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chaos implies strong usually exponential sensitivity of the trajectories to small perturbations. In

FIG. 1 Examples of trajectories of a particle bouncing in a cavity (i) non-chaotic circular (top left image)

and (ii) chaotic Bunimovich stadium (top right image). The bottom panel shows evolution of two initially

close trajectories in the chaotic regime. The images are taken from scholarpedia and wikimedia.

Fig. 1 we illustrate the motion of a particle in a regular and chaotic two-dimensional cavity. The

top left panel illustrates long time trajectory of a particle in a regular circular cavity. It is visually

clear that the motion of the particle is completely regular and thus non-ergodic. Indeed long time

average is clearly not-equivalent to the micro-canonical ensemble average with all points in real

space and all directions in the momentum space being equally probable. On the other hand the top

right figure showing the trajectory chaotic Bunimovich stadium looks much less regular. Moreover

in this chaotic regime if we compare two trajectories, which are initially close to each other then

we see that after few bounces they become completely uncorrelated both in terms of positions and

direction of motion (bottom graph). This is a consequence of the chaotic dynamics in the system.

There are many examples of dynamical systems exhibiting chaotic behavior. In this course we

Regular	
  vs.	
  chao>c	
  mo>on:	
  like	
  beauty.	
  When	
  we	
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  we	
  recognize	
  it.	
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Standard	
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clearly gives |λ2| > 1 implying it is unstable: any small fluctuation exponentially grows without

bound with time, at least in the linearized regime. This exponential growth does not prove the

chaos yet but this is a strong indicator that the dynamics is chaotic. The exponent characterizing

the rate of growth log(λ) is called the Lyapunov exponent. In chaotic systems with many degrees

of freedom there are many Lyapunov exponents and typically the largest of them determines the

rate of divergence of nearby phase space trajectories.

The analysis of the other attractor with φ = π is even simpler

λ1,2 = 1 +
K

2
±
√
K +

K2

4
. (I.15)

Clearly for any positive K there are two real solutions with one larger than one. So this point is

always unstable. This is not very surprising since this attractor corresponds to the situation, where

a mass sits on top of the potential. It is interesting that if instead of δ kicks one applies fast periodic

motion of the pendulum: K = K0 + a sin(νt) then one can stabilize the top equilibrium φ = π.

This is known as the Kapitza effect (or Kapitza pendulum) and there are many demonstrations

how it works. In Fig. 2 we show the phase space portrait of the kicked rotor at different values of

K. It is clear that as K increases the system becomes more and more chaotic. At K = Kc ≈ 1.2

there is a delocalization transition, where the chaotic region becomes delocalized and the system

increases its energy without bound.

Transition from regular (localized) to chaotic 
(delocalized) motion as K increases. Chirikov, 
1971 

K=0.5 K=Kg=0.971635 K=5 (images taken 
from 
scholarpedia.org) 

FIG. 2 Phase space portrait (Poincare cross-section) for the kicked rotor at different values of the parameter

K. Note that the opposite convention K → −K or θ → θ + π is used in the images.

To summarize this section we note that dynamics of Hamiltonian systems can be both regular

and chaotic. Chaotic dynamics usually leads to ergodicity and thermalization. It is characterized

by exponential sensitivity of the phase space trajectories to the initial conditions: small changes
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where λ is the average number of these levels in this interval (e.g. averaged over many nearby

intervals). This Poisson statistics is very different from the Wigner - Dyson statistics. In particular,

there is no level repulsion since the Hamiltonian is completely diagonal in the single-particle basis.

The probability that within the given interval δE = ω there are no levels is simply expressed by

P0(ω) = exp[−ω], (II.10)

which is very different from the Wigner Surmize (II.7). This statement is in fact known in literature

as the Berry-Tabor conjecture (1977), which states that in the ”generic” case the quantum energy

eigenvalues behave like a sequence of independent random variables (i.e. have Poisson statistics)

provided that the underlying classical dynamics is completely integrable. In Fig. 5 we show level
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Ω

(1, 1)

(0, 0)

Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .

January 2008 Notices of the AMS 33

FIG. 5 Level statistics in a rectangular cavity with the ratio of sides a/b = 4
√
5 (Z. Rudnick, What Is

Quantum Chaos?, Notices of the AMS 55, 32 (2008)). The levels are given by a simple formula: En,m =

π2(m2/a2 + n2/b2).

statistics for a rectangular cavity with sides a and b, which have the following ratio: a/b = 4
√
5.

Clearly they agree perfectly well with the Poisson statistics. Yet the Berry-Tabor conjecture is not
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FIG. 7 Sinai billiard, which is a classical chaotic systems, similar to the Bunimovich stadium considered

earlier. Left panel illustrates the Billiard and the classical trajectory (image source Wikipedia). Right

panel shows level spacing statistics for the same billiard together with the Poisson and the Wigner-Dyson

distributions (image source O. Bohigas, M.J. Giannoni, C. Schmit Phys. Rev. Lett. 52, 1 (1984)).

energy levels in classical chaotic systems are typically well described by the Wigner-Dyson statistics.

In Fig. 8 we show another example of the level statistics for a classical chaotic system also analyzed
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s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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FIG. 8 Another chaotic system analyzed by Sinai (left panel) and illustration of classical trajectories (middle

panel). Right panel shows level spacing statistics, which again perfectly agrees with the Wigner-Dyson

ensemble (Z. Rudnick, What Is Quantum Chaos?, Notices of the AMS 55, 32 (2008)).

by Sinai.

As a next example we illustrate statistics of the level spacing of the high energy hydrogen atom

in a magnetic field. Fig. 9 shows statistics of calculated level spacings in a hydrogen atom in strong

external magnetic field. The top panel describes low energy spectra where the classical motion

is regular and the level statistics is Poissonian. The bottom panels shows the high energy region

corresponding to the classical chaotic motion. The plot clearly illustrates the crossover from the
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or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .
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s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.

34 Notices of the AMS Volume 55, Number 1

FIG. 8 Another chaotic system analyzed by Sinai (left panel) and illustration of classical trajectories (middle

panel). Right panel shows level spacing statistics, which again perfectly agrees with the Wigner-Dyson

ensemble (Z. Rudnick, What Is Quantum Chaos?, Notices of the AMS 55, 32 (2008)).

by Sinai.

As a next example we illustrate statistics of the level spacing of the high energy hydrogen atom

in a magnetic field. Fig. 9 shows statistics of calculated level spacings in a hydrogen atom in strong

external magnetic field. The top panel describes low energy spectra where the classical motion

is regular and the level statistics is Poissonian. The bottom panels shows the high energy region

corresponding to the classical chaotic motion. The plot clearly illustrates the crossover from the
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  through	
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This	
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  contains	
  Exponen>ally	
  many	
  levels.	
  Hence	
  recover	
  Wigner-­‐Dyson	
  sta>s>cs,	
  all	
  
eigenstates	
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  so	
  each	
  one	
  is	
  a	
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  ensemble,	
  …	
  	
  

Eigen-­‐func>ons	
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  random	
  vectors	
  in	
  a	
  large-­‐dimensional	
  space.	
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Natural	
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Interac>ng	
  spin-­‐chain	
  with	
  a	
  single	
  impurity	
  
	
  
