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Dynamics of closed quantum systems 

Thermalization 

Classical hydro description  
of remaining slow modes 
(e.g. diffusion) 

Quantum information stored  
in local objects is rapidly lost 

Thermal eigenstates 
(highly entangled): 

SA ⇠ Ld

Many-body localization 

Need quantum description  
of long time dynamics. 

Local quantum information  
persists indefinitely 

Ground-state-like  
high energy eigenstates 
(low entanglement): 

SA ⇠ Ld�1? 
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•  Thermalization in closed quantum systems 
Eigenstate thermalization hypothesis and its breaking 

•  What we understand about MBL dynamics 
RG, distinct phases, dynamical critical points. 

 
 
•  The many-body localization phase transition 

RG approach: transport, entanglement scaling and a surprise! 



Eigenstate thermalization hypothesis (ETH) 

L 

A

In a high energy eigenstate: 

⇢A =
1

ZA
e��HA

Extensive Von-Neuman entropy: 

SA / Ld

Example where ETH fails:  
Anderson localization 

L 

SA / Ld�1“Area law” entropy as in ground state 
also holds in high energy eigenstates 

Is this situation stable to adding interaction between the particles? 

Deutsch 91, Srednicki 94 



Generic exception to ETH:  Many body localization 

delocalized 
thermalizing 

Localized  
(κ =0, σ =0) 

non thermalizing 

Disorder strength 

T,E 

Anderson localization of 
non interacting particles: 

Perturbative stability to interactions 
(Basko, Aleiner, Altshuler 2005) 

Delocalization transition at a critical 
energy density, disorder or interaction 
strength.  

Stability of MBL supported by other approaches: 
Numerics – Oganesyan & Huse 2010, Pal & Huse, Bardarson et. al 2012 … 
RG – Vosk an EA 2012, Vosk and EA 2013, Pekker et. al. 2013 . 
Mathematical proof – Imbrie 2014  

A lot of insight into the nature of the MBL phase 
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Ultra slow growth of the entanglement entropy 

A B 

Zindaric et. al. 2008; Bardarson, Pollmann & Moore. 2012 
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An important and incompletely answered question is whether a closed quantum system of many

interacting particles can be localized by disorder. The time evolution of simple (unentangled) initial states

is studied numerically for a system of interacting spinless fermions in one dimension described by the

random-field XXZHamiltonian. Interactions induce a dramatic change in the propagation of entanglement

and a smaller change in the propagation of particles. For even weak interactions, when the system is

thought to be in a many-body localized phase, entanglement shows neither localized nor diffusive

behavior but grows without limit in an infinite system: interactions act as a singular perturbation on

the localized state with no interactions. The significance for proposed atomic experiments is that local

measurements will show a large but nonthermal entropy in the many-body localized state. This entropy

develops slowly (approximately logarithmically) over a diverging time scale as in glassy systems.

DOI: 10.1103/PhysRevLett.109.017202 PACS numbers: 75.10.Pq, 03.65.Ud, 71.30.+h

One of the most remarkable predictions of quantum
mechanics is that an arbitrarily weak random potential is
sufficient to localize all energy eigenstates of a single
particle moving in one dimension [1,2]. In experiments
on electronic systems, observation of localization is lim-
ited to low temperatures because the interaction of an
electron with its environment results in a loss of quantum
coherence and a crossover to classical transport. Recent
work has proposed that, if there are electron-electron
interactions but the electronic system is isolated from
other degrees of freedom (such as phonons), there can
be a ‘‘many-body localization transition’’ even in a one-
dimensional system for which all the single-particle states
are localized [3–8].

Two important developments may enable progress on
many-body localization beyond past efforts using analyti-
cal perturbation theory. The first is that numerical methods
like matrix-product-state based methods and large scale
exact diagonalizations enable studies of some, not all,
important quantities in large systems. The second is that
progress in creating atomic systems where interactions
between particles are strong but the overall many-atom
system is highly phase coherent [9] suggests that this
many-body localization transition may be observable in
experiments [10,11]. Note that many-body localization is
connected to the problem of thermalization in closed quan-
tum systems as a localized system does not thermalize.

