  Dissipate	  at	  short	  wavelength.	  Non-‐equilibrium	  steady	  state	  

Scaling	  solu>on	  of	  the	  Navier	  Stokes	  equa>ons	  	  
∂v	  +	  (v∇)v	  =	  −∇p	  +	  ν	  △v	  
∇v	  =	  0	  

This	  energy	  can	  be	  thought	  of	  as	  the	  
mode	  dependent	  temperature.	  A	  
par>cular	  type	  of	  GGE.	  

302 3 Stationary Spectra of Weak Wave Turbulence

so-called Zakharov-Kraichnan transformations. They factorize the collision
integral. As a result one can (i) prove directly that Kolmogorov spectra
reduce the collision integral to zero and (ii) find that the Rayleigh-Jeans and
Kolmogorov distributions are the only universal stationary power solutions
of kinetic equation.

3.1.1 Dimensional Estimations and Self-similarity Analysis

This section deals with universal flux distributions corresponding to con-
stant fluxes of integrals of motion in the k-space. In this subsection we shall
show that for scale-invariant media, these solutions may be obtained from
dimensional analysis (see also [3.1,2]).

For complete self-similarity we shall first discuss the possible form of
universal flux distributions n(k) and the corresponding energy spectra
E(k) = (2k)d−1ω(k)n(k). We shall recall how to find the form of the spec-
trum E(k) for the turbulence of an incompressible fluid: in this case here is
only one relevant parameter, the density ρ; and E(k) may be expressed via
ρ, k and the energy flux P . Comparing the dimensions, we obtain

E(k) ≃ P 2/3k−5/3ρ1/3 (3.1.1)

which is the famous Kolmogorov-Obukhov “5/3 law” [3.3,4].
As we have seen in Sect. 1.1, in the case of wave turbulence there are

always two relevant parameters. We can choose the medium density to be the
first one. In contrast to eddies, waves have frequencies, which may be chosen
as the second parameter. The frequency enables us to arrange dimensionless
parameter

ξ =
Pk5−d

ρω3(k)
,

so E(k) may be determined from dimensional analysis up to an approxima-
tion of the unknown dimensionless function f(ξ):

E(k) = ρω2
kkd−6f

(

Pk5−d/ρω3
k

)

. (3.1.2)

In particular, if we demand that ω(k) be eliminated from (3.1.2), we obtain
f(ξ) ∝ ξ2/3, and (3.1.2) coincides with (3.1.1). In the case of weak wave tur-
bulence the connection between P (k) and n(k) follows from the stationary
kinetic equation:

dP (k)/dk = −(2k)d−1πω(k)I(k) (3.1.3)

which holds in the limit ξ ≪ 1.
For the three-wave kinetic equation (2.1.12) I(k) ∝ n2(k) and n(k) ∝

P 1/2, and for the four-wave one, n(k) ∝ P 1/3. These expressions may be
unified into one:

Zakharov,	  L’vov,	  Fal’kovich:	  derived	  this	  solu>on	  from	  the	  kine>c	  equa>ons	  



Potential applications to non-ergodic engines (work cycle 
faster than thermalization time) 4
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FIG. 2: Comparison of Carnot engines and single-heat bath engines (A) Carnot engines function by using two heat reservoirs,
a hot reservoir that serves as a source of energy and a cold reservoir that serves as an entropy sink. (B) In the ergodic
regime, energy is injected into the engine. The gas within the engine quickly equilibrates with itself. The gas then performs
mechanical work and then relaxes to back to its initial state. (C). In the non-ergodic regime, the system thermalizes on time
scales much slower than time scales on which work is performed. (D). (blue) Maximum e⇥ciency as a function of excess energy
(ratio of injected energy to initial energy), ⇥ , for Carnot engine, �c, (red) true thermodynamic bound, �mt, (magenta) actual
e⇥ciency of a non-ergodic engine which acts as an e�ective one-dimensional gas, �3 (see the text), and (green) actual e⇥ciency
of three-dimensional ideal gas Lenoir engine, �5/3.

external parameter ⇥ from ⇥1 to ⇥2. In this case,

�mne =
T0

�
Sr(q||p(2))� Sr(p(1)||p(2))