(A.	
  Gubin	
  and	
  L.	
  Santos,	
  2012)	
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matrices are pseudo-random vectors; that is, their ampli-
tudes are random variables.20,21 All the eigenstates are
statistically similar, they spread through all basis vectors
with no preferences and are therefore ergodic.
Despite the success of random matrix theory in de-

scribing spectral statistical properties, it cannot capture
the details of real quantum many-body systems. The fact
that random matrices are completely filled with statisti-
cally independent elements implies infinite-range inter-
actions and the simultaneous interaction of many parti-
cles. Real systems have few-body (most commonly only
two-body) interactions which are usually finite range. A
better picture of systems with finite-range interactions
is provided by banded random matrices, which were also
studied byWigner.22 Their off-diagonal elements are ran-
dom and statistically independent, but are non-vanishing
only up to a fixed distance from the diagonal. There are
also ensembles of random matrices that take into account
the restriction to few body interactions, so that only the
elements associated with those interactions are nonzero;
an example is the two-body-random-ensemble23–25 (see
reviews in Refs. 21,26). Other models which describe sys-
tems with short-range and few-body interactions do not
include random elements, such as nuclear shell models,27

and the systems of interacting spins which we consider
in this article.
All the matrices we have mentioned can lead to level re-

pulsion, but differences are observed. For instance, eigen-
states of random matrices are completely spread (delo-
calized) in any basis, whereas the eigenstates of systems
with few-body interactions delocalize only in the middle
of the spectrum.26–30

In this paper we study a one-dimensional system
of interacting spins 1/2. The system involves only
nearest-neighbor interactions, and in some cases, also
next-nearest-neighbor interactions. Depending on the
strength of the couplings, the system may develop chaos,
which is identified by calculating the level spacing distri-
bution. We also compare the level of delocalization of the
eigenstates in the integrable and chaotic domains. It is
significantly larger in the latter case, where the most de-
localized states are found in the middle of the spectrum.
The paper is organized as follows. Section II provides

a detailed description of the Hamiltonian of a spin 1/2
chain. Section III explains how to compute the level
spacing distribution and how to quantify the level of de-
localization of the eigenstates. Section IV shows how
the mixing of symmetries may erase level repulsion even
when the system is chaotic. Final remarks are given in
Sec. V.

II. SPIN-1/2 CHAIN

We study a one-dimensional spin 1/2 system (a spin
1/2 chain) described by the Hamiltonian

H = Hz +HNN, (1a)

where

Hz =
L
∑

i=1

ωiS
z
i =

(

L
∑

i=1

ωSz
i

)

+ ϵdS
z
d (1b)

HNN =
L−1
∑

i=1

[

Jxy
(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

+ JzS
z
i S

z
i+1

]

. (1c)

We have set ! equal to 1, L is the number of sites,
Sx,y,z
i = σx,y,z

i /2 are the spin operators at site i, and
σx,y,z
i are the Pauli matrices. The term Hz gives the

Zeeman splitting of each spin i, as determined by a static
magnetic field in the z direction. All sites are assumed
to have the same energy splitting ω, except a single site
d, whose energy splitting ω + ϵd is caused by a magnetic
field slightly larger than the field applied on the other
sites. This site is referred to as a defect.
A spin in the positive z direction (up) is indicated by

| ↑⟩ or by the vector
(

1
0

)

; a spin in the negative z direction

(down) is represented by | ↓⟩ or
(

0
1

)

. An up spin on site
i has energy +ωi/2, and a down spin has energy −ωi/2.
A spin up corresponds to an excitation.
The second term, HNN, is known as the XXZ Hamilto-

nian. It describes the couplings between nearest-neighbor
(NN) spins; Jxy is the strength of the flip-flop term
Sx
i S

x
i+1+Sy

i S
y
i+1, and Jz is the strength of the Ising inter-

action Sz
i S

z
i+1. The flip-flop term exchanges the position

of neighboring up and down spins according to

Jxy(S
x
i S

x
i+1 + Sy

i S
y
i+1)| ↑i↓i+1⟩ = (Jxy/2)| ↓i↑i+1⟩, (2)

or, equivalently, it moves the excitations through the
chain. We have assumed open boundary conditions as
indicated by the sum in HNN which goes from i = 1 to
L−1. Hence, an excitation in site 1 (or L) can move only
to site 2 (or to site L− 1). Closed boundary conditions,
where an excitation in site 1 can move also to site L (and
vice-versa) are mentioned briefly in Sec. IV.
The Ising interaction implies that pairs of parallel spins

have higher energy than pairs of anti-parallel spins, that
is,

JzS
z
i S

z
i+1| ↑i↑i+1⟩ = +(Jz/4)| ↑i↑i+1⟩, (3)

and

JzS
z
i S

z
i+1| ↑i↓i+1⟩ = −(Jz/4)| ↑i↓i+1⟩. (4)

For the chain described by Eqs. (1) the total spin in
the z direction, Sz =

∑L
i=1 S

z
i , is conserved, that is,

[H,Sz] = 0. This condition means that the total number
of excitations is fixed; the Hamiltonian cannot create or
annihilate excitations, it can only move them through the
chain.
To write the Hamiltonian in matrix form and diagonal-

ize it to find its eigenvalues and eigenstates, we need to
choose a basis. The natural choice corresponds to arrays
of up and down spins in the z direction, as in Eqs. (2),
(3) and (4). We refer to it as the site basis. In this basis,
Hz and the Ising interaction contribute to the diagonal

4

the local density of states is unity. This procedure is the
one we used.35

Given the unfolded spacings of neighboring levels, the
histogram can now be computed. To compare it with the
theoretical curves, the distribution needs to be normal-
ized, so that its total area is equal to 1.
Figure 1 shows the level spacing distribution when the

defect is placed on site 1 and on site ⌊L/2⌋. The first case
corresponds to an integrable model and the distribution
is a Poisson; the second case is a chaotic system, so the
distribution is Wigner-Dyson.



FIG. 1: (Color online) Level spacing distribution for the
Hamiltonian in Eqs. (1) with L = 15, 5 spins up, ω = 0,
ϵd = 0.5, Jxy = 1, and Jz = 0.5 (arbitrary units); bin size =
0.1. (a) Defect on site d = 1;(b) defect on site d = 7. The
dashed lines are the theoretical curves.

B. Number of principal components

We now investigate how the transition from a Poisson
to a Wigner-Dyson distribution affects the structure of
the eigenstates. In particular, we study how delocalized
they are in both regimes.
To determine the spreading of the eigenstates in a par-

ticular basis, we look at their components. Consider
an eigenstate |ψi⟩ written in the basis vectors |ξk⟩ as
|ψi⟩ =

∑D
k=1 cik|ξk⟩. It will be localized if it has the par-

ticipation of few basis vectors, that is, if a few |cik|2 make
significant contributions. It will be delocalized if many
|cik|2 participate with similar values. To quantify this cri-
terion, we use the sum of the square of the probabilities,
|cik|4 (the sum of the probabilities would not be a good
choice, because normalization implies

∑D
k=1 |cik|

2 = 1),
and define the number of principal components of eigen-
state i as27,28

ni ≡
1

∑D
k=1 |cik|

4
. (7)

The number of principal components gives the number
of basis vectors which contribute to each eigenstate. It
is small when the state is localized and large when the
state is delocalized.
For Gaussian orthogonal ensembles, the eigenstates are

random vectors, that is, the amplitudes cik are indepen-
dent random variables. These states are completely de-
localized. Complete delocalization does not mean, how-
ever, that the number of principal components is equal to

D. Because the weights |cik|2 fluctuate, the average over
the ensemble gives number of principal components ∼
D/3.27,28

To study the number of principal components for
Eqs. (1), we need to choose a basis. This choice depends
on the question we want to address. We consider two
bases, the site- and mean-field basis. The site-basis is
appropriate when analyzing the spatial delocalization of
the system. To separate regular from chaotic behavior,
a more appropriate basis consists of the eigenstates of
the integrable limit of the model, which is known as the
mean-field basis.27 In our case the integrable limit corre-
sponds to Eqs. (1) with Jxy ̸= 0, ϵd ̸= 0, and Jz = 0.
We start by writing the Hamiltonian in the site-basis.