The goal of the present Letter is to show that the many-
body localized phase differs qualitatively, even for weak
interactions, from the conventional, noninteracting local-
ized phase. The evolution of two quantities studied, the
entanglement entropy and particle number fluctuations,
show logarithmically slow evolution more characteristic
of a glassy phase; however, the long-term behavior of these

quantities is quite different. The growth of the entangle-
ment entropy has previously been observed [12,13] to
show roughly logarithmic evolution for smaller systems
and stronger interactions. We seek, here, to study this
behavior systematically over a wide range of time scales
(up to t ! 109J"1

? ), showing that the logarithmic growth
begins for arbitrarily weak interactions. We show that the
entanglement growth does not saturate in the thermody-
namic limit, and obtain additional quantities that distin-
guish among possible mechanisms. Further discussion of
our conclusions appears after the model, methods, and
numerical results are presented.
Model system.—One-dimensional (1D) s ¼ 1

2 spin chains
are a natural place to look for many-body localization [4] as
they are equivalent to 1D spinless lattice fermions. To start,
consider the XX model with random z directed magnetic
fields so that the total magnetization Sz is conserved:

H0 ¼ J?
X

i

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ

X

i

hiS
z
i : (1)

Here, the fields hi are drawn independently from the interval
[" !, !]. The eigenstates are equivalent via the Jordan-
Wigner transformation to Slater determinants of free fermi-
ons with nearest-neighbor hopping and random on-site
potentials; particle number in the fermionic representation
is related to Sz in the spin representation, so the z directed
magnetic field is essentially a random chemical potential.
Now every single-fermion state is localized by any !> 0,
and the dynamics of this spin Hamiltonian are localized
as well: a local disturbance at time t ¼ 0 propagates only
to some finite distance (the localization length) as t ! 1. As
an example, consider the evolution of a randomly chosen Sz

basis state. The coupling J? allows ‘‘particles’’ (up spins) to
move, and entanglement entropy to develop, between two

PRL 109, 017202 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 JULY 2012

0031-9007=12=109(1)=017202(5) 017202-1 ! 2012 American Physical Society

subregions A and B. But the total amount of entanglement
entropy generated remains finite as t ! 1 (Fig. 1), and the
fluctuations of particle number eventually saturate as well
(see below). The entanglement entropy for the pure state
of the whole system is defined as the von Neumann entropy
S ¼ "tr!A log!A ¼ "tr!B log!B of the reduced density
matrix of either subsystem. We always form the two biparti-
tions by dividing the system at the center bond.

The type of evolution considered here can be viewed as a
‘‘global quench’’ in the language of Calabrese and Cardy
[14] as the initial state is the ground state of an artificial
Hamiltonian with local fields. Evolution from an initial
product state with zero entanglement can be studied effi-
ciently via time-dependent matrix product state methods
until a time where the entanglement becomes too large for
a fixed matrix dimension. Since entanglement cannot
increase purely by local operations within each subsystem,
its growth results only from propagation across the

subsystem boundary, even though there is no conserved
current of entanglement.
The first question we seek to answer is whether there is

any qualitatively different behavior of physical quantities
when a small interaction

Hint ¼ Jz
X

i

Szi S
z
iþ1 (2)

is added. With Heisenberg couplings between the spins
(Jz ¼ J?), the model is believed to have a dynamical tran-
sition as a function of the dimensionless disorder strength
"=Jz [4,5,7]. This transition is present in generic eigenstates
of the system and hence exists at infinite temperature at
some nonzero ". The spin conductivity, or equivalently
particle conductivity after the Jordan-Wigner transforma-
tion, is zero in the many-body localized phase and nonzero
for small enough"=Jz. However, with exact diagonalization
the system size is so limited that it has not been possible to
estimate the location in the thermodynamic limit of the
transition of eigenstates or conductivities.
We find that entanglement growth shows a qualitative