⇥

�Q
, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings ⇥1 and ⇥2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine e⌅ciency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. E�ciency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an e⇥ective temperature T (E) ⇥ (dS/dE)�1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

�mt = 1� T0�SI

�Q
=

1

�Q

⇧ E+�Q

E
dE⇥

⇤
1� T0

T (E⇥)

⌅
. (9)

Ergodic engine 
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external parameter ⇥ from ⇥1 to ⇥2. In this case,

�mne =
T0

�
Sr(q||p(2))� Sr(p(1)||p(2))

⇥

�Q
, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings ⇥1 and ⇥2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine e⌅ciency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. E�ciency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an e⇥ective temperature T (E) ⇥ (dS/dE)�1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

�mt = 1� T0�SI

�Q
=

1

�Q

⇧ E+�Q

E
dE⇥

⇤
1� T0

T (E⇥)

⌅
. (9)

Non-ergodic engine 

Can beat the second law and have much higher efficiency.  
Example: electric engines vs. combustion engines. 



Ideal gas engine (Lenoir cycle) 

I)  Deposit energy at constant volume 
II)  Push piston until pressure drops to 

equilibrium 
III)  Relax back to equilibrium at  

constant pressure 

Reason	  for	  higher	  efficiency	  of	  non-‐ergodic	  engines.	  Need	  to	  
release	  less	  entropy	  to	  the	  environment	  (P.	  Mehta	  and	  A.P.,	  2012).	  	  

If	  the	  energy	  is	  induced	  along	  the	  x-‐axis	  and	  the	  work	  cycle	  is	  shorter	  than	  the	  tehrmaliza>on	  
>me	  get	  a	  higher	  efficiency.	  	  

Closely	  related	  research:	  informa>on	  theory	  (Szilard	  engine),	  
Informa>onal	  thermodynamics	  (realizing	  Maxwell’s	  daemons),	  
informa>on	  and	  reversibility.	  



Gauge	  transforma>ons	  in	  quantum	  systems	  

Canonical	  transforma>ons	  =	  equa>ons	  of	  mo>on.	  	  
Gauge	  poten>al	  =	  momentum	  operator	  

Hamiltonian	  equa>ons	  of	  mo>on	  in	  a	  moving	  frame	  

Special	  instantaneous	  frame,	  where	  U	  diagonalizes	  instantaneous	  Hamiltonian.	  	  
	  
This	  frame	  is	  convenient	  to	  study	  the	  non-‐adiaba>c	  response	  perturba>vely.	  

	  	  



Go	  to	  the	  interac>on	  (adiaba>c	  Heisenberg)	  picture	  with	  respect	  to	  	  	  	  .	  Use	  standard	  
perturba>on	  theory	  	  

General	  theory	  of	  non-‐adiaba>c	  response	  
(with	  L.	  D’Alessio,	  2013)	  

Calculate	  expecta>on	  values	  of	  observables	  

Expand	  the	  rate	  near	  t’=t.	  



Simple	  expression	  which	  contains	  a	  lot	  

Berry	  curvature	  

Off-‐shell	  

Mass	  tensor	  

High-‐temperature	  
(classical	  limit).	  Reduces	  to	  the	  
equipar>>on	  theorem	  

On-‐shell:	  F’	  –	  asymmetric	  fric>on,	  

Fric>on	  tensor	  

Posi>ve	  temperature	  guarantees	  simultaneous	  posi>vity	  of	  η,	  κ	  (second	  law	  of	  
thermodynamics)	  	  



Need	  to	  solve	  coupled	  self-‐consistent	  equa>ons	  of	  mo>on.	  

Adiaba>c	  limit:	  Born-‐Oppenheimer	  approxima>on.	  
Berry	  (1989)	  –	  quantum	  correc>on	  to	  the	  Born-‐Oppenheimer	  force,	  given	  by	  
the	  Fubini-‐Study	  metric.	  

(Barankov,	  Levitov,	  Spivak;	  Yuzbashyan	  et.	  al.;	  Andreev,	  Gurarie,	  Radzihovsky;	  Chandran	  et.	  al.,	  …)	  



Our	  goal:	  go	  beyond	  adiaba>c	  approxima>on.	  	  