Let us denote these basis vectors by |φj⟩. In the absence
of the Ising interaction, the diagonalization of the Hamil-
tonian leads to the mean-field basis vectors. They are
given by |ξk⟩ =

∑D
j=1 bkj |φj⟩. The diagonalization of the

complete matrix, including the Ising interaction, gives
the eigenstates in the site-basis, |ψi⟩ =

∑D
j=1 aij |φj⟩. If

we use the relation between |φj⟩ and |ξk⟩, we may also
write the eigenstates of the total Hamiltonian in Eqs. (1)
in the mean-field basis as

|ψi⟩ =
D
∑

k=1

⎛

⎝

D
∑

j=1

aijb
∗

kj

⎞

⎠ |ξk⟩ =
D
∑

k=1

cik|ξk⟩. (8)

Figures 2 shows the number of principal components
for the eigenstates in the site-basis [(a), (b)] and in the
mean-field basis [(c), (d)] for the cases where the defect
is placed on site 1 [(a), (c)] and on site ⌊L/2⌋ [(b), (d)].
The level of delocalization increases significantly in the
chaotic regime. However, contrary to random matrices,
the largest values are restricted to the middle of the spec-
trum, the states at the edges being more localized. This
property is a consequence of the Gaussian shape of the
density of states of systems with two-body interactions.
The highest concentration of states appears in the middle
of the spectrum, where the strong mixing of states can
occur leading to widely distributed eigenstates.
An interesting difference between the integrable and

chaotic regimes is the fluctuations of the number of prin-
cipal components. For the regular system the number of
principal components shows large fluctuations. In con-
trast, in the chaotic regime the number of principal com-
ponents approaches a smooth function of energy. Chaotic
eigenstates close in energy have similar structures and
consequently similar values of the number of principal
components.

IV. SYMMETRIES

The presence of a defect breaks symmetries of the sys-
tem. In this section we remove the defect and have a
closer look at the symmetries.
We refer to the system in the absence of a defect

(ϵd = 0) as defect-free. Contrary to the case where

Onset	
  of	
  quantum	
  chaos	
  is	
  the	
  same	
  as	
  onset	
  of	
  thermaliza>on.	
  

Numerical	
  checks	
  

Thermaliza>on:	
  dephasing	
  (=	
  energy	
  measurement)	
  +	
  ETH	
  	
  

Thermaliza>on:	
  due	
  to	
  ETH	
  delocaliza>on	
  ini>al	
  states	
  in	
  the	
  space	
  of	
  
eigenstates	
  (projec>on	
  to	
  exponen>ally	
  many	
  random	
  vectors).	
  	
  	
  
	
  
Parallels	
  with	
  many-­‐body	
  localiza>on	
  (Basko,	
  Aleiner,	
  Altshuler,	
  2006),	
  D.	
  
Huse	
  et.	
  al.	
  2008+	
  



How	
  robust	
  are	
  the	
  eigenstates?	
  

Prepare	
  the	
  system	
  in	
  the	
  energy	
  eigenstate	
  

Setup	
  I:	
  trace	
  out	
  few	
  spins	
  (do	
  not	
  
touch	
  them	
  but	
  no	
  access	
  to	
  them)	
  

A	
   B	
  

Setup	
  II:	
  suddenly	
  cutoff	
  the	
  link	
  

A	
   B	
  I	
   II	
  

Same	
  reduced	
  density	
  matrix	
  at	
  t=0	
  

Define	
  two	
  relevant	
  entropies	
  (both	
  are	
  conserved	
  in	
  >me	
  aQer	
  quench):	
  

Entanglement	
  (von	
  Neumann’s	
  entropy)	
  
Diagonal	
  (measure	
  of	
  delocaliza>on),	
  entropy	
  
of	
  >me	
  averaged	
  density	
  matrix	
  aQer	
  quench	
  

Both	
  entropies	
  are	
  conserved	
  in	
  >me	
  in	
  both	
  setups	
  



I	
   II	
  A	
   B	
   A	
   B	
  

B>>A,	
  trace	
  out	
  most	
  of	
  the	
  system.	
  Eigenstate	
  is	
  a	
  typical	
  state	
  so	
  expect	
  that	
  

B<<A,	
  trace	
  out	
  few	
  spins,	
  perhaps	
  only	
  one	
  (say	
  out	
  of	
  1022).	
  What	
  happens?	
  

Remove	
  one	
  spin.	
  Barely	
  excite	
  the	
  system.	
  Density	
  matrix	
  is	
  almost	
  diagonal	
  (sta>onary)?	
  	
  

Wrong	
  (in	
  nonintegrable	
  case)	
  

Use	
  ETH:	
  Perform	
  quench,	
  deposit	
  non	
  extensive	
  energy	
  	
  δE.	
  Occupy	
  all	
  states	
  in	
  this	
  
energy	
  shell.	
  

Cusng	
  one	
  spin	
  is	
  enough	
  to	
  recreate	
  equilibrium	
  
(microcanonical)	
  density	
  matrix.	
  (Numerical	
  check	
  
L.	
  Santos,	
  M.	
  Rigol,	
  A.P.	
  2012	
  



Sta>s>cal	
  mechanics	
  can	
  be	
  recovered	
  from	
  one	
  postulate:	
  	
  
All	
  states	
  within	
  a	
  narrow	
  shell	
  are	
  equally	
  occupied	
  
Thermodynamics	
  (including	
  this	
  postulate)	
  can	
  be	
  recovered	
  from	
  
ETH	
  plus	
  dephasing	
  (relaxa>on	
  to	
  the	
  diagonal	
  ensemble).	
  
Imagine	
  the	
  most	
  integrable	
  many-­‐body	
  system:	
  collec>on	
  of	
  non-­‐interac>ng	
  Ising	
  
spins.	
  The	
  dynamics	
  is	
  very	
  simple:	
  each	
  spin	
  is	
  conserved.	
  

A	
  typical	
  state	
  with	
  a	
  fixed	
  magne>za>on	
  is	
  thermal.	
  	
  Stat.	
  Mech.	
  works	
  

Quantum	
  typicality:	
  Typical	
  many-­‐body	
  state	
  of	
  a	
  big	
  system	
  (Universe)	
  locally	
  look	
  like	
  
thermal	
  (von	
  Neumann	
  1929,	
  Popescu	
  et.	
  al.	
  2006,	
  Goldstein	
  et.	
  al.	
  2009)	
  

Flip	
  10	
  spins	
  in	
  the	
  middle	
  doing	
  a	
  Rabi	
  pulse	
  

By	
  performing	
  a	
  local	
  quench	
  we	
  create	
  a	
  very	
  atypical	
  state,	
  which	
  is	
  not	
  thermal,	
  whether	
  
the	
  system	
  is	
  integrable	
  or	
  not.	
  In	
  an	
  integrable	
  system	
  this	
  state	
  will	
  never	
  thermalize.	
  



Fundamental	
  thermodynamic	
  rela>on	
  for	
  open	
  and	
  closed	
  systems	
  

Start	
  from	
  a	
  sta>onary	
  state.	
  Consider	
  some	
  dynamical	
  process	
  

Assume	
  ini>al	
  Gibbs	
  Distribu>on	
  

Combine	
  together	
  

Recover	
  fundamental	
  rela>on	
  with	
  the	
  only	
  assump>on	
  of	
  Gibbs	
  distribu>on	
  	
  



Imagine	
  we	
  are	
  umping	
  some	
  energy	
  into	
  
an	
  isolated	
  system.	
  Does	
  fundamental	
  
rela>on	
  s>ll	
  apply?	
  	
