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Brief Outline

e ETH and thermodynamics

 Emergence of macroscopic Hamiltonian dynamics
from non-adiabatic response

* Extension of Kibble-Zurek mechanism to dynamical fields.
Dynamical localization transition near quantum critical
points.



Non-equilibrium quantum systems
. Von Neumann: Non-equilibrium theory is a “theory of non-elephants”.

Chaos and thermalization in classical and quantum isolated systems,
mostly after sudden quenches

Relaxation in weakly interacting systems. Prethermalization and the
generalized Gibbs ensemble.

Steady states: phases and phase transitions in driven systems (isolated or
dissipative)

Many-body localization: interplay of disorder and ergodicity
Universal non-equilibrium dynamics.
Dynamical phase transitions (in time).

Many more: non-equilibrium Stat. Mech., biological systems, active matter,



Classical chaotic systems

Regular vs. chaotic motion: like beauty. When we see it we recognize it.

No mathematically rigorous
definition of chaos.

Standard practical definition:
Divergent trajectories.




No chaos in one-dimension.

2
p _

% + V(:C) =k Ensures unique relation between p and x.

Simplest chaotic system — kicked P2

rotor (kicked Josephson junction).  H(p ¢,t) = 5 + K cos(¢)d(t — nT)

Break energy conservation by kicks.

Equations of motion: Chirikov standard map

(/bn—i—l = ¢, + Tpn—l—la Pn+1 = Pn + KSin(¢n)

Transition from regular (localized) to chaotic
(delocalized) motion as K increases. Chirikov
71
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Quantum systems. Linear equations of motion no chaos?

Zh(? w _ Hw Linear equations of motion like harmonic chains are non-chaotic.
t - Any solution is a superposition of normal modes (eigenstates).

von Neumann (1929): chaos (and ergodicity) are encoded in observables.

Wigner (1955), thinking about spectrum of complex nuclei: Hamiltonians of the
nuclei are essentially like random matrices.
Any initial structure is rapidly lost once we start diagonalizing it.

Famous prediction: level repulsion. Wigner-Dyson statistics (Wigner Surmize)

2
P(w) = Agw? exp[—Bsw?], B =1,2,(4)
Non-chaotic “generic systems”. Expect Poisson statistics (Berry-Tabor conjecture, 1977)

Py(w) = exp|—w]



Fxamples of level statistics
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Many-particle systems. Thermalization through eigenstates.
J. Von Neumann (1929), J. Deutch (1991), M. Srednicki (1994), M. Rigol et. al. (2008)

Extension of Wigner ideas : Ergodic Hamiltonians within a Thouless energy shell
Er = h/tp, 7p = L?/D looks like a random matrix.

This shell contains Exponentially many levels. Hence recover Wigner-Dyson statistics, all
eigenstates are statistically the same, so each one is a good microcanonical ensemble, ...

1
H =FET+e E/2R P(R) x exp [—ZTT[RQ]] .

Eigen-functions are random vectors in a large-dimensional space.

Observables (M. Srednicki 1996, M. Rigol et. al. 2008)
Omn — O(E>6mn =+ e_S(E)/20mn

Natural extension beyond the Thouless energy shell

Omn = O(E)bmn + e SEV2 (B, — E;)omn



Numerical checks

Interacting spin-chain with a single impurity

(A. Gubin and L. Santos, 2012)
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FIG. 1: (Color online) Level spacing distribution for the =1
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€qa = 0.5, Jpy = 1, and J. = 0.5 (arbitrary units); bin size = Hyn = J Srex . 4+ 8§YGY SR NG A6 S
0.1. (a) Defect on site d = 1;(b) defect on site d = 7. The Z [ 2 ( S ! z—H) LA H_l}

dashed lines are the theoretical curves. it s

Onset of guantum chaos is the same as onset of thermalization.

Thermalization: dephasing (= energy measurement) + ETH

Thermalization: due to ETH delocalization initial states in the space of
eigenstates (projection to exponentially many random vectors).

Parallels with many-body localization (Basko, Aleiner, Altshuler, 2006), D.
Huse et. al. 2008+



How robust are the eigenstates?

