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iH

Drive the system out of equilibrium by a sudden change in parameters of 

the Hamiltonian   Hi  Hf 

Start initially in a state               which is the ground state of some Hamiltonian Hi 

A quantum quench 

Explore the time-evolution and the long-time behavior. 

 

a).  Is the system thermal at long times?  

 

b). What does it mean to be thermal for an isolated quantum system in  

a pure state? 

 

 

c). Prethermalization: “Glassy behavior” with intermediate long-lived  

metastable states.  

 

d). Quenches across and in the vicinity of critical points: new kinds of  

nonequilibrium phase transitions? Universality out of equilibrium? 

ii HH      1;1 22  thTrTr 



3 

Model 

VHH if 

Quench 1:  Sudden switching on of a commensurate periodic potential:  

dynamics in the vicinity of superfluid-Mott quantum critical point  

Quench involves switching on a leading irrelevant or marginal perturbation V 
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Quench 2:  Sudden switching on of a disordered potential: Dynamics in the  

vicinity of the superfluid-Bose glass quantum critical point 

  

Quench 3:  Sudden switching on of a local impurity potential  

(Kane-Fisher problem).  

, :Random variables 
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1D interacting Bose gas 

characterized by an interaction parameter K:  

K = 1/(Interaction Strength) 



 r

Boson creation operator 

Boson density at  r=(x,t) 

Boson propagator 

(superfluid order parameter):  
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Equilibrium and low-energy (T=0) properties of 1D Interacting Bose gas 

Dual fields 
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)0()(  Density-density correlator: 

Due to quantum-fluctuations, only 

quasi-long range order 

K 


Free bosons 

1 

Hard-core  

bosons 

Increasing  

interactions 

Superfluid charge-density-wave 

        (crystal)  

Long range  

interactions 

Non-zero temperature T, 

exponential decay: 

exp[-T x] 
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Review of results for quenches within the harmonic LL theory  

Hi : Bosons with interaction Ko 

Hf : Bosons with interaction K 

Ko K 

K 


Free bosons 

1 

Hard-core  

bosons 

Increasing  

interactions 

Superfluid charge-density-wave 

        (crystal)  

Long range  

interactions 
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this have with 

ff HH A 

fi HH , Ground-state of Hi, Hf 

time 
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Ko 

Ko=1, Cazalilla 2006 

Iucci and Cazalilla, 2009 
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Equal time correlations at long times after the quench from KoK 
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              All correlations always  decay faster after the quench as  

              compared to the decay in the ground state of Hf.  

              In some sense like an effective-temperature,  

              yet decay is still a power-law 

 

t

t),0(),(

),0(2),(2

titri

titri

eeC

eeC
















Dual fields 

Density-density  

correlator: 

Ko=1, Cazalilla 2006, 

Iucci and Cazalilla, 2009 

Boson  

propagator: 



REASON BEHIND NEW EXPONENTS: Infinite number of conserved quantities  
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Hence the initial distribution function which is also conserved  

during the dynamic is 

Initial state is ground state of 

Time-evolution is due to 

Initial state a ground state of Hi 0

ppaa

Density modes of the Bose gas  

with interaction Ko 

Density modes of the Bose gas  

with interaction K 

Generalized Gibbs Ensemble can recover new exponents 
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Time-evolution of correlation functions for K0 to K quench:  

HORIZON EFFECT 
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Inside the light-cone r<<2Tm 
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Is the first instant at which excitations emitted 

from the same point in space reach the two  

operators at the same time (sound velocity=1) 

Calabrese and Cardy, 2007 

Ko=1, Iucci and Cazalilla, 2009 

Wavefunction 

renormalization or formation 

of the new quasiparticles  
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NEXT: What happens in the presence of non-linearities that take the system away 

from exact solvability? 
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Ground state properties: Interacting bosons in a periodic potential 

Mott-Insulator 

g g 

Superfluid 

Berezinskii-Kosterlitz-Thouless Flows 

g 

K 
Kc=2 

Increasing  

interactions 

g 

Superfluid 

Mott-Insulator 
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t< 0 

t> 0 

Quantum  

quench 

 gKH f ,

 0KH i

When g=0 (no periodic potential), exactly solvable problem. 
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FORMALISM: Schwinger-Keldysh “Action”  

Quadratic part that describes the nonequilibrium Luttinger liquid 

Action for the sine-Gordon potential 

2
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Two-point correlation function:  

Derivation of a Callan-Symanzik equation   

Related to staggered antiferromagnetic  

order in a spin-chain,  

2
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Integrate fast modes perturbatively in g, then rescale action in position and time. 

This leads to corrections to the quadratic action and to the correlation function.  

The corrections will depend on the time after the quench. 

 

This procedure leads to the derivation of a Callan-Symanzik like differential equation  

for the correlation function.  

Split fields into slow and fast modes in momentum space. Fast modes oscillate 

rapidly both in position and in time. 

Go=Correlators for the slow  

and fast fields 

Renormalization group procedure where fast modes are gradually 

integrated out  

 











  

d
RR d 1,0,0



15 

Derivation of a Callan-Symanzik equation   

Correlation function at large distances may be related to correlation function 

at short distances but with renormalized couplings, where the latter may be  

evaluated within perturbation theory. 

Anomalous dimension of R 

Integrate upto 

Qualitatively different behavior depending upon whether the distance r is large, 

small or the same order as the time after the quench. 