  	
  

Recover fundamental relation if the density matrix is not exponentially 
sparse. 

Density	
  matrix	
  is	
  not	
  sparse	
  aQer	
  any	
  quench	
  by	
  local	
  operators	
  due	
  
to	
  ETH.	
  	
  



Example: hardcore bosons in 1D (with L. Santos and M. Rigol) 

ETH	
  and	
  delocaliza>on	
  in	
  the	
  Hilbert	
  space	
  come	
  together!	
  



Fluctua>on	
  theorems	
  (Bochkov,	
  Kuzovlev,	
  Jarzynski,	
  Crooks)	
  

Ini>al	
  sta>onary	
  state	
  +	
  >me	
  reversability:	
  

Eigenstate	
  thermaliza>on	
  hypothesis:	
  microscopic	
  
probabili>es	
  are	
  smooth	
  (independent	
  on	
  m,n)	
  	
  

Bochkov,	
  Kuzivlev,	
  1979,	
  
Crooks	
  1998	
  

Jarzynski	
  equality,	
  1997	
  

Integrate	
  Crooks	
  equality	
  get	
  	
  	
  	
  

Jarzynski	
  equality	
  allows	
  one	
  to	
  separate	
  hea>ng	
  from	
  adiaba>c	
  work	
  for	
  an	
  arbitrary	
  
protocol.	
  Hard	
  to	
  measure	
  if	
  work	
  is	
  large	
  (e.g.	
  extensive)	
  



Incremental	
  hea>ng,	
  do	
  cumulant	
  expansion	
  

Infinitesimal	
  version	
  of	
  the	
  second	
  law	
  +	
  Einstein	
  like	
  rela>ons	
  from	
  ETH	
  

Two	
  (or	
  more	
  conserved	
  quan>>es):	
  from	
  ETH	
  recover	
  (non-­‐
equilibrium)	
  Onsager	
  rela>ons	
  	
  

Open	
  systems	
  



Microcanonical	
  ensemble	
  +	
  locality	
  of	
  interac>ons:	
  recover	
  sta>s>cal	
  mechanics.	
  
	
  
ETH	
  +	
  dephasing:	
  recover	
  thermodynamics	
  	
  
	
  
•  Second	
  law	
  of	
  thermodynamics	
  (ETH	
  is	
  not	
  needed)	
  

•  Fundamental	
  thermodynamic	
  rela>on	
  

•  Fluctua>on-­‐dissipa>on	
  rela>ons	
  	
  

•  Einstein	
  rela>ons	
  (and	
  universal	
  microwave	
  hea>ng	
  laws)	
  

•  Fluctua>on	
  theorems	
  (Jarzynski,	
  Crooks)	
  

•  Onsager	
  rela>ons	
  

•  Detailed	
  balance	
  

•  Finite	
  size	
  correc>ons	
  to	
  temperature	
  

•  Delocaliza>on	
  in	
  periodically	
  driven	
  (Floquet)	
  systems.	
  Divergence	
  of	
  the	
  Magnus	
  
(Baker-­‐Campbell-­‐Hausdorff)	
  expansion	
  in	
  the	
  thermodynamic	
  limit	
  in	
  ergodic	
  
systems	
  (P.	
  Ponte	
  et.	
  al.	
  2014)	
  

•  Nontrivial	
  long-­‐range	
  correla>ons	
  in	
  systems	
  with	
  flowing	
  currents	
  



Integrable vs. Non-integrable systems 

Chaotic system: rapid 
(exponential) relaxation to 
microcanonical ensemble 

Integrable system: relax to 
constraint equilibrium:  

Quantum language: in both cases relax to the diagonal ensemble 

Integrable systems: generalized Gibbs ensemble (Jaynes 1957, Rigol 2007, J. 
Cardy, F. Essler, P. Calabrese, J.-S. Caux, E. Yuzbashyan …) . What if integrability is 
slightly broken?  



Relaxation to equilibrium in integrable, and nearly integrable 
systems. Prethermalization 

.   .   .   .  
1 2 3 n-2 n-1 n 

Fermi-Pasta-Ulam problem 

Slow variables 

1.  Excite single normal mode 
2.  Follow dynamics of 

energies  
3.  Eventual energy 

equipartition 

Expectation: 

Found: 
1.  Quasiperiodic motion 
2.  Energy localization in q-space 
3.  Revivals of initial state 
4.  No thermalization! 



Prethermaliza>on	
  of	
  condensates	
  
on	
  atom	
  chips.	
  Gring	
  et.	
  al.	
  2012	
  

Image	
  from	
  J.	
  Schmiedmayer	
  page	
  

Recent	
  experiments	
  on	
  prethermaliza>on	
  

1D	
  condensates.	
  
Quantum	
  Newton	
  cradle.	
  
Kinoshita	
  et.	
  al.	
  2006	
  	
  

Transmission	
  coefficient	
  for	
  pump-­‐probe	
  
dynamics	
  in	
  VO2	
  oxide	
  	
  

M. K. Liu, et al, Nature 487, 345 (2012)  

No	
  equilibra>on	
  between	
  symmetric	
  and	
  
an>-­‐symmetric	
  modes.	
  	
  



Theory.	
  	
  
•  Original	
  proposal	
  by	
  Berges	
  et.	
  al.	
  (2004).	
  Some	
  of	
  it	
  is	
  well	
  known	
  from	
  long	
  >me	
  

(	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  semiconductor	
  lasers)	
  	
  	
  	
  Pinned	
  the	
  term	
  prethermaliza>on.	
  

•  Apparent	
  connec>ons	
  to	
  Kolmogorov	
  turbulence	
  (V.	
  Gurarie,	
  1994).	
  

•  Possible	
  understanding	
  through	
  renormaliza>on	
  group	
  (T.	
  Gasenser,	
  J.	
  Berges,	
  L.	
  
Mathey,	
  A.P.,	
  A.	
  Mitra,	
  R.	
  Vosk,	
  E.	
  Altman,	
  …	
  recent)	
  

•  Connec>on	
  to	
  quantum	
  kine>c	
  equa>ons	
  and	
  GGE	
  (S.	
  Kehrein,	
  M.	
  Kollar,	
  M.	
  
Eckstein,…	
  recent).	
  

No	
  general	
  theore>cal	
  framework	
  yet,	
  but	
  a	
  few	
  ideas	
  are	
  very	
  promising.	
  	