change inbehavior at infinitesimalJz. Instead of the expected
behavior that a small interaction strength leads to a small
delay in saturation and a small increase infinal entanglement,
we find that the increase of entanglement continues to times
orders of magnitude larger than the initial localization time
in the Jz ¼ 0 case (Fig. 1). This slowgrowth of entanglement
is consistent with prior observations for shorter times and
larger interactions Jz ¼ 0:5J? and Jz ¼ J? [12,13],
although the saturation behavior was unclear. Note that ob-
serving a sudden effect of turning on interactions requires
large systems, as a small change in the Hamiltonian applied
to the same initial state will take a long time to affect the
behavior significantly. We next explain briefly the methods
enabling large systems to be studied.
Numerical methodology.—To simulate the quench, we

use the time evolving block decimation (TEBD) [15,16]
method which provides an efficient method to perform a
time evolution of quantum states, jc ðtÞi ¼ UðtÞjc ð0Þi, in
one-dimensional systems. The TEBD algorithm can be seen
as a descendant of the density matrix renormalization group
[17] method and is based on a matrix product state (MPS)
representation [18,19] of the wave functions. We use a
second-order Trotter decomposition of the short time propa-
gator Uð!tÞ ¼ expð"i!tHÞ into a product of term which
acts only on two nearest-neighbor sites (two-site gates).After
each application, the dimension of the MPS increases. To
avoid an uncontrolled growth of the matrix dimensions,
the MPS is truncated by keeping only the states which have
the largest weight in a Schmidt decomposition.
In order to control the error, we check that the neglected

weight after each step is small (< 10"6). Algorithms of
this type are efficient because they exploit the fact that the
ground-state wave functions are only slightly entangled
which allows for an efficient truncation. Generally the
entanglement grows linearly as a function of time which

FIG. 1 (color online). (a) Entanglement growth after a quench
starting from a site factorized Sz eigenstate for different inter-
action strengths Jz (we consider a bipartition into two half chains
of equal size). All data are for " ¼ 5 and L ¼ 10, except for
Jz ¼ 0:1 where L ¼ 20 is shown for comparison. The inset
shows the same data but with a rescaled time axis and subtracted
Jz ¼ 0 values. (b) Saturation values of the entanglement entropy
as a function of L for different interaction strengths Jz. The inset
shows the approach to saturation.
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Finite subsystem:  
 
saturate to subthermal volume law 

SA(1) = s1L
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Non-interacting AL:  Saturation 

Interacting MBL: SA(t) ⇠ log t

Result: 



There can be distinct localized phases 

E 

Glass 

Paramagnet 

Ground state like entanglement  
properties allow quantum “phases”  
in high energy eigenstates. 

Huse et. al. (2013) 

Universal dynamical signatures of the 
phases and transitions between them? 

Dynamical quantum phase transitions in random spin chains

Ronen Vosk and Ehud Altman
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Quantum spin chains and related systems undergo interesting phase transitions in their ground
states. The transition of the transverse-field Ising model from a paramagnet to a magnetically
ordered state is a paradigmatic example of a quantum critical point. On the other hand, quantum
time evolution of the same systems involves all energies and it is therefore thought to be much
harder, if at all possible, to have sharp transitions in the dynamics. In this paper we show that
the non-equilibrium dynamics of random spin chains do exhibit phase transitions characterized by
universal singularities. The sharpness of the transitions and integrity of the phases owes to many-
body localization, which prevents thermalization in these systems. Using a renormalization group
approach, we solve the time evolution of random Ising spin chains with generic interactions starting
from initial states of arbitrary energy. As a function of the Hamiltonian parameters, the system is
tuned through a dynamical transition, similar to the ground state critical point, at which the local
spin correlations establish true long range temporal order. In the state with dominant transverse
field, a spin that starts in an up state loses its orientation with time, while in the ”ordered” state
it never does. As in ground state quantum phase transitions, the dynamical transition has unique
signatures in the entanglement properties of the system. When the system is initialized in a product
state the entanglement entropy grows as log(t) in the two ”phases”, while at the critical point it
grows as log

↵(t), with ↵ a universal number. This universal entanglement growth requires generic
(”integrability breaking”) interactions to be added to the pure transverse field Ising model.