Prepare the system in the energy eigenstate
B 1l

1 iR 5 . O
| TVTETT TV

Setup |: trace out few spins (do not

touch them but no access to them) Setup II: suddenly cutoff the link

Same reduced density matrix at t=0

Define two relevant entropies (both are conserved in time after quench):
SA,U” — _Tr[pA log(pA)] SA,d - = Z PA,nn log(pA,nn)

Diagonal (measure of delocalization), entropy

Entanglement (von Neumann’s entropy) of time averaged density matrix after quench

Both entropies are conserved in time in both setups



Pttt 4
|1 | T

SA,UTL — —Tr[pA log(pA)] SA,d - = Z PAnn log(pA,nn)

n

B>>A, trace out most of the system. Eigenstate is a typical state so expect that

PA ™ eXp[_BHA] = SA,vn ~ SA,d ~ Seq

B<<A, trace out few spins, perhaps only one (say out of 10%?). What happens?

SA,vn — SB,vn ~ NB

Remove one spin. Barely excite the system. Density matrix is almost diagonal (stationary)?

SAd %,m? Wrong (in nonintegrable case)

Use ETH: Perform quench, deposit non extensive energy S&E. Occupy all states in this
energy shell.

S ~loc(Q(EASE) ~ S Cutting one spin is enough to recreate equilibrium
<R g( ( A) ) A.eq (microcanonical) density matrix. (Numerical check

L. Santos, M. Rigol, A.P. 2012



Statistical mechanics can be recovered from one postulate:
All states within a narrow shell are equally occupied

Thermodynamics (including this postulate) can be recovered from
ETH plus dephasing (relaxation to the diagonal ensemble).

Imagine the most integrable many-body system: collection of non-interacting Ising
spins. The dynamics is very simple: each spin is conserved.

AR AR AR AR EARRARY

A typical state with a fixed magnetization is thermal. Stat. Mech. works

Quantum typicality: Typical many-body state of a big system (Universe) locally look like
thermal (von Neumann 1929, Popescu et. al. 2006, Goldstein et. al. 2009)

Flip 10 spins in the middle doing a Rabi pulse

LT LT DT LT T

By performing a local quench we create a very atypical state, which is not thermal, whether
the system is integrable or not. In an integrable system this state will never thermalize.



Fundamental thermodynamic relation for open and closed systems

Start from a stationary state. Consider some dynamical process

Assume initial Gibbs Distribution

pun = 7 expl-BE,] = 108(pun) = —~HE, — og(2)

Combine together

E 1
AEZa— AN+ =AS; & AE =TAS — F\A\, F\ = —
oy

O
O |4

Recover fundamental relation with the only assumption of Gibbs distribution



Imagine we are umping some energy into
an isolated system. Does fundamental

\@} l .o.. : .. relation still apply?
® o .o ®
Si== 3 panlos(pun) = ~ [ dEAE)(E) oglo(E)

p(E)Q(E)=W/(FE) — Energy distribution

¢ log(2(E)) = S,, — microcanonical entropy

[ AW (S icrs(e) = [ deW (@ m(W (o)

N
QL
VN

m
N—"

|

Recover fundamental relation if the density matrix is not exponentially
sparse.

Density matrix is not sparse after any quench by local operators due
to ETH.



Example: hardcore bosons in 1D (with L. Santos and M. Rigol)
L

HB — z [—IL (i);i)j—{-l T HC) — IL, (i)}i)J_{_Q T HC) + (4)

j=1

ETH and delocalization in the Hilbert space come together!



Fluctuation theorems (Bochkov, Kuzovlev, Jarzynski, Crooks)

Initial stationary state + time reversability:

= _ _ 2
wT= Pmn — Pnm — ‘Umn‘
= Eigenstate thermalization hypothesis: microscopic
probabilities are smooth (independent on m,n)

Pg(w) = men5(Em — E, —w) = ppnQ(E + w)

pE—i—w(_w) — pan(E)

Pg(w) Qi sa(E + w) Bochkov, Kuzivlev, 1979,
_ ~ exp|fw — BAF
Ppiw(—w) O\ (F) plo PAF] Crooks 1998

Integrate Crooks equality get

(exp[—ﬁw]} = eXp[—BAF] Jarzynski equality, 1997

W = Waq + Q, wag = AF, (exp[—LAQ)]) =1

Jarzynski equality allows one to separate heating from adiabatic work for an arbitrary
protocol. Hard to measure if work is large (e.g. extensive)