The	  Hamiltonian	  H0	  is	  just	  to	  build	  intui>on,	  e.g.	  

Zero	  temperature	  +	  gap:	  recover	  macroscopic	  Hamiltonian	  (Newtonian)	  dynamics.	  Can	  
always	  find	  a	  canonical	  momentum	  



These	  equa>ons	  without	  dissipa>on	  can	  be	  rewriWen	  in	  the	  Lagrangian	  and	  Hamiltonian	  
form	  

Equation (19) has another interesting implication. At zero temperature
both dissipative tensors (⌘ and F 0) vanish (unless the system is tuned to a
critical point or if it has gapless low-dimensional excitations [26]). In this
case Eq. (19) can be viewed as a Lagrangian equations of motion. If fact, it
is easy to see that the Lagrangian:

L =
1

2
�̇⌫ (m+ )⌫µ �̇µ + �̇µ Aµ(~�)� V (~�)� E0(~�) (20)

reproduces Eq. (19) where Aµ(~�) = h0�|Aµ|0�i and E0(~�) = h0�|H(~�)|0�i
are the value of the Berry connection and Hamiltonian (see (5)) in the in-
stantaneous (~�-dependent) ground state and we have used (see Eq. (16)):

@Aµ

@�⌫

�@A⌫

@�µ

= i [@⌫h0�|@µ0�i � @µh0�|@⌫0�i] = ih0�|
 �
@ ⌫

�!
@ µ�

 �
@ µ

�!
@ ⌫ |0�i = F⌫µ.

From the Lagrangian (20) we can define the canonical momenta conjugate
to the coordinates �⌫ :

p⌫ ⌘
@L
@�̇⌫

= (m⌫µ + ⌫µ)�̇µ + A⌫(~�) (21)

and the emergent Hamiltonian:

H ⌘ �̇⌫ p⌫ � L =
1

2
(p⌫ � A⌫)(m+ )�1

⌫µ (pµ � Aµ) + V (~�) + E0(~�). (22)

Clearly the Berry connection term plays the role of the vector potential. Thus
we see that the whole formalism of the Hamiltonian dynamics for arbitrary
macroscopic degrees of freedom is actually emergent. Without mass renor-
malization this Hamiltonian was first derived in Ref. [27] in which it was also
shown that when the slow d.o.f. is quantum, there is an addittional force
proportional to the Fubini-Study metric tensor g⌫µ. Away from the ground
state the dissipative tensors (⌘ and F 0) are, in general, non-zero and it is not
possible to reformulate Eq. (19) via Hamiltonian dynamics.

3.2.3. Dynamics of a conserved degree of freedom. Emergent equilibrium

from dynamics.

It is straightforward to apply the results above to the setup where two
systems are coupled by a single conserved degree of freedom, i.e. H =
H1(�1) +H2(�2) with the additional constraint �1 + �2 = const. Then using
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-‐	  responsible	  for	  the	  Casimir	  force	  
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Emergent	  Hamiltonian	  dynamics	  with	  minimal	  coupling	  to	  the	  gauge	  fields.	  
Without	  mass	  renormaliza>on	  term:	  M.	  Berry	  1989	  



Example:	  par>cle	  in	  a	  box	  

Massless	  membrane.	  	  
	  
What	  mass	  will	  we	  measure?	  

Mass	  of	  two	  walls	  is	  not	  equal	  to	  the	  sum	  of	  masses	  of	  each	  wall	  measured	  
separately!.	  Mass	  of	  photons	  coming.	  	  



Mass	  renormaliza>on	  near	  a	  quantum	  cri>cal	  point	  

Mass	  has	  a	  singularity	  near	  QCP.	  	  

Below	  cri>cal	  dimension	  it	  can	  be	  hard	  to	  pass	  through	  QCP	  	  

Mass	  diverges	  for	  	  	  

Scaling	  dimension	  of	  the	  mass	  density	  	  



From	  a	  snowball	  to	  infla>on	  in	  cosmology	  (hypothe>cal	  scenario)	  

Scalar	  field	  	  	  	  rolls	  affec>ng	  the	  Higgs	  mass.	  Near	  QCP	  (zero	  Higgs	  mass)	  it	  gets	  very	  heavy	  and	  
dynamically	  localizes.	  



