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Dynamics of closed quantum systems

Thermalization Many-body localization
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Quantum information stored Local qu.antur.n.information
in local objects is rapidly lost persists Indeiutely
Classical hydro description Need quantum description
of remaining slow modes of long time dynamics.

(e.g. diffusion) Ground-state-like

Thermal eigenstates high energy eigenstates
(highly entangled): (low entanglement):
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Outline

* Thermalization in closed quantum systems
Eigenstate thermalization hypothesis and its breaking

* What we understand about MBL dynamics
RG, distinct phases, dynamical critical points.

 The many-body localization phase transition
RG approach: transport, entanglement scaling and a surprise!



Eigenstate thermalization hypothesis (ETH)
Deutsch 91, Srednicki 94
In a high energy eigenstate:

Z A

Extensive Von-Neuman entropy:

Sa o< LY

PA

Example where ETH falls:
Anderson localization

“Area law” entropy as in ground state Saoc L1
also holds in high energy eigenstates

Is this situation stable to adding interaction between the particles?



Generic exception to ETH: Many body localization

Anderson localization of N Ne/ S . o
non interacting particles:
TE/
Perturbative stability to interactions delocalized
(Basko, Aleiner, Altshuler 2005) thermalizing

Localized
(k =0, 0=0)
non thermalizing

Delocalization transition at a critical
energy density, disorder or interaction
strength.

Disorder strength
Stability of MBL supported by other approaches:
Numerics — Oganesyan & Huse 2010, Pal & Huse, Bardarson et. al 2012 ...
RG — Vosk an EA 2012, Vosk and EA 2013, Pekker et. al. 2013 .
Mathematical proof — Imbrie 2014

A lot of insight into the nature of the MBL phase
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Ultra slow growth of the entanglement entropy

Zindaric et. al. 2008; Bardarson, Pollmann & Moore. 2012
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saturate to subthermal volume law



There can be distinct localized phases
Huse et. al. (2013)

A

E
Ground state like entanglement

properties allow quantum “phases” Glass
In high energy eigenstates.

Paramagnet

H=Y" [Jfoiofs + hiof + Jfofol,, + .. ] >

log(h/J#)

Can even support topological eigenstates.
Edge modes protected at high energy
with dramatic effects on the dynamics!
Bahri, Vosk, EA and Vishawanth (2013)

Universal dynamical signatures of the
phases and transitions between them?



RG Solution of time evolution

R. Vosk and EA, PRL (2013); R. Vosk and EA, arXiv:1307.3256
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Pick out largest couplings 2 = max (J, h;) "

Short times (f =1/Q): System evolves according to H;,
Other spins essentially frozen on this timescale.

Longer times (t >>1/Q): Eliminate fast modes (order €2)
perturbatively to obtain effective evolution for longer timescales.

Related RSRG-X: Pekker, Refael, EA, Demler & Oganesyan arXiv:1307.3253



Result from the RG flow
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Jf is an emergent integral of motion in the glass

Glass order parameter!

Critical point:
1

o)

¢ =(1++/5)/2 ~1.618

( golden ratio )

Sa(t) ~log¥?t

Important: this is a

quantum dynamical
transition at high energies!

Takes place in the
localized phase.



Limitation of the RG scheme: resonances

Resonances between decimated sites can generate a slow mode
that is not accounted for by the RG

2—0Q2

WC)T OO

If J >80

Resonances do not proliferate in MBL phase! (Irrelevant in RG sense).
(Vosk and EA 2013)

This RG scheme is limited to the MBL phase!
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Coarse Grained Model of coupled blocks

I, g1, L5 253 I3, g3, I')s 8us

The block parameters: I, Energy transport rate through block

bath L bath A, Single block level spacing

E+AE g, E g; =T';/A; Number of coupled levels

gi <1 “insulating block”
g; > 1 “thermalizing block”

Link parameters: Parameters of new block if blocks 1 and 2 were joined

[, g I
PRE 8, =7, ~ Effectiveness of coupling

I [, I,
& &> 812 Requirement: {rii+1}< {rz}




RG scheme

1. Join blocks coupled by the fastest rate T,

I, g, I'y; 82 [ g="

2. Renormalize couplings to left and right blocks

Two cases:

(i) If g,,<<1 or g,;<<I then we show I'=

(i) If 212> &3>>1

+
(11 +1/, )r12 (lz + 1 )F23
(Zengh ~ time)

Note: the scheme is controlled if the distribution of g;; is wide

then assume ohmic transport (7, +1, +1,)T



Outcome of the RG flow
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How does diffusion disappear ?



Scaling exponent

RG results — dynamical scaling exponent

4/ 6
Relation between time scale 3.5/
(r=I'"-') and length L of blocks 3l |
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Anomalous diffusion = Griffith phase

A

[>¢&>1,

Exponentially rare insulating

puddles in the metal
P(l) ~ 15 e /¢
$

(1) = Tel/lo

Exponentially long delay

Broad distribution of times:
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Scaling exponent
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Strength of coupling

All “insulating” puddles ultimately thermalize
but at broadly distributed times!

Infinite randomness but thermal
critical point at £ — o0



Scaling in the localized phase
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Suggests also: S ~ logt



Entanglement scaling in eigenstates

4 ) 4 )

~ <> J
(12 ~ # of 2-block product states in an
eigenstate of the coupled system

logy |g(L) +1] ~ Sg(L/2) -
(Gives only the volume law i
contribution. To obtain full entropy ol
need to integrate over the flow) dlog g

dL ©° N
RG result indicates thermal L g
entropy in eigenstates throughout ) o
the Griffiths phase /R 0 2 4 6
<Iog(go)>



The Many-Body Localization Transition

Two possible transitions are consistent with entanglement
entropy strong subadditivity (T. Grover arXiv:1405.1471)

1
) Localized Ergodic
2) Localized Doz Pz Ergodic
Non-Ergodic J

It appears that our scheme gives case1.
The Giriffith phase is ergodic!

S, (/) at the critical point is thermal for a subsystem of an infinite system.
But finite size effects are highly annomalous.



Transport versus entanglement dynamical scaling:

Heuristic argument
(David Huse)

—1
12 = — Tg
(B L *7 |
<
L
To equilibrate the two blocks need L transitions with OF = O(1)

But one such transition is enough to fully entangle two TE = LTS
blocks in the delocalized phase!

Time 7, entanglement-entropy propagates a distance L:

T ~ LY/ ro ~ L7 1ta Sa(t) ~tTa

Diffusive energy implies ballistic entanglement propagation.



Test of energy versus entanglement scaling

Compare previous RG result with RG scheme done for
coupled blocks with no energy conservation (Floquet)

Entanglement is the only propagating quantity
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Summary

1. RG approach in the MBL state: g/
- Dynamical phases and phase transitions. €| /%
- Emergent integrals of motion. E /
- “Glasé” ]
2. RG theory of the MBL transition. 05 00 O O
- 04 o _
Found intermediate phase! : Zz -
Thermal but anomalous diffusion. § ool
“Griffiths phase” s o
@ OV logt  OF ~¢® L~+t

2

4 6

Many open questions Strength of coupling

1. Generalization to 2d and 3d ? Does the Griffiths phase survive?

2. How to see MBL physics in experiments? Cold atoms?