Incremental heating, do cumulant expansion

B

Infinitesimal version of the second law + Einstein like relations from ETH

(exp|=p0Q)) =1 = (0Q) ~

Open systems

514)”14 5B’HJB

AN -leea=—"5

Two (or more conserved quantities): from ETH recover (non-
equilibrium) Onsager relations

w o\ dw?  {(wdn), Ap
on )\ (won).  on? AN



Microcanonical ensemble + locality of interactions: recover statistical mechanics.
ETH + dephasing: recover thermodynamics

e Second law of thermodynamics (ETH is not needed)

* Fundamental thermodynamic relation

* Fluctuation-dissipation relations

* Einstein relations (and universal microwave heating laws)
e Fluctuation theorems (Jarzynski, Crooks)

* Onsager relations

* Detailed balance

* Finite size corrections to temperature

* Delocalization in periodically driven (Floguet) systems. Divergence of the Magnus
(Baker-Campbell-Hausdorff) expansion in the thermodynamic limit in ergodic
systems (P. Ponte et. al. 2014)

* Nontrivial long-range correlations in systems with flowing currents



Integrable vs. Non-integrable systems

e e

0o
Chaotic system: rapid Integrable system: relax to
(exponential) relaxation to constraint equilibrium:
microcanonical ensemble P(z,p) = 0(p —po)o(0 — o)

Quantum language: in both cases relax to the diagonal ensemble
1
Pmn —7 pnnémn Pnn = E CXp[— Z B"’J"l]
Integrable systems: generalized Gibbs ensemble (Jaynes 1957, Rigol 2007, J.

Cardy, F. Essler, P. Calabrese, J.-S. Caux, E. Yuzbashyan ...) . What if integrability is
slightly broken?



Relaxation to equilibrium in integrable, and nearly integrable
systems. Prethermalization

Fermi-Pasta-Ulam problem

H_‘ H_‘ Xnsl — ‘-\'n T X1 ) + ;B[(xn+l - -\'n)3 - (-\'n = Xn-1 )}]
| el R Slow variables
STUDIES OF NON LINEAR PROBLEMS 1 5 )
E. FErMI, J. PASTA, and S. ULAM Eq — 5(‘pq| + |wq37q| )
Document LA~1940 (May 1955). )
Expectation:
300 H 1111. Excite single normal mode
2 2 /1 N2. Follow dynamics of
S \ / \\ / energies
\ 3 1] /1 13. Eventual energy
=0 \ [ 1] VAN / equipartition
\ [ ]l \\ | l/
a1 T Found:
100 \){ \X Xy\ /\{ 3/ 1. Quasiperiodic motion
A VA [N_1f 2. Energy localization in g-space
= 35 AN % A7 \5 \J R 3. Revivals of initial state
Oéy SRV, 7 . N/ | x4 4. No thermalization!
8] 10 20 30

r N THOUSANDS OF CYCLES



Recent experiments on prethermalization

1D condensates. Prethermalization of condensates

Quantum Newton cradle.  on atom chips. Gring et. al. 2012
Kinoshita et. al. 2006

Transmission coefficient for pump-probe
dynamics in VO, oxide

0.8 THz
.5 0.75 H
g 0.70
e :
c U {_ Hié } Image from J. Schmiedmayer page
= 0.55 ¥rd

0 ?O 40 60 80 No equilibration between symmetric and
Time Delay (ps) anti-symmetric modes.
M. K. Liu, et al, Nature 487, 345 (2012)



Theory.

* Original proposal by Berges et. al. (2004). Some of it is well known from long time
(T # Tiattice iIN Semiconductor lasers) Pinned the term prethermalization.

* Apparent connections to Kolmogorov turbulence (V. Gurarie, 1994).

* Possible understanding through renormalization group (T. Gasenser, J. Berges, L.
Mathey, A.P., A. Mitra, R. Vosk, E. Altman, ... recent)

* Connection to quantum kinetic equations and GGE (S. Kehrein, M. Kollar, M.
Eckstein,... recent).