The	  Kibble-‐Zurek	  type	  scaling	  argument	  

Scaling	  dimension	  of	  velocity	  

Divergent	  KZ	  correla>on	  length	  	  

Characteris>c	  gap	  	  

Energy	  (heat)	  density	  

Ini>al	  kine>c	  energy	  

Can	  expect	  localiza>on	  if	  	  



Localiza>on	  is	  expected	  if	  we	  absorb	  more	  
energy	  than	  it	  has	  

Same	  criterion	  for	  the	  localiza>on	  as	  from	  the	  mass	  divergence.	  
	  
Not	  really	  surprising	  from	  understanding	  the	  scaling	  theory.	  

The	  slower	  the	  system	  goes	  the	  more	  likely	  it	  is	  localized	  

Localiza>on	  from	  the	  Kibble-‐Zurek	  	  



Check	  numerically.	  Transverse	  field	  Ising	  model	  

First	  subtract	  the	  GS	  energy	  so	  that	  the	  field	  moves	  in	  a	  flat	  poten>al	  (later	  
revise	  this	  assump>on).	  	  

Trapping	  condi>on	  

Expect	  trapping	  when	  	  



2

below a critical dimension, which we identify later.
To quantify this critical trapping argument, consider a

generic Hamiltonian H0(�,�(x)) in d spatial dimensions
which can be statically tuned by � across a second or-
der quantum critical point at �

c

. Here �(x) represent
the quantum degrees of freedom in the system, which for
simplicity we refer to as spins[? ]. We assume that � is
macroscopic and thus described by classical Newtonian
dynamics with some bare mass M

�

and bare external po-
tential V (�). The Hamiltonian of the full isolated system
is

H = H0(�,�(x)) +
1

2
M

�

�̇2 + V (�) . (2)

For concreteness we assume that the spins are initialized
in the ground state at some �init far from the critical
point and initialize the field � with some initial velocity
vinit toward the critical point.

To qualitatively understand the fate of the system it is
su�cient to use energy conservation. On the one hand,
if the spins remain in their ground state then the kinetic
energy K

c

that � would have upon reaching the critical
point is

K
c

=
M

�

v2init
2

+
⇥
V (�

c

)�V (�init)
⇤
+
⇥
Egs(�c

)�Egs(�init)
⇤
,

(3)
where Egs(�) is the ground state energy of the spin sys-
tem. This dissipationless limit defines the bare velocity
v
c

upon reaching the critical point

K
c

=
1

2
M

�

v2
c

. (4)

On the other hand, the energy Q
c

absorbed by the spin
system near the critical point scales as [3]

Q
c

⇠ Ldv
(d+z)⌫
1+⌫z

c

, (5)

where ⌫ and z are the equilibrium correlation length and
dynamic critical exponents, respectively. We expect that
the parameter will be trapped if the energy the spins
want to absorb is greater than the initial kinetic energy:

Q
c

> K
c

=) µv
1

1+⌫z [2+⌫(z�d)]
c

<⇠ 1 , (6)

where µ = M
�

/Ld is the mass density of the � field [? ].
This equation has very interesting implications. In low
dimensions, where the exponent in Eq. 6 is positive:

1

1 + ⌫z
[2 + ⌫(z � d)] > 0 () d < z +

2

⌫
⌘ d⇤ , (7)

the parameter is always trapped below a certain thresh-
old velocity. However, in high dimensions d > z + 2/⌫,
there is no trapping at small velocities and � can freely
pass through the critical point. For standard Ginzburg-
Landau type theories with z = 1, ⌫ saturates at 1/2
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FIG. 2: Demonstration of critical trapping in the TFI
model for V (�) = �Egs(�), such that vc = vinit (see main
text). (a) As vinit is increased, the field undergoes a trap-
ping/untrapping transition. (inset) The critical value of vinit
for trapping (blue dots) scales as 1/µ (red line) as predicted
from a KZ analysis. (b) Scaling collapse of the dynamics at
fixed µvinit = 0.06.