  

damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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(“quench”). In this situation the time evolution for t ≥
0 is governed by a time-independent Hamiltonian Ĥ, but
the initial state at t = 0 is not an eigenstate of Ĥ . Rather
the system is typically prepared in the ground state or a
thermal state of some other initial Hamiltonian Ĥ0. Re-
garding the behavior of isolated interacting quantum sys-
tems after a global quench, three main cases can be dis-
tinguished: (a) Integrable systems which relax to a non-
thermal steady state,28–44 which often can be described
by generalized Gibbs ensembles (GGE) that take their
large number of constants of motion into account;1,2,34

(b) nearly integrable systems that do not thermalize di-
rectly, but instead are trapped in a prethermalized state
on intermediate timescales, which can be predicted from
perturbation theory;45–48 and (c) nonintegrable systems
which thermalize directly.13,27,36,47,49 We review these
three cases in Sec. II.
Fig. 1 shows two examples for the cases (a) and (b) for

which the transient behavior is qualitatively rather simi-
lar. In particular, both the integrable and the nearly in-
tegrable system enter a long-lived nonthermal state. This
leads us to the question whether and how the two cases
are related and which properties they share. Our main
claim in this article is that (a) nonthermal steady states
in integrable systems and (b) prethermalized states in
nearly integrable systems are in precise correspondence,
in the sense that both these nonthermal states are due
to the existence of exact (in case (a)) or approximate
(in case (b)) constants of motion (see Table I). We sup-
port this claim by two types of evidence. On the one
hand (Sec. III A) we discuss several examples for which
the predicted prethermalization plateau of an observable,
when evaluated for an integrable system, yields precisely
its nonthermal stationary value. In other words, nonther-
mal steady states in integrable systems can be understood
as prethermalized states that never decay. On the other
hand (Sec. III B) we obtain perturbed constants of mo-
tion that are approximately conserved in a nearly inte-
grable system, use them to construct the corresponding
GGE, and show that it describes the prethermalization
plateau for a certain class of observables.50 It follows that
integrable and nearly integrable systems are connected
in the sense that their relaxation dynamics involve long-
lived nonthermal states that are described by the same
statistical theory.

II. INTEGRABILITY VS. THERMALIZATION

A. Integrable systems: Nonthermal steady states

If Ĥ is integrable it has a large number of constants
of motion, and the system then usually relaxes to a non-
thermal steady state.28–44 This behavior is due to the fact
that expectation values of all the constants of motion do
not change with time. Therefore not all microstates in
the relevant energy shell are in fact accessible, so that
the above-mentioned fundamental postulate of statisti-
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 (b) Hubbard model (nearly integrable)

prethermalization
plateau

relaxation towards  
thermal value    

Quench to U=0.5 (from U=0, T=0)
Long-time limit up to order U2  [Eq. (8)]

FIG. 1. Relaxation of the momentum occupation nkσ af-
ter an interaction quench from U = 0 to U = 0.5 in (a)
the Falicov-Kimball model40 and (b) Hubbard model in it-
erated perturbation theory,47 obtained in dynamical mean-
field theory (DMFT) for a momentum k which is outside
the Fermi surface (ϵk = 0.5, half-filled band with semiellip-
tic density of states, bandedges at −2 and 2). In the inte-
grable Falicov-Kimball model a nonthermal long-time limit
is observed, whereas in the nearly-integrable weak-coupling
Hubbard model a prethermalization plateau occurs (which
is predicted to good accuracy by second-order perturbation
theory,46 cf. Sec. II B), with subsequent relaxation towards
the thermal value. For technical reasons the time evolution
in (a) starts from a low-temperature thermal state. Further
results for Falicov-Kimball and Hubbard models are discussed
in Sec. IIIA.

cal mechanics cannot be expected to give a reliable de-
scription of the steady state. In contrast to the classi-
cal case it is not obvious whether a given Hamiltonian
is integrable, because any quantum Hamiltonian always
has as many constants of motion as the dimension of
the Hilbert space, e.g., its powers, or the projectors onto
its eigenstates.13,37,51,52 Many solvable Hamiltonians Ĥ ,
however, are integrable in a stronger sense, namely they
can be mapped, Ĥ → Ĥeff, onto a effective Hamiltonian
of the form

Ĥeff =
L∑

α=1

ϵαÎα , (1)

with [Îα, Îβ ] = 0 for all α and β and thus [Ĥ, Îα] = 0,
where L is proportional to the system size rather than

Explana>on	
  through	
  the	
  GGE	
  ensemble.	
  
M.	
  Kollar	
  et	
  al	
  2011	
  	
  



More	
  familiar	
  examples	
  of	
  GGE:	
  Kolmogorov	
  turbulence	
  	
  

A.	
  N.	
  Kolmogorov	
  

Images	
  from	
  Wikipedia	
  

Pump	
  energy	
  at	
  long	
  wavelength.	
  Dissipate	
  at	
  short	
  wavelength.	
  Non-­‐equilibrium	
  steady	
  state	
  

Scaling	
  solu>on	
  of	
  the	
  Navier	
  Stokes	
  equa>ons	
  	
  
∂v	
  +	
  (v∇)v	
  =	
  −∇p	
  +	
  ν	
  △v	
  
∇v	
  =	
  0	
  

This	
  energy	
  can	
  be	
  thought	
  of	
  as	
  the	
  
mode	
  dependent	
  temperature.	
  A	
  
par>cular	
  type	
  of	
  GGE.	
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so-called Zakharov-Kraichnan transformations. They factorize the collision
integral. As a result one can (i) prove directly that Kolmogorov spectra
reduce the collision integral to zero and (ii) find that the Rayleigh-Jeans and
Kolmogorov distributions are the only universal stationary power solutions
of kinetic equation.

3.1.1 Dimensional Estimations and Self-similarity Analysis

This section deals with universal flux distributions corresponding to con-
stant fluxes of integrals of motion in the k-space. In this subsection we shall
show that for scale-invariant media, these solutions may be obtained from
dimensional analysis (see also [3.1,2]).

For complete self-similarity we shall first discuss the possible form of
universal flux distributions n(k) and the corresponding energy spectra
E(k) = (2k)d−1ω(k)n(k). We shall recall how to find the form of the spec-
trum E(k) for the turbulence of an incompressible fluid: in this case here is
only one relevant parameter, the density ρ; and E(k) may be expressed via
ρ, k and the energy flux P . Comparing the dimensions, we obtain

E(k) ≃ P 2/3k−5/3ρ1/3 (3.1.1)

which is the famous Kolmogorov-Obukhov “5/3 law” [3.3,4].
As we have seen in Sect. 1.1, in the case of wave turbulence there are

always two relevant parameters. We can choose the medium density to be the
first one. In contrast to eddies, waves have frequencies, which may be chosen
as the second parameter. The frequency enables us to arrange dimensionless
parameter

ξ =
Pk5−d

ρω3(k)
,

so E(k) may be determined from dimensional analysis up to an approxima-
tion of the unknown dimensionless function f(ξ):

E(k) = ρω2
kkd−6f

(

Pk5−d/ρω3
k

)

. (3.1.2)

In particular, if we demand that ω(k) be eliminated from (3.1.2), we obtain
f(ξ) ∝ ξ2/3, and (3.1.2) coincides with (3.1.1). In the case of weak wave tur-
bulence the connection between P (k) and n(k) follows from the stationary
kinetic equation:

dP (k)/dk = −(2k)d−1πω(k)I(k) (3.1.3)

which holds in the limit ξ ≪ 1.
For the three-wave kinetic equation (2.1.12) I(k) ∝ n2(k) and n(k) ∝

P 1/2, and for the four-wave one, n(k) ∝ P 1/3. These expressions may be
unified into one:

Zakharov,	
  L’vov,	
  Fal’kovich:	
  derived	
  this	
  solu>on	
  from	
  the	
  kine>c	
  equa>ons	
  



Potential applications to non-ergodic engines (work cycle 
faster than thermalization time) 4
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FIG. 2: Comparison of Carnot engines and single-heat bath engines (A) Carnot engines function by using two heat reservoirs,
a hot reservoir that serves as a source of energy and a cold reservoir that serves as an entropy sink. (B) In the ergodic
regime, energy is injected into the engine. The gas within the engine quickly equilibrates with itself. The gas then performs
mechanical work and then relaxes to back to its initial state. (C). In the non-ergodic regime, the system thermalizes on time
scales much slower than time scales on which work is performed. (D). (blue) Maximum e⇥ciency as a function of excess energy
(ratio of injected energy to initial energy), ⇥ , for Carnot engine, �c, (red) true thermodynamic bound, �mt, (magenta) actual
e⇥ciency of a non-ergodic engine which acts as an e�ective one-dimensional gas, �3 (see the text), and (green) actual e⇥ciency
of three-dimensional ideal gas Lenoir engine, �5/3.