Fermi surface discontinuity for the Explanation through the GGE ensemble.
interaction quench. M. Eckstein et al 2009 M. Kollar et al 2011
. (b) Hubbard model (nearly integrable)
0.8 |-° ; ds
1T prethermalization rela%aet:’?r?a}?’v;’ﬁre ]
06 (I:I) 001 L plateau
%’ &
0.4 S
I
c
7 O VS R TRt
% | /| —— Quench to U=0.5 (from U=0,2T=0)
: “%:nmwu2:!“_::2.:::::.:::::: 0 = Long-time limit up to order U™ [Eq. (8)]
O Bk d o 0 2 4 6 8

t

t
No general theoretical framework yet, but a few ideas are very promising.



Pump energy at long wavelength. Dissipate at short wavelength. Non-equilibrium steady state

Scaling solution of the Navier Stokes equations

This energy can be thought of as the
2/31.—5/3
ov+(vV)v=-Vp+vAv FEp o Cv Pt mode dependent temperature. A

Vv=0 E(k) ~ P2/3k_5/3p1/3 particular type of GGE.

Zakharov, L'vov, Fal’kovich: derived this solution from the kinetic equations



Potential applications to non-ergodic engines (work cycle
faster than thermalization time)

B C
| _Energy | EE
h nergy
Thermalization Tigmalizatiq
oL IS T O e FE B
with bath ¥ with bath ¥
Tq
Perform — T _______ Perform [——
ol e looooociooooood Work — feeeeeesinnnnens
I___I I=I
Ergodic engine Non-ergodic engine

Can beat the second law and have much higher efficiency.
Example: electric engines vs. combustion engines.



Reason for higher efficiency of non-ergodic engines. Need to
release less entropy to the environment (P. Mehta and A.P., 2012).

|deal gas engine (Lenoir cycle)

|) Deposit energy at constant volume

II) Push piston until pressure drops to

— equilibrium

lll) Relax back to equilibrium at
constant pressure

If the energy is induced along the x-axis and the work cycle is shorter than the tehrmalization
time get a higher efficiency.

Closely related research: information theory (Szilard engine),
Informational thermodynamics (realizing Maxwell’s daemons),

information and reversibility.



Gauge transformations in quantum systems

B(N) = UT(N)|¥)

Canonical transformations = equations of motion.
Gauge potential = momentum operator

iOx V(X)) = i0\UT(N)[W) = —Ay|o), Ay =iUTONU, Al = A,

If [)(X)) is a family of ground states Ay = (A, ) is the Berry connection

Hamiltonian equations of motion in a moving frame
10¢ 1)) = iXgOx. U W) + UTH|W) = (UTHU — M\, Ag) 1))

Special instantaneous frame, where U diagonalizes instantaneous Hamiltonian.

This frame is convenient to study the non-adiabatic response perturbatively.



General theory of non-adiabatic response
(with L. D’Alessio, 2013)

Zaf’d)> — (UTHU — )\(IA(I)‘L/)> — (ﬁ — /.\(1.“4(1.)|?7/)>
z@tp — [,0, j_VI — ).\aAa]

Go to the interaction (adiabatic Heisenberg) picture with respect told. Use standard
perturbation theory

t

p(t) = po+1 / dt' Ao () [Aa(t'), pol

J 0

Calculate expectation values of observables

.t B
My(t) = (=OpyH) = M) — / dt'/ AT Ae () (IMp(t) M (t +i7))g

0 0

Expand the rate near t’=t. 8Mb — _8)\5 H



Simple expression which contains a lot

Afb(t) — AI(EO) + F ba..).\a, — 771)(.1..).\(1, — "iba.;\b — F; b/a./\(-l'
Off-shell

Fba — Z<[Ab, Aa]>0 Berry curvature

1 [7 . .
Kba = 5/0 dr(Ap(—i7)Aa(0) + Acz.(_ZT)Ab(O»OMaSS tensor

I5; High-temperature
9 (Ap(0)Aq(0) + Aq(0)Ap(0))o = BYba (classical limit). Reduces to the

equipartition theorem

Rba =~

On-shell: F* —asymmetric friction,

Mba = TP Z P2 (m| Mp|n) (n| Mg |m)§(E,, — E,,) Friction tensor
n#Em

Positive temperature guarantees simultaneous positivity of n, k (second law of
thermodynamics)



Usual setup: A(t) is an external parameter:
(Quenches, non-adiabatic dynamics, Floquet systems, ...

What if A(t) itself is a macroscopic dynamical field?
E.g. a magnet coupled to a spring, large N order parameter,
superconducting gap, center of mass (angle) of a large object, ...