above d = 3, yielding a critical dimension d⇤ = 5 be-
low which trapping will occur. Thus we expect that the
Higgs transition in d = 3 can trap the scalar field near
the critical point, which corresponds to zero Higgs mass.
To justify these qualitative considerations we will an-

alyze a specific exactly solvable model – the transverse-
field Ising (TFI) chain in d = 1 spatial dimension with a
dynamical transverse field:

H0 = �
X

j

⇥
(1� �)sz

j

+ sx
j

sx
j+1

⇤
, (8)

where s are the Pauli matrices. The TFI chain undergoes
a quantum phase transition at �

c

= 0 from a disordered
paramagnet (� < 0) to Z2 symmetry-broken ferromagnet
(� > 0) with exponents ⌫ = z = 1, yielding trapping if
µv

c

<⇠ 1. Because the TFI chain has an explicit UV cuto↵,
our previous arguments require that the trapping veloc-
ity is su�ciently small to give K

c

and Q
c

much smaller
than the cuto↵; in general systems, we similarly require
that excitations caused by the dynamics occur at a scale
well below the scale of the leading irrelevant operator to
ensure the validity of the critical field theory.
The TFI chain is integrable; it can be solved by a

Jordan-Wigner transform from spin 1/2’s to spinless
fermions to yield a quadratic Hamiltonian [21]. We then
numerically simulate the exact coupled spin and field
equations of motion for large system sizes (L>⇠ 10000),
which are checked for system size independence to en-
sure convergence to the thermodynamic limit. Details
of our simulations can be found in the Supplementary
Information. As we will see, neither the macroscopic dy-
namics of the � field nor the KZ scaling are sensitive to
the integrability of the theory [22], so we expect that the
results we present will be generic.
We first carry the simulations in a potential V (�)

chosen to cancel out the ground state energy: V (�) =
�Egs(�). This ensures that there is no force on � when
the spins remain in their ground state, and thus v

c

= vinit
in Eq. 3. Later we consider a more general setup without

Observe	  sharp	  transi>on	  to	  the	  trapping	  regime	  at	  	  



Finite	  slope	  

Start	  from	  the	  rest	  at	  some	  	  	  	  	  	  	  	  	  and	  release	  the	  
system.	  What	  will	  happen?	  

Naïve	  answer:	  will	  roll	  down,	  perhaps	  stumble	  a	  bit	  near	  QCP	  and	  move	  on.	  Wrong!	  

The	  system	  can	  be	  truly	  self-‐trapped	  due	  to	  hea>ng	  

Expect	  two	  scenarios:	  	  
Untrapped	  (adiaba>c)	  
Trapped	  (enough	  hea>ng)	  	  	  



Start	  far	  from	  QCP:	  not	  too	  fast	  

Start	  near	  QCP	  :	  not	  too	  slow	  

Expect	  trapping	  when	  

Trapping	  is	  possible	  	  
only	  if	  	  



Numerical	  phase	  diagram	  

Numerical	  constants	  are	  not	  very	  small,	  but	  this	  is	  quite	  typical.	  



Interes>ng	  non-‐equilibrium	  dynamics	  if	  start	  near	  QCP.	  
Bare	  mass	  is	  irrelevant	  and	  can	  be	  set	  to	  zero.	  	  
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FIG. 3: Generalized scaling in a linear potential. (a) For the TFI chain with a small slope ↵ = 3 ⇥ 10�4 and small µ̂ = µ↵2,
the critical point for trapping (�

init

)
crit

scales as 1/(µ↵) as predicted. (b) Proposed trapping phase diagram for general critical
theories in the presence of a linear potential. (c) Scaling collapse at small µ↵2 of the dynamics when the system is initialized
at the critical point in its ground state for the TFI chain, showing a lack of trapping. For µ = 1 and the largest values of ↵
shown, deviations are seen at long times due to finite bare mass.

Let’s assume that these dynamics yield � of the form in Eq. 20. Then, by the previous arguments (i.e., a generalized
form of Eq. 18), the expectation value will have the scaling form

h@
�

H
0

i � h@
�

H
0

i
0

Ld

=
1

t
KZ

`d
KZ

�
KZ

f
µ̃

(t̃) . (22)

Subsituting this expression into Eq. 21 and properly inserting powers of v
init

, we see that the equations of motion
take the scale invariant form

d2�̃

dt̃2
= � 1

µ̃
f
µ̃

(t̃) . (23)

This establishes the consistency of the field motion with the K-Z scaling ansatz of the spins, so the entire dynamics
is universal.