external parameter ⇥ from ⇥1 to ⇥2. In this case,

�mne =
T0

�
Sr(q||p(2))� Sr(p(1)||p(2))

⇥

�Q
, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings ⇥1 and ⇥2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine e⌅ciency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. E�ciency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an e⇥ective temperature T (E) ⇥ (dS/dE)�1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

�mt = 1� T0�SI

�Q
=

1

�Q

⇧ E+�Q

E
dE⇥

⇤
1� T0

T (E⇥)

⌅
. (9)

Ergodic engine 
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external parameter ⇥ from ⇥1 to ⇥2. In this case,
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T0
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Sr(q||p(2))� Sr(p(1)||p(2))
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, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings ⇥1 and ⇥2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine e⌅ciency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. E�ciency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an e⇥ective temperature T (E) ⇥ (dS/dE)�1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

�mt = 1� T0�SI

�Q
=

1

�Q

⇧ E+�Q

E
dE⇥

⇤
1� T0

T (E⇥)

⌅
. (9)

Non-ergodic engine 

Can beat the second law and have much higher efficiency.  
Example: electric engines vs. combustion engines. 



Ideal gas engine (Lenoir cycle) 

I)  Deposit energy at constant volume 
II)  Push piston until pressure drops to 

equilibrium 
III)  Relax back to equilibrium at  

constant pressure 

Reason	
  for	
  higher	
  efficiency	
  of	
  non-­‐ergodic	
  engines.	
  Need	
  to	
  
release	
  less	
  entropy	
  to	
  the	
  environment	
  (P.	
  Mehta	
  and	
  A.P.,	
  2012).	
  	
  

If	
  the	
  energy	
  is	
  induced	
  along	
  the	
  x-­‐axis	
  and	
  the	
  work	
  cycle	
  is	
  shorter	
  than	
  the	
  tehrmaliza>on	
  
>me	
  get	
  a	
  higher	
  efficiency.	
  	
  

Closely	
  related	
  research:	
  informa>on	
  theory	
  (Szilard	
  engine),	
  
Informa>onal	
  thermodynamics	
  (realizing	
  Maxwell’s	
  daemons),	
  
informa>on	
  and	
  reversibility.	
  



Gauge	
  transforma>ons	
  in	
  quantum	
  systems	
  

Canonical	
  transforma>ons	
  =	
  equa>ons	
  of	
  mo>on.	
  	
  
Gauge	
  poten>al	
  =	
  momentum	
  operator	
  

Hamiltonian	
  equa>ons	
  of	
  mo>on	
  in	
  a	
  moving	
  frame	
  

Special	
  instantaneous	
  frame,	
  where	
  U	
  diagonalizes	
  instantaneous	
  Hamiltonian.	
  	
  
	
  
This	
  frame	
  is	
  convenient	
  to	
  study	
  the	
  non-­‐adiaba>c	
  response	
  perturba>vely.	
  

	
  	
  



Go	
  to	
  the	
  interac>on	
  (adiaba>c	
  Heisenberg)	
  picture	
  with	
  respect	
  to	
  	
  	
  	
  .	
  Use	
  standard	
  
perturba>on	
  theory	
  	
  

General	
  theory	
  of	
  non-­‐adiaba>c	
  response	
  
(with	
  L.	
  D’Alessio,	
  2013)	
  

Calculate	
  expecta>on	
  values	
  of	
  observables	
  

Expand	
  the	
  rate	
  near	
  t’=t.	
  



Simple	
  expression	
  which	
  contains	
  a	
  lot	
  

Berry	
  curvature	
  

Off-­‐shell	
  

Mass	
  tensor	
  

High-­‐temperature	
  
(classical	
  limit).	
  Reduces	
  to	
  the	
  
equipar>>on	
  theorem	
  

On-­‐shell:	
  F’	
  –	
  asymmetric	
  fric>on,	
  

Fric>on	
  tensor	
  

Posi>ve	
  temperature	
  guarantees	
  simultaneous	
  posi>vity	
  of	
  η,	
  κ	
  (second	
  law	
  of	
  
thermodynamics)	
  	
  



Need	
  to	
  solve	
  coupled	
  self-­‐consistent	
  equa>ons	
  of	
  mo>on.	
  

Adiaba>c	
  limit:	
  Born-­‐Oppenheimer	
  approxima>on.	
  
Berry	
  (1989)	
  –	
  quantum	
  correc>on	
  to	
  the	
  Born-­‐Oppenheimer	
  force,	
  given	
  by	
  
the	
  Fubini-­‐Study	
  metric.	
  

(Barankov,	
  Levitov,	
  Spivak;	
  Yuzbashyan	
  et.	
  al.;	
  Andreev,	
  Gurarie,	
  Radzihovsky;	
  Chandran	
  et.	
  al.,	
  …)	
  



Our	
  goal:	
  go	
  beyond	
  adiaba>c	
  approxima>on.	
  	
  

The	
  Hamiltonian	
  H0	
  is	
  just	
  to	
  build	
  intui>on,	
  e.g.	
  

Zero	
  temperature	
  +	
  gap:	
  recover	
  macroscopic	
  Hamiltonian	
  (Newtonian)	
  dynamics.	
  Can	
  
always	
  find	
  a	
  canonical	
  momentum	
  



These	
  equa>ons	
  without	
  dissipa>on	
  can	
  be	
  rewriWen	
  in	
  the	
  Lagrangian	
  and	
  Hamiltonian	
  
form	
  

Equation (19) has another interesting implication. At zero temperature
both dissipative tensors (⌘ and F 0) vanish (unless the system is tuned to a
critical point or if it has gapless low-dimensional excitations [26]). In this
case Eq. (19) can be viewed as a Lagrangian equations of motion. If fact, it
is easy to see that the Lagrangian:

L =
1

2
�̇⌫ (m+ )⌫µ �̇µ + �̇µ Aµ(~�)� V (~�)� E0(~�) (20)

reproduces Eq. (19) where Aµ(~�) = h0�|Aµ|0�i and E0(~�) = h0�|H(~�)|0�i
are the value of the Berry connection and Hamiltonian (see (5)) in the in-
stantaneous (~�-dependent) ground state and we have used (see Eq. (16)):

@Aµ

@�⌫

�@A⌫

@�µ

= i [@⌫h0�|@µ0�i � @µh0�|@⌫0�i] = ih0�|
 �
@ ⌫

�!
@ µ�

 �
@ µ

�!
@ ⌫ |0�i = F⌫µ.

From the Lagrangian (20) we can define the canonical momenta conjugate
to the coordinates �⌫ :

p⌫ ⌘
@L
@�̇⌫

= (m⌫µ + ⌫µ)�̇µ + A⌫(~�) (21)

and the emergent Hamiltonian:

H ⌘ �̇⌫ p⌫ � L =
1

2
(p⌫ � A⌫)(m+ )�1

⌫µ (pµ � Aµ) + V (~�) + E0(~�). (22)

Clearly the Berry connection term plays the role of the vector potential. Thus
we see that the whole formalism of the Hamiltonian dynamics for arbitrary
macroscopic degrees of freedom is actually emergent. Without mass renor-
malization this Hamiltonian was first derived in Ref. [27] in which it was also
shown that when the slow d.o.f. is quantum, there is an addittional force
proportional to the Fubini-Study metric tensor g⌫µ. Away from the ground
state the dissipative tensors (⌘ and F 0) are, in general, non-zero and it is not
possible to reformulate Eq. (19) via Hamiltonian dynamics.