(Barankov, Levitov, Spivak; Yuzbashyan et. al.; Andreev, Gurarie, Radzihovsky; Chandran et. al,, ...)

Need to solve coupled self-consistent equations of motion.

Hiot(A) = Ho(A,px) + H(A, {5;5})

d\ OH() d]))\ (?H() /
— T — . — | T — — ( '/1 t a H

10:[(t)) = H(A())|1(2))

Adiabatic limit: Born-Oppenheimer approximation.
Berry (1989) — quantum correction to the Born-Oppenheimer force, given by
the Fubini-Study metric.

(1))



Our goal: go beyond adiabatic approximation.

— —

Hioi(X) = Ho(X) + H(X)
The Hamiltonian H, s just to build intuition, e.g.

-
. D= . 5
Hyo(\) = T’; + V(A) m — oo means )\ is an external field

mba}\a — Db
Py = _aAbV + A'll)(t) — _a)\bv — <’(,/)(t)‘a)\bHW)(t)>

(Irn/ba. + Kb T F[ja_).).\a. + (771)(1. — Fba.)).\a. — _8)\1,V + All?

Zero temperature + gap: recover macroscopic Hamiltonian (Newtonian) dynamics. Can
always find a canonical momentum



These equations without dissipation can be rewritten in the Lagrangian and Hamiltonian
form

(7 Npa + H’ba.)/\a. — F; ba.).\a,, — _a)\l, V + Ajl?

1. . . L . S
L= 9 Ay (M K)uu Ay + A Ap(A) = V(A) — Eo(A)
Eo(X) = (0x|H(X)|0,) - responsible for the Casimir force

oL . -
Dv = aT = (Muyp + K Ay + Au(A)

. 1 . ,
H=MAp —L= 5(]91/ —Ay)(m + “)le(pu — Au) +V(A) + Eo(A)

Emergent Hamiltonian dynamics with minimal coupling to the gauge fields.
Without mass renormalization term: M. Berry 1989



Example: particle in a box

Massless membrane.

What mass will we measure?

e (MI0:H|0)2 = V(029 (02 16~ m® (1 1
M=), _anﬂ (En — Eo)? _mﬁz(nhn?’_m 37 g ) O

n=2

VWWW

I A

V2 (1o (0)21),,(0)? L)24),,(L)? — 200(0)to (L)1, (0)1,, (L 16 w—= 1612
MZQZ (10(0)%9,,(0)* + o (L) (L) Y0(0)o( )w()zb())zmﬁz1 _1)3=

—_—s m
(En - E0)3 (477,2

n#0

Mass of two walls is not equal to the sum of masses of each wall measured
separately!. Mass of photons coming.



Mass renormalization near a quantum critical point

Ky = / dT(A,\(())A)\ 0 = 2 Z |0)\H|O>
J 0

n;é() n - E())
Mass has a singularity near QCP.
Scaling dimension of the mass density
9 : 2
[,u] —d— 5 — ; Mass diverges for d < dc — 7z + ;

z=1v=1/2 =d. =5, z=1lv=1,=d.=3

Below critical dimension it can be hard to pass through QCP



From a snowball to inflation in cosmology (hypothetical scenario)

a o

N
a0

3x107% cm I.

the visible
universe
today

Hy = [ da[M@) + [96() + N(@) + ulo(@)['] + Ho(N

Scalar field A rolls affecting the Higgs mass. Near QCP (zero Higgs mass) it gets very heavy and
dynamically localizes.



The Kibble-Zurek type scaling argument

Hy = [ da[@)P + [96() + No(@) + ulo(@)["] + Ho(N
A‘ Scaling dimension of velocity
dA/dt] = [\ = [t] = 2+ 1/v

Divergent KZ correlation length

1

fKZ — ’)'\ ;uli{_l
> A
Characteristic gap A ~ 1/€;(Z
. « (d+42z)v
Energy (heat) density Q/L* ~ AL, ~ |\ =
Initial kinetic energy K/Ld ~ ,U/.\Q

Can expect localization if Q> K



Localization from the Kibble-Zurek

. (d4z)v

Al K<Q & pu\ < |\ =71

Localization is expected if we absorb more
energy than it has

(d+ z)v 2
<2 & d< =
> A zv+1 Z+1/

The slower the system goes the more likely it is localized

Same criterion for the localization as from the mass divergence.