SCALING WITH A LINEAR POTENTIAL

Now consider a general model with a linear slope. One can play the same games as the previous section to derive a
scaling theory in the presence of a slope by nothing that the scaling dimensions of the slope ↵ are [↵] = z + d� 1/⌫.
In order for the low-↵ scaling limit to be well-defined, we want ↵ to have positive scaling dimension. This gives a
lower critical dimension d⇤

l

= 1/⌫ � z below which scaling is ill-defined. Combined with the upper limit d⇤
u

= 2/⌫ + z,
we require that the dimension d fall within the range.

1/⌫ � z < d < 2/⌫ + z , (24)

which is clearly the case for both the TFI chain and the Higgs model.
It is then convenient to redefine scaling variables with respect to ↵ instead of v

init

, since we want to be able to
include the case of v

init

= 0. These new scales are given by:

`(↵)
KZ

= ↵⌫/(1�⌫z�⌫d)

t(↵)
KZ

= ↵⌫z/(1�⌫z�⌫d)

�(↵)

KZ

= ↵�1/(1�⌫z�⌫d)

µ(↵)

KZ

= ↵(t(↵)
KZ

)2/�(↵)

KZ

,

where the ↵ superscript is used to indicate that we rescale with respect to ↵ instead of v
init

. Let us start by considering

the case µ � µ(↵)

KZ

and �
init

� �(↵)

KZ

, where the initial dynamics are adiabatic. As in the main text, the velocity at
the critical point will be

v
c

⇠
p
↵�

init

/µ ⇠ v(↵)
KZ

q
�̂
init

/µ̂ , (25)

Except	  for	  transients	  and	  long	  >mes	  have	  a	  full	  scaling	  collapse	  	  



Outlook:	  dynamic	  trapping	  is	  consistent	  	  
with	  thermodynamic	  trapping	  

Consider	  a	  fixed	  energy	  state.	  Equilibrium:	  maximize	  entropy	  

The	  entropy	  is	  maximized	  near	  QCP	  where	  excita>ons	  are	  cheapest.	  
	  
From	  scaling	  expect	  entropy	  maximum	  near	  QCP	  for	  finite	  range	  of	  slopes.	  	  	  



Typical	  phase	  diagram	  of	  cuprates	  

Image:	  D.	  M.	  Broun,	  Nature	  Phys.	  (2008)	  	  

QCP	  is	  a	  natural	  place	  for	  localizing	  a	  macroscopic	  DOF	  like	  an	  order	  parameter.	  	  
Similar	  to	  the	  order	  by	  disorder	  scenario.	  



Summary	  

•  ETH	  -‐>	  thermodynamics	  

•  Relaxa>on	  in	  weakly	  nonintegrable	  systems	  through	  
prethermaliza>on	  

•  Recover	  macroscopic	  Hamiltonian	  dynamics	  from	  >me	  scale	  
separa>on	  

•  Divergence	  of	  mass	  near	  cri>cal	  points.	  Dynamical	  self-‐
trapping	  near	  quantum	  cri>cal	  points.	  	  



F.	  Essler,	  talk	  at	  KITP,	  2012	  

Prove	  for	  a	  par>cular	  (transverse	  field	  Ising)	  model	  

Works	  both	  for	  equal	  and	  non-‐equal	  >me	  correla>on	  func>ons.	  
Need	  only	  integrals	  of	  mo>on,	  which	  “fit”	  to	  the	  subsystem	  

5. Generalized Gibbs Ensemble

Let Im be local (in space) integrals of motion [Im, In]=[Im, H(h)]=0

In =
X

j

In(j, j + 1, . . . , j + �n)

j j+ln...

in our case
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If	  we	  can	  not	  measure	  In	  –	  have	  too	  many	  
fisng	  parameters.	  
	  	  
What	  if	  integrability	  is	  slightly	  broken?	  	  