Closed systems evolving with Hamiltonian dynamics,
are commonly thought to settle to a thermal equilibrium
consistent with the energy density in the initial state.
Any sharp transition associated with the long time be-
havior of observables must in this case correspond to clas-
sical thermal phase transitions in the established thermal
ensemble. Accordingly in one dimension where thermal
transitions do not occur, dynamical transitions are not
expected either.

But systems with strong disorder may behave di↵er-
ently. Anderson conjectured already in his original paper
on localization, that closed systems of interacting parti-
cles or spins with su�ciently strong disorder would fail to
come to equilibrium[1]. Recently, Basko et. al. [2] gave
new arguments to revive this idea of many-body localiza-
tion, which has since received further support from the-
ory and numerics[3–7]. An important point for our dis-
cussion is that localized eigenstates, even at macroscopic
energies are akin to quantum ground states in their en-
tanglement properties[7, 8]. In particular, it was pointed
out in Ref. 8, that localized eigenstates can sustain long
range order and undergo phase transitions that would
not occur in a finite temperature equilibrium ensemble.
But a theory of such dynamical transitions is lacking.

In this paper we develop a theory of such a transition
in the non-equilibrium dynamics of random Ising spin
chains with generic interactions

H =
X

i

⇥
Jz

i

�z

i

�z

i+1

+ h
i

�x

i

+ Jx

i

�x

i
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i+1

+ . . .
⇤
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Here Jz

i

, h
i

and Jx

i

are uncorrelated random variables
and . . . represents other possible interaction terms that
respect the Z

2

symmetry of the model. For simplicity
of the later analysis we take the distributions of coupling

constants to be symmetric around zero. Without the last
term, Jx

i

, the hamiltonian can be mapped to a system of
non-interacting Fermions. We include the coupling Jx

i

to add interactions between the fermions and thereby
make the system generic. We shall assume throughout
that the interactions are weak, so that almost always
Jx

i

⌧ Jz

i

, h
i

h
i+1

.

The transverse field Ising model (1) undergoes a
ground state quantum phase transition controlled by an
infinite randomness fixed point [9]. The transition sep-
arates between a quantum paramagnet obtained when
the transverse field is the dominant coupling and a spin
ordered state established when the Ising coupling Jz is
dominant. Recently, it was pointed out that this tran-
sition can also occur in eigenstates with arbitrarily high
energy, provided that the system is in the many-body
localized phase. Here we develop a theory of the non-
equilibrium transition, focusing on the universal singular
e↵ects it has on the time evolution of the system in pres-
ence of generic interactions.

We shall describe the time evolution of the system
starting from initial states of arbitrarily high energy.
Specifically, we take random Ising configurations of the
spins in the Sz basis, such as | 

in

i = | ""#", . . . ##" i .
The theoretical analysis relies on the strong disorder real
space RG approach (SDRG) [10, 11], which we recently
extended to address the quantum time evolution of ran-
dom systems[7]. The properties of the transition are elu-
cidated by tracking the time evolution of two quantities:
spin correlations and entanglement entropy.

First, we show that the spin auto correlation function
C

z

(t) = h 
in

|Sz

i

(t)Sz

i

(0) | 
in

i decays as a power-law in
the paramagnetic phase, whereas it saturates to a posi-

log(h/Jz
)

Can even support topological eigenstates. 
Edge modes protected at high energy 
with dramatic effects on the dynamics! 
Bahri, Vosk, EA and Vishawanth (2013) 



RG Solution of time evolution 

Dynamical quantum phase transitions in random spin chains
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Pick out largest couplings  ⌦ = max (Jz
i , hi)

Short times (t ≈1/Ω): System evolves according to Hfast 

Other spins essentially frozen on this timescale.	



Hfast	



Longer times (t >>1/Ω): Eliminate fast modes (order Ω) 
perturbatively to obtain effective evolution for longer timescales.	