3.2.3. Dynamics of a conserved degree of freedom. Emergent equilibrium

from dynamics.

It is straightforward to apply the results above to the setup where two
systems are coupled by a single conserved degree of freedom, i.e. H =
H1(�1) +H2(�2) with the additional constraint �1 + �2 = const. Then using
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-­‐	
  responsible	
  for	
  the	
  Casimir	
  force	
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Emergent	
  Hamiltonian	
  dynamics	
  with	
  minimal	
  coupling	
  to	
  the	
  gauge	
  fields.	
  
Without	
  mass	
  renormaliza>on	
  term:	
  M.	
  Berry	
  1989	
  



Example:	
  par>cle	
  in	
  a	
  box	
  

Massless	
  membrane.	
  	
  
	
  
What	
  mass	
  will	
  we	
  measure?	
  

Mass	
  of	
  two	
  walls	
  is	
  not	
  equal	
  to	
  the	
  sum	
  of	
  masses	
  of	
  each	
  wall	
  measured	
  
separately!.	
  Mass	
  of	
  photons	
  coming.	
  	
  



Mass	
  renormaliza>on	
  near	
  a	
  quantum	
  cri>cal	
  point	
  

Mass	
  has	
  a	
  singularity	
  near	
  QCP.	
  	
  

Below	
  cri>cal	
  dimension	
  it	
  can	
  be	
  hard	
  to	
  pass	
  through	
  QCP	
  	
  

Mass	
  diverges	
  for	
  	
  	
  

Scaling	
  dimension	
  of	
  the	
  mass	
  density	
  	
  



From	
  a	
  snowball	
  to	
  infla>on	
  in	
  cosmology	
  (hypothe>cal	
  scenario)	
  

Scalar	
  field	
  	
  	
  	
  rolls	
  affec>ng	
  the	
  Higgs	
  mass.	
  Near	
  QCP	
  (zero	
  Higgs	
  mass)	
  it	
  gets	
  very	
  heavy	
  and	
  
dynamically	
  localizes.	
  



The	
  Kibble-­‐Zurek	
  type	
  scaling	
  argument	
  

Scaling	
  dimension	
  of	
  velocity	
  

Divergent	
  KZ	
  correla>on	
  length	
  	
  

Characteris>c	
  gap	
  	
  

Energy	
  (heat)	
  density	
  

Ini>al	
  kine>c	
  energy	
  

Can	
  expect	
  localiza>on	
  if	
  	
  



Localiza>on	
  is	
  expected	
  if	
  we	
  absorb	
  more	
  
energy	
  than	
  it	
  has	
  

Same	
  criterion	
  for	
  the	
  localiza>on	
  as	
  from	
  the	
  mass	
  divergence.	
  
	
  
Not	
  really	
  surprising	
  from	
  understanding	
  the	
  scaling	
  theory.	
  

The	
  slower	
  the	
  system	
  goes	
  the	
  more	
  likely	
  it	
  is	
  localized	
  

Localiza>on	
  from	
  the	
  Kibble-­‐Zurek	
  	
  



Check	
  numerically.	
  Transverse	
  field	
  Ising	
  model	
  

First	
  subtract	
  the	
  GS	
  energy	
  so	
  that	
  the	
  field	
  moves	
  in	
  a	
  flat	
  poten>al	
  (later	
  
revise	
  this	
  assump>on).	
  	
  

Trapping	
  condi>on	
  

Expect	
  trapping	
  when	
  	
  



2

below a critical dimension, which we identify later.
To quantify this critical trapping argument, consider a

generic Hamiltonian H0(�,�(x)) in d spatial dimensions
which can be statically tuned by � across a second or-
der quantum critical point at �

c

. Here �(x) represent
the quantum degrees of freedom in the system, which for
simplicity we refer to as spins[? ]. We assume that � is
macroscopic and thus described by classical Newtonian
dynamics with some bare mass M

�

and bare external po-
tential V (�). The Hamiltonian of the full isolated system
is

H = H0(�,�(x)) +
1

2
M

�

�̇2 + V (�) . (2)

For concreteness we assume that the spins are initialized
in the ground state at some �init far from the critical
point and initialize the field � with some initial velocity
vinit toward the critical point.

To qualitatively understand the fate of the system it is
su�cient to use energy conservation. On the one hand,
if the spins remain in their ground state then the kinetic
energy K

c

that � would have upon reaching the critical
point is

K
c

=
M

�

v2init
2

+
⇥
V (�

c

)�V (�init)
⇤
+
⇥
Egs(�c

)�Egs(�init)
⇤
,

(3)
where Egs(�) is the ground state energy of the spin sys-
tem. This dissipationless limit defines the bare velocity
v
c

upon reaching the critical point

K
c

=
1

2
M

�

v2
c

. (4)

On the other hand, the energy Q
c

absorbed by the spin
system near the critical point scales as [3]

Q
c

⇠ Ldv
(d+z)⌫
1+⌫z

c

, (5)

where ⌫ and z are the equilibrium correlation length and
dynamic critical exponents, respectively. We expect that
the parameter will be trapped if the energy the spins
want to absorb is greater than the initial kinetic energy:

Q
c

> K
c

=) µv
1

1+⌫z [2+⌫(z�d)]
c

<⇠ 1 , (6)

where µ = M
�

/Ld is the mass density of the � field [? ].
This equation has very interesting implications. In low
dimensions, where the exponent in Eq. 6 is positive:

1

1 + ⌫z
[2 + ⌫(z � d)] > 0 () d < z +

2

⌫
⌘ d⇤ , (7)

the parameter is always trapped below a certain thresh-
old velocity. However, in high dimensions d > z + 2/⌫,
there is no trapping at small velocities and � can freely
pass through the critical point. For standard Ginzburg-
Landau type theories with z = 1, ⌫ saturates at 1/2
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FIG. 2: Demonstration of critical trapping in the TFI
model for V (�) = �Egs(�), such that vc = vinit (see main
text). (a) As vinit is increased, the field undergoes a trap-
ping/untrapping transition. (inset) The critical value of vinit
for trapping (blue dots) scales as 1/µ (red line) as predicted
from a KZ analysis. (b) Scaling collapse of the dynamics at
fixed µvinit = 0.06.

above d = 3, yielding a critical dimension d⇤ = 5 be-
low which trapping will occur. Thus we expect that the
Higgs transition in d = 3 can trap the scalar field near
the critical point, which corresponds to zero Higgs mass.
To justify these qualitative considerations we will an-

alyze a specific exactly solvable model – the transverse-
field Ising (TFI) chain in d = 1 spatial dimension with a
dynamical transverse field:

H0 = �
X

j

⇥
(1� �)sz

j

+ sx
j

sx
j+1

⇤
, (8)

where s are the Pauli matrices. The TFI chain undergoes
a quantum phase transition at �

c

= 0 from a disordered
paramagnet (� < 0) to Z2 symmetry-broken ferromagnet
(� > 0) with exponents ⌫ = z = 1, yielding trapping if
µv

c

<⇠ 1. Because the TFI chain has an explicit UV cuto↵,
our previous arguments require that the trapping veloc-
ity is su�ciently small to give K

c

and Q
c

much smaller
than the cuto↵; in general systems, we similarly require
that excitations caused by the dynamics occur at a scale
well below the scale of the leading irrelevant operator to
ensure the validity of the critical field theory.
The TFI chain is integrable; it can be solved by a

Jordan-Wigner transform from spin 1/2’s to spinless
fermions to yield a quadratic Hamiltonian [21]. We then
numerically simulate the exact coupled spin and field
equations of motion for large system sizes (L>⇠ 10000),
which are checked for system size independence to en-
sure convergence to the thermodynamic limit. Details
of our simulations can be found in the Supplementary
Information. As we will see, neither the macroscopic dy-
namics of the � field nor the KZ scaling are sensitive to
the integrability of the theory [22], so we expect that the
results we present will be generic.
We first carry the simulations in a potential V (�)

chosen to cancel out the ground state energy: V (�) =
�Egs(�). This ensures that there is no force on � when
the spins remain in their ground state, and thus v

c

= vinit
in Eq. 3. Later we consider a more general setup without

Observe	
  sharp	
  transi>on	
  to	
  the	
  trapping	
  regime	
  at	
  	
  



Finite	
  slope	
  

Start	
  from	
  the	
  rest	
  at	
  some	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  release	
  the	
  
system.	
  What	
  will	
  happen?	
  