Lets discuss the -function 

 dLower the cut-off                           reabsorb changes to coupling 

parameters such that  R remains invariant. 



16 

Corrections to the action: Generation of new terms out of equilibrium 

representing dissipation and noise 

Dissipation of long  

wavelength modes 
Noise on long  

wavelength modes 

The magnitude of these corrections  

depend on time. 

)()(),( meffmm TTTT 

Aditi Mitra, PRL 2012 

Aditi Mitra, PRB 2013 

Mitra and Giamachi, PRL 2011 
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Next: 

 

1. Results for the correlation function in the prethermalized regime where inelastic 

      effects are weak. 

 

 

 

 

 

2.  A kinetic equation approach to understand dynamics in the thermal regime 

    where dissipative effects are strong. 

The inelastic scattering rate implies a new energy scale in the problem   

Time after quench 

 22 ityEnergydensg
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Correlation functions after a quantum quench in the prethermalized 

regime   
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Correlation functions after a quench slightly away from the critical point 

HORIZON EFFECT 

g


0 

g 2
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NEXT: WHAT HAPPENS WHEN INELASTIC EFFECTS BECOME IMPORTANT ? 

BUT FIRST:  Disorder quench in the intermediate time pre-thermal regime 



K 
Kc=3/2 

Increasing  

interactions 
21 

Ground state properties: Interacting bosons in a periodic potential 

Bose-glass 

D 

Superfluid 

Berezinskii-Kosterlitz-Thouless Flows 

D 

Superfluid 
Bose-Glass 

D

Giamarchi&Schulz, 87 



22 

Quench 2:  Sudden switching on of a disordered potential: Dynamics in the  

vicinity of the superfluid-Bose glass quantum critical point 

  

:Random variables ,

Time evolution of correlation functions: 

Density-correlator: 

Boson propagator: 
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Disorder-average within Keldysh formalism: (no replicas required) 

Correlators may be written as a Keldysh path-integral 
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Results when only forward scattering disorder is present 

Initial state is the ground state of the unshifted fields, and corresponds to a  

nonequilibrium distribution of the quasiparticles of Hf  

Random phases due scattering off the random forward scattering potential 
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Disorder averaging leads to correlators that decay exponentially in min(t,r/2) 

Forward scattering disorder causes dephasing that destroys superfluidity even 

at short times . 
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For times              when the clean or disordered backscattering  

potential causes inelastic scattering:  

A quantum kinetic equation approach.  



1
mT

Tavora and Mitra (2013) 

Tavora,  Rosch, Mitra (2014) 

In the absence of the uniform and/or disordered backscattering potential,  

the boson distribution n(p) is out of equilibrium and conserved.  

For disordered bosons, nonequilibrium distribution: 
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Derivation similar for clean and disordered case  
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Thermalization time shortens on approaching the critical point at K=3/2: 

Critical speeding up. Relaxation rate from the long time tail of  the  

time-evolution is found to be 

Faster relaxation near critical points also observed in numerics and experiments 
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Decreasing 

(interaction K0 to K)  

quench 

amplitude 
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2
1

neqK

 2
eqneq KK 

Non-monotonic dependence of the thermalization time on the quench amplitude 

Reason for longer thermalization times for large 

quenches: Orthogonality catastrophe arising due to a  

poorer overlap between initial wavefunction and low  

energy eigenstates of Hf  

Scattering rate 

increases as one 

approaches the  

critical point 

Thermalization time shortens on approaching the critical point  
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Recall Equilibrium (T=0) Phase Diagram of Kane-Fisher Problem 

bsg

KK=1 

Impurity cuts the chain Impurity has no effect  
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Loschmidt-Echo and the orthogonality catastrophe  

time 0

Suppose initially the system is in the ground state          of   

We then switch on the local potential for a certain period of time,  

and switch it off again and study the overlap between the resulting 

state and the initial state.  

Overlap between ground state wavefunction with and without the local potential 

vanishes: “orthogonality catastrophe”. 

What about overlap between excited states??  

We will study Loschmidt echo in excited states generated by a quench 

  0eqD

K>1 
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Orthogonality Catastrophe or Loschmidt Echo (LE) when the bulk is out of  

equilibrium: Quench induced decoherence  

time t t’ 0 

Exponential decay of LE also seen in XXZ chain with impurity: Santos et al (2014) 



Conclusions 

 1. Results for quenches in a system with disorder and interactions in one 

dimension. 

 2.  An RG approach is used to show that for quenches near a critical point there   

is a separation of time-scales. There is a short-time perturbative regime, an  

intermediate time “prethermal” regime, and a long time thermal regime. 

Different theoretical methods can be used to study these three different cases. 

 3.   In the prethermalized regime, universal behavior emerges in the clean   

system  with new nonequilibrium scaling regimes related to the “horizon 

effect”. In the disordered system, no universal behavior in the prethermal 

regime, rather forward scattering disorder causes dephasing, causing 

correlators to decay exponentially fast. 

 4.   A new quantum kinetic equation which accounts for multiple scattering 

between bosons captures the long time regime.  

5.    Thermalization becomes more efficient on approaching the critical point due 

to non-linearities becoming more important (relevant). 

6.     Loschmidt echoes that study excited state overlaps as a new way of probing 

the state generated by a quantum quench. These show thermal behavior 

caracterized by an exponential decay of  the echo with time. 
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