R. Vosk and EA, PRL (2013); R. Vosk and EA, arXiv:1307.3256 

Related RSRG-X: Pekker, Refael, EA, Demler & Oganesyan  arXiv:1307.3253 



Result from the RG flow 

“Paramagnet” 

“glass”: 
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Glass order parameter!  
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Critical point:  

where ! ¼ ð1þ
ffiffiffi
5

p
Þ=2 is the golden ratio and b0 is deter-

mined by the initial condition.
An important ingredient for calculation of physical

properties is the distance between remaining spins, or
length of decimated clusters, at time t (see Fig. 1). Since
the flow (4) is formally the same as in Ref. [12], we
similarly obtain L! ¼ ða0!þ 1Þ2 ¼ ½a0 lnð"0tÞ þ 1&2,
which behaves as ln2ð"0tÞ at long times.

Results.—First, as an immediate corollary of the relation
LðtÞ, we can obtain the decay of the Néel order parameter.
This is given by the fraction of undecimated spins,
still frozen in a Néel order at time t: ms ¼ 1=LðtÞ ¼
1=½a0 lnð"0tÞ þ 1&2. It is interesting to contrast this
behavior with the decay of the staggered moment in the
analogous quench of a clean XXZ model, found to be
oscillatory (for #< 1), with an envelope that decays expo-
nentially in time [16].

Next, to gain information on particle transport and ther-
malization, we compute the growth of the total particle
number fluctuation and of the entanglement entropy in a
subsystem consisting of half the chain. Each decimated
pair has a conserved integer particle number in the RG
scheme. Therefore, only decimated pairs that cut the inter-
face between the two half chains contribute to the particle
number fluctuation in the subsystem. Such oscillating pairs
add 1=8 to the number fluctuation on time average.
Computing the total particle number fluctuation then
amounts to counting the number of decimated bonds that
cut the interface [17]: Np ' R

! d!0að!0Þ ¼ lnð!þ 1=a0Þ.
Hence, the particle number fluctuation grows extremely
slowly as h"N2i ¼ ð1=24Þ ln½lnð"0tÞ& at long times.
Interestingly, this result is independent of the interaction
strength #.

On the other hand, we shall see that the interaction has a
dramatic effect on the growth of the entanglement entropy
between the two halves. In the noninteracting system
(#i ¼ 0), the second line of (2) is zero and hence no
entanglement is generated between a decimated pair and
the rest of the chain. As for the particle number fluctuation,
the only source of entanglement then is decimated pairs
whose spins reside on opposite sides of the interface.
During an oscillation period, such a pair contributes a
time average of Sp ¼ 2( 1= ln2 ' 0:557. The growth of
the entropy is then similar to that of the particle number
fluctuation:

S0ðtÞ ' Sp
1

3
ln½lnð"0tÞ þ 1=a0&: (7)

We can generalize this result (for#i ¼ 0) to a quench from
an arbitrary Ising state with a fraction q of antialigned

neighbors. Because q is an invariant of the RG and aligned
pairs do not contribute to the entropy, the prefactor in (7)
changes to qSp.
Interactions lead to a new source of entanglement. A pair

decimated at time t1 will eventually get entangled with the
neighboring spins according to Eq. (2) after a characteristic
time tentðt1Þ ¼ 2"1=ðJ21#1Þ. In particular, from t ¼ 0
entanglement will be generated by interactions only after
a delay time tdelay ¼ 2"0=ðJ20#0Þ ¼ 2ð"0=J0Þð1=Jz0Þ,
where Jz0 ) J0#0 is the typical value of the bare interaction
energy.
The interaction-generated entanglement entropy found

at time t originates from entanglement of pairs eliminated
at an earlier time t1 ¼ t( tent or !1 ¼ ln"0t1. To estimate
this contribution to the entropy, we recall that spins on the
renormalized chain at time t1 are separated by clusters of
length Lð!1Þ of decimated spins oscillating at higher fre-
quencies. By the time t that a pair of spins decimated at t1
entangles with their neighbors, the pseudospins inside the
decimated clusters must also be entangled with each other.
Hence, by the observation time t entanglement had propa-
gated to a distance Lð!1Þ giving rise to entanglement
entropy S ' 0:5Lð!1Þ ' 0:5ða0!1 þ 1Þ2. The factor 0.5
stems from the number of available degrees of freedom:
the two states with aligned spins in each decimated pair
remain unpopulated and therefore do not contribute to the
entropy. To write this as a function of the time t, we use the
relation between t and t1:

t ¼ t1 þ tent ¼ t1

"
1þ 2"2

1

JLJR#1

#
' t1

2"2
1

JLJR#1
: (8)