Naïve	
  answer:	
  will	
  roll	
  down,	
  perhaps	
  stumble	
  a	
  bit	
  near	
  QCP	
  and	
  move	
  on.	
  Wrong!	
  

The	
  system	
  can	
  be	
  truly	
  self-­‐trapped	
  due	
  to	
  hea>ng	
  

Expect	
  two	
  scenarios:	
  	
  
Untrapped	
  (adiaba>c)	
  
Trapped	
  (enough	
  hea>ng)	
  	
  	
  



Start	
  far	
  from	
  QCP:	
  not	
  too	
  fast	
  

Start	
  near	
  QCP	
  :	
  not	
  too	
  slow	
  

Expect	
  trapping	
  when	
  

Trapping	
  is	
  possible	
  	
  
only	
  if	
  	
  



Numerical	
  phase	
  diagram	
  

Numerical	
  constants	
  are	
  not	
  very	
  small,	
  but	
  this	
  is	
  quite	
  typical.	
  



Interes>ng	
  non-­‐equilibrium	
  dynamics	
  if	
  start	
  near	
  QCP.	
  
Bare	
  mass	
  is	
  irrelevant	
  and	
  can	
  be	
  set	
  to	
  zero.	
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FIG. 3: Generalized scaling in a linear potential. (a) For the TFI chain with a small slope ↵ = 3 ⇥ 10�4 and small µ̂ = µ↵2,
the critical point for trapping (�

init

)
crit

scales as 1/(µ↵) as predicted. (b) Proposed trapping phase diagram for general critical
theories in the presence of a linear potential. (c) Scaling collapse at small µ↵2 of the dynamics when the system is initialized
at the critical point in its ground state for the TFI chain, showing a lack of trapping. For µ = 1 and the largest values of ↵
shown, deviations are seen at long times due to finite bare mass.

Let’s assume that these dynamics yield � of the form in Eq. 20. Then, by the previous arguments (i.e., a generalized
form of Eq. 18), the expectation value will have the scaling form

h@
�

H
0

i � h@
�

H
0

i
0

Ld

=
1

t
KZ

`d
KZ

�
KZ

f
µ̃

(t̃) . (22)

Subsituting this expression into Eq. 21 and properly inserting powers of v
init

, we see that the equations of motion
take the scale invariant form

d2�̃

dt̃2
= � 1

µ̃
f
µ̃

(t̃) . (23)

This establishes the consistency of the field motion with the K-Z scaling ansatz of the spins, so the entire dynamics
is universal.

SCALING WITH A LINEAR POTENTIAL

Now consider a general model with a linear slope. One can play the same games as the previous section to derive a
scaling theory in the presence of a slope by nothing that the scaling dimensions of the slope ↵ are [↵] = z + d� 1/⌫.
In order for the low-↵ scaling limit to be well-defined, we want ↵ to have positive scaling dimension. This gives a
lower critical dimension d⇤

l

= 1/⌫ � z below which scaling is ill-defined. Combined with the upper limit d⇤
u

= 2/⌫ + z,
we require that the dimension d fall within the range.

1/⌫ � z < d < 2/⌫ + z , (24)

which is clearly the case for both the TFI chain and the Higgs model.
It is then convenient to redefine scaling variables with respect to ↵ instead of v

init

, since we want to be able to
include the case of v

init

= 0. These new scales are given by:

`(↵)
KZ

= ↵⌫/(1�⌫z�⌫d)

t(↵)
KZ

= ↵⌫z/(1�⌫z�⌫d)

�(↵)

KZ

= ↵�1/(1�⌫z�⌫d)

µ(↵)

KZ

= ↵(t(↵)
KZ

)2/�(↵)

KZ

,

where the ↵ superscript is used to indicate that we rescale with respect to ↵ instead of v
init

. Let us start by considering

the case µ � µ(↵)

KZ

and �
init

� �(↵)

KZ

, where the initial dynamics are adiabatic. As in the main text, the velocity at
the critical point will be

v
c

⇠
p
↵�

init

/µ ⇠ v(↵)
KZ

q
�̂
init

/µ̂ , (25)

Except	
  for	
  transients	
  and	
  long	
  >mes	
  have	
  a	
  full	
  scaling	
  collapse	
  	
  



Outlook:	
  dynamic	
  trapping	
  is	
  consistent	
  	
  
with	
  thermodynamic	
  trapping	
  

Consider	
  a	
  fixed	
  energy	
  state.	
  Equilibrium:	
  maximize	
  entropy	
  

The	
  entropy	
  is	
  maximized	
  near	
  QCP	
  where	
  excita>ons	
  are	
  cheapest.	
  
	
  
From	
  scaling	
  expect	
  entropy	
  maximum	
  near	
  QCP	
  for	
  finite	
  range	
  of	
  slopes.	
  	
  	
  



Typical	
  phase	
  diagram	
  of	
  cuprates	
  

Image:	
  D.	
  M.	
  Broun,	
  Nature	
  Phys.	
  (2008)	
  	
  

QCP	
  is	
  a	
  natural	
  place	
  for	
  localizing	
  a	
  macroscopic	
  DOF	
  like	
  an	
  order	
  parameter.	
  	
  
Similar	
  to	
  the	
  order	
  by	
  disorder	
  scenario.	
  



Summary	
  

•  ETH	
  -­‐>	
  thermodynamics	
  

•  Relaxa>on	
  in	
  weakly	
  nonintegrable	
  systems	
  through	
  
prethermaliza>on	
  

•  Recover	
  macroscopic	
  Hamiltonian	
  dynamics	
  from	
  >me	
  scale	
  
separa>on	
  

•  Divergence	
  of	
  mass	
  near	
  cri>cal	
  points.	
  Dynamical	
  self-­‐
trapping	
  near	
  quantum	
  cri>cal	
  points.	
  	
  



F.	
  Essler,	
  talk	
  at	
  KITP,	
  2012	
  

Prove	
  for	
  a	
  par>cular	
  (transverse	
  field	
  Ising)	
  model	
  

Works	
  both	
  for	
  equal	
  and	
  non-­‐equal	
  >me	
  correla>on	
  func>ons.	
  
Need	
  only	
  integrals	
  of	
  mo>on,	
  which	
  “fit”	
  to	
  the	
  subsystem	
  

5. Generalized Gibbs Ensemble

Let Im be local (in space) integrals of motion [Im, In]=[Im, H(h)]=0

In =
X

j

In(j, j + 1, . . . , j + �n)

j j+ln...

in our case
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If	
  we	
  can	
  not	
  measure	
  In	
  –	
  have	
  too	
  many	
  
fisng	
  parameters.	
  
	
  	
  
What	
  if	
  integrability	
  is	
  slightly	
  broken?	
  	
  