Not really surprising from understanding the scaling theory.



Check numerically. Transverse field Ising model

Hrpi(A) = — Z(l — A)sj + 555511, Egs(A) = (0[Hrr1|0)

J

First subtract the GS energy so that the field moves in a flat potential (later
revise this assumption).

Trapping condition

(d+=z)v

K<Q & pN <M=+ =)\, d

|
N
|
R
|
[—

Expect trapping when M‘)\‘ < const ~ 1



Observe sharp transition to the trapping regime at UVinit & 0.13

Uinit =—
. — p=1
Increasing v &
- & 0.20
0.1 o
E © 01s]
O =
0.0 2
C.[: “; 0.10
7 5
C£ —0.1 g 0.05
L Z
(% —0.2 0.00| 1
g 0.00 002 004 006 008 010 012 014 016 018
- Initial momentum pov,
&)
HH —-0.3 ~ i

|
<
N

0.01

I
o
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Finite slope

2
Py ,
H — Hr A A - EU‘S' A - A
onL rr1(A) — Egs(A) —a
— Start from the rest at some \;,; and release the

\\ system. What will happen?

Naive answer: will roll down, perhaps stumble a bit near QCP and move on. Wrong!

The system can be truly self-trapped due to heating

Expect two scenarios:

\ \ / ; Untrapped (adiabatic)
X il \ Trapped (enough heating)




Start far from QCP: not too fast

: : QO A\init 1
K ~ ,U)‘Q ~ At S @ ~ ‘/\‘7 = QAinit S — )\init 5 -
H 1o’
Start near QCP : not too slow
1 1 A2
) t
p—=r R~ 5= = Anit S —— 2 Ainit S~ = Ainit > Q
)‘init H -
Expect trapping when
| < /\init < 1 Trapping is possible 5
T a7 ,11,(1»2 only if no K 1



Numerical phase diagram

2.5 —r———— . . . . .
Vi Ainig o, _ L

< 20F __/ o poe? po -

+ >0 [

2 1.5F |

1

cgm- :
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(Ot;) 0] 50 100 150 200 250 300
/\mlt/&

Numerical constants are not very small, but this is quite typical.



Interesting non-equilibrium dynamics if start near QCP.
Bare mass is irrelevant and can be set to zero.

100 . . .
—u=1a=10"" r
_ — =10, a = 1074
~ || —pu=1,a=3x10""
:; — =1, a=10"3
6
="l —u=1,a=3x10"?
=
O 40
»)
p—
3
-,
U2 20}
Of ! ! !
0.00 0.05 0.10. 0.15 0.20
( ) Scaled time t«

Except for transients and long times have a full scaling collapse



Outlook: dynamic trapping is consistent
with thermodynamic trapping

Hiot(A) = Ho(A,px) + H(A, {55})

Consider a fixed energy state. Equilibrium: maximize entropy

Al

A

The entropy is maximized near QCP where excitations are cheapest.

From scaling expect entropy maximum near QCP for finite range of slopes.



Typical phase diagram of cuprates

300 S Underdoped Overdoped
200 \ "\
< \ o
e \ R
g. \ e
E \ N
= AFM \ \
100 Pseudogap S
/ Y\ d-wave
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i|
| / acP 222
!'/
% 0.1 o 0.3
Image: D. M. Broun, Nature Phys. (2008)  Hole doping (per Cu atom)

QCP is a natural place for localizing a macroscopic DOF like an order parameter.
Similar to the order by disorder scenario.



Summary

ETH -> thermodynamics

Relaxation in weakly nonintegrable systems through
prethermalization

Recover macroscopic Hamiltonian dynamics from time scale
separation

Divergence of mass near critical points. Dynamical self-
trapping near quantum critical points.



F. Essler, talk at KITP, 2012
Let I, be local (in space) integrals of motion [In, In]=[Im, H(h)]=0

Define GGE density matrix by: pgc=exp(-Z Am In)/Zgc

Am fixed by trlpge Iml= <W(O)| Inm IP(O))
Reduced density matrix of B: Pge=1ra Pgc
Prove for a particular (transverse field Ising) model Ps(c0)= pgcs

Works both for equal and non-equal time correlation functions.
Need only integrals of motion, which “fit” to the subsystem

If we can not measure |, — have too many

.. : fitting parameters.
J What if integrability is slightly broken?