We now take the logarithm of both sides and replace the
scaling variables by their appropriate average values # !
1=að!1Þ and $1 ! $$ð# ¼ 0;!1Þ. Note the importance of
correlations: we needed the average of $ on the bonds with
strongest J (# ¼ 0) rather than the global average of $.
Using the solutions for að!Þ below (4) and (6), for

the typical values, we find ! ¼ 3!1 þ 1
b0
ða0!1 þ 1Þ! þ

2=a0 þ ln2. By inverting this equation to obtain !1ð!Þ,
we can find Sð!Þ ¼ 0:5Lð!1ð!ÞÞ. In limiting regimes
the equation can be inverted analytically. At long times,

when the term !!
1 dominates the right-hand side, we have

a0!1¼½b0ð!(2=a0( ln2Þ&1=!(1, while at short times,
when the linear term dominates, we have !1 ¼
1
3 ð!( 2

a0
( 1

b0
( ln2Þ.

The crossover time t* separating the two regimes
depends on the initial conditions through the coefficients

of the terms !1 and !!
1 . If b0 + a0, that is for stronger

disorder in hopping than in the interactions, we have
t* ¼ tdelay exp½6ð3b0=a0Þ!=a0&. In the opposite regime

b0 , a0, the term !!
1 dominates from the outset and

t* ¼ tdelay. We can now write an expression for the growth
of the entanglement entropy valid in the limiting regimes:

FIG. 1 (color online). Schematic illustration of remaining
spins and clusters of decimated pairs in the renormalized chain
at time t.

PRL 110, 067204 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 FEBRUARY 2013

067204-3

⇡ 1.618

( golden ratio ) 

t
tzi Φ−2ln

1~)(σ

SA(t) ⇠ log

2/� t

SA(t) ⇠ log t
Important: this is a 
quantum dynamical 
transition at high energies! 
 
Takes place in the 
localized phase. 



Limitation of the RG scheme: resonances 

Resonances between decimated sites can generate a slow mode 
that is not accounted for by the RG 

Ω-δΩ	

Ω	

 Jeff 

If Jeff>δΩ	



Resonances do not proliferate in MBL phase! (Irrelevant in RG sense). 

(Vosk and EA 2013) 

This RG scheme is limited to the MBL phase! 



Outline 

•  Thermalization in closed quantum systems 
Eigenstate thermalization hypothesis and its breaking 

•  What we understand about MBL dynamics 
RG, distinct phases, dynamical critical points. 

 
 
•  The many-body localization phase transition 

RG approach: transport, entanglement scaling and a surprise! 



Coarse Grained Model of coupled blocks 

1Γ

1g
2Γ

2g
3Γ

3g
4Γ

4g
5Γ

5g

12Γ 12g 23Γ 23g 34Γ 34g 45Γ 45g

bath 
Ε+ΔΕ	



iΓ

ig
bath 
Ε 

  Energy transport rate through block iΓ

Number of coupled levels 

iΔ Single block level spacing 

The block parameters: 

gi = �i/�i

1Γ

1g
2Γ

2g

12Γ 12g

12Γ

12g
≡ { } { }iii Γ<Γ +1

Requirement: 

Link parameters: Parameters of new block if blocks 1 and 2 were joined  

12

12
12 Δ

Γ=g ~ Effectiveness of coupling 

gi ⌧ 1

gi � 1 “thermalizing block” 

“insulating block” 



RG scheme 

1Γ

1g
2Γ

2g
3Γ

3g

12Γ 12g 23Γ 23g

1. Join blocks coupled by the fastest rate 12Γ

12Γ

12g
3Γ

3g

Γ
~ ?~ =g

2

2312~
Γ

ΓΓ
=Γ

2

2312~
g
ggg =

2. Renormalize couplings to left and right blocks 

Two cases: 

(i)   If g12<<1 or g23<<1 then we show 

( ) ( ) ( ) 23321221321

11
~

1
Γ+

+
Γ+

=
Γ++ lllllll

( )timelengh ~

(ii)   If g12, g23 >>1 

then assume ohmic transport 

Note: the scheme is controlled if the distribution of gij is wide 



Outcome of the RG flow 

1Γ
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critical 

How does diffusion disappear ? 

−4 −2 0 2 4 6
−4

−2

0

2

4

6

<log(g0)>

d log g

dL

hlog g0ic ⇡ �1.2



10 15 20 25 30 35 40 45
0.5

1

1.5

2

2.5

3

3.5

4

lo
gL

log t
 

 

RG results – dynamical scaling exponent 

Relation between time scale 
(t=Γ -1) and length L of blocks 

Critical point 

tL ~tL log~ αtL ~

(coupling strength) hlog g0i

Surprise! 
Anomalous diffusion 
phase between the MBL 
and thermal metal phases. 

-4 

6 

hlog g0i



Anomalous diffusion = Griffith phase 

Critical point 

tL ~tL log~ αtL ~

Exponentially rare insulating 
puddles in the metal	



Exponentially long delay	



⌧(l) = ⌧0e
l/l0

P (l) ⇠ l�1
0 e�l/⇠

l � ⇠ � l
o

P (⌧) = ⌧�1
0

⇣⌧0
⌧

⌘1+ ⇠
l0

Broad distribution of times: 

⇠ ! 1
Infinite randomness but thermal  
critical point at  

All “insulating” puddles ultimately thermalize 
but at broadly distributed times! 



Scaling in the localized phase 
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Suggests also: SA ⇠ log t



Entanglement scaling in eigenstates 

log2

⇥
g(L) + 1

⇤
⇠ SE(L/2)

g12

(Gives only the volume law 
contribution. To obtain full entropy 
need to integrate over the flow) 

~ # of 2-block product states in an 
   eigenstate of the coupled system  

RG result indicates thermal  
entropy in eigenstates throughout 
the Griffiths  phase  −4 −2 0 2 4 6
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d log g
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The Many-Body Localization Transition 

 
Ergodic 

 

Delocalized 
Non-Ergodic 

 
Localized 

 
Ergodic 

 
Localized 

Two possible transitions are consistent with entanglement 
entropy strong subadditivity (T. Grover arXiv:1405.1471) 

It appears that our scheme gives case1. 
The Griffith phase is ergodic! 

1) 

2) 

SA(l) at the critical point is thermal for a subsystem of an infinite system. 
But finite size effects are highly annomalous.    



Transport versus entanglement dynamical scaling: 
Heuristic argument 

L 
To equilibrate the two blocks need L transitions with   

E1 = L(✏+ �✏) E2 = L✏

�12 = ⌧�1
E

�E = O(1)

⌧E = L⌧SBut one such transition is enough to fully entangle two 
blocks in the delocalized phase! 

Time τS entanglement-entropy propagates a distance L: 

⌧S ⇠ L�1+ 1
↵⌧E ⇠ L1/↵ SA(t) ⇠ t

↵
1�↵

Diffusive energy implies ballistic entanglement propagation. 

(David Huse) 
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Test of energy versus entanglement scaling 
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1

↵S =
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1� ↵E

↵S
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Compare previous RG result with RG scheme done for 
coupled blocks with no energy conservation (Floquet) 

Entanglement is the only propagating quantity 



Summary 
1.  RG approach in the MBL state:  

- Dynamical phases and phase transitions. 
- Emergent integrals of motion. 

2.  RG theory of the MBL transition. 
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t”

 

“Glass” 

Found intermediate phase!  
Thermal but anomalous diffusion.  
“Griffiths phase” 

Many open questions 
1.  Generalization to 2d and 3d ? Does the Griffiths phase survive? 

2.  How to see MBL physics in experiments? Cold atoms? 

tL ~tL log~ αtL ~


