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A quantum quench

Start initially in a state ‘®Hi> which is the ground state of some Hamiltonian Hi

Drive the system out of equilibrium by a sudden change in parameters of
the Hamiltonian  Hj > Hf

Explore the time-evolution and the long-time behavior.
a). Is the system thermal at long times?
b). What does it mean to be thermal for an isolated quantum system in

a pure state? p:‘CDHi><CDHi ‘ Tr[pz]zl;Tr[ptf,]<1

c). Prethermalization: “Glassy behavior” with intermediate long-lived
metastable states.

d). Quenches across and in the vicinity of critical points: new kinds of
nonequilibrium phase transitions? Universality out of equilibrium?



Model
_ u | )2 L (9 A())2
Hi = X [du [ﬁ (7T1(2))? + L (Dpo(x)) }
Quench involves switching on a leading irrelevant or marginal perturbation V
H, =H, +V

Quench 1. Sudden switching on of a commensurate periodic potential:
dynamics in the vicinity of superfluid-Mott quantum critical point

V = _(g_l.zlj f dx cos[2¢(x)]
(94

Quench 2: Sudden switching on of a disordered potential: Dynamics in the
vicinity of the superfluid-Bose glass quantum critical point

Hf — Hg + I/?diE-
Vais = / i [3{*’?(4:)83:0 + (£ )

n, 5 :Random variables

Quench 3: Sudden switching on of a local impurity potential 3
(Kane-Fisher problem).



Equilibrium and low-energy (T=0) properties of 1D Interacting Bose gas

1D interacting Bose gas
characterized by an interaction parameter K:
K = 1/(Interaction Strength)

He= 3 [ de [K (711(0)? +  (9ho(a))?

K

Free bosons
OO Superfluid

Hard-core Lond ran
bosons ong range

1 interactions
| charge-density-wave

<€

! (crystal) —>
Increasing
Interactions

W Boson creation operator

p(r) Boson density at r=(x,t)

Due to quantum-fluctuations, only
guasi-long range order

Density-density correlator: <p(X)p(0)> ~ %COS(Z?Z’,OOX)
X

ﬁDuaI fields

Boson propagator
(superfluid order parameter):

Non-zero temperature T,
1 exponential decay:

(w (™ (0) ~ =7 exp[-T X] \

I




Review of results for quenches within the harmonic LL theory
Ko=1, Cazalilla 2006

Hard-core lucci and Cazalilla, 2009
Long range
Free bosons boions interactions 1 K
O Superfluid ) g
< s P % l charge-density-wave 0 Ko
K (crystal) —>
Increasing >
K Ko Interactions time

Hi : Bosons with interaction Ko

Dy, > round- f Hi, Hf
Hf : Bosons with interaction K ‘ Hi.H¢ /  Ground-state of Hi,

> this have with

(@, (A, )

> [ — oo What connection does

‘ IH ¢ tAe—int

<CDH H,




Equal time correlations at long times after the quench from Ko=2>K

Ko=1, Cazalilla 2006,
lucci and Cazalilla, 2009

Density—densiC _ | Zgo(l’ ,t) — 2@(0,1:) { —> 00
correlator: —_ e e > 2K
@ ro"
Dual fields
ooson (8 _ i0(r,t) ~—10(0,t) t oo 1
propagator: — e e > 2K‘9
69 r neq
K K? _
Kneq =0 :I.-l-—2 > Keq =K
2 Kg :
Compare with Kieg > Keg
equilibrium ) )
(K=Ko) Kneq > Keq
1
1 K’ KO =~
0 __~ _0 >
Kneq = 8K0 (14— sz eq 4K
All correlations always decay faster after the quench as
compared to the decay in the ground state of Hf.
In some sense like an effective-temperature, 6

yet decay is still a power-law



REASON BEHIND NEW EXPONENTS: Infinite number of conserved quantities

Density modes of the Bose gas

. . . o a _I_
Initial state is ground state of ————s H, =) _egafa, ——s Dons'Y modes oft

P
Density modes of the Bose gas

Time-evolution is due to —> H;= ngb»l-bp —> b interaction K
r

b, = cosh©,a, + sinh Qpﬂip
. . + —
Initial state a ground state of Hi <apap> =0

Hence the initial distribution function which is also conserved
during the dynamic is (biby) = sinh?©,

Generalized Gibbs Ensemble can recover new exponents
M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys.

Zﬂpg pb; D Rev. Lett. 98, 050405 (2007).
pGGE — ZGG_E e where <(D| ‘b;bp‘ (D|> :Tr[pGGEb;bp]
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Time-evolution of correlation functions for KO to K quench:
HORIZON EFFECT Koo1. luoct and Cazalilla, 2009

R — CW _ [i20(rTn) g=i20(0.Ty)

Inside the light-cone r<<2Tm
__ I Is the first instant at which excitations emitted 1
m ~ 5 from the same point in space reach the two R(r << 2Tm ) ~ 2K peq
operators at the same time (sound velocity=1)

l
HORIZON EFFECT ,'
A Tm v
. . r<2Ty
Outside the light-cone r>>2Tm % X
1 f(K—K ) Ir= 21-[11
~ 0
R(r>>2T )~ r2K; T.] S \ /
j ><r “2lm %
Wavefunction = T
renormalization or formation 8

of the new quasiparticles



NEXT. What happens in the presence of non-linearities that take the system away
from exact solvability?



Ground state properties: Interacting bosons in a periodic potential

SVAVAVAVANN _

/ \
e = S VAW /AVVaN
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Kc=2 interactions

<.F.-.F.FJ.-.- EnE RN
Line of stable fixed points (QLRO)
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1
H; = drs Ko |7ll{z — |G
g [ dr{ Ko @) + 7 0-6(a)

Hy =5 [ de{ K (e + £ (0.0

gu

% [ dacos (vé(a)

}

<0 Hi(KO)::

Hi(K.9)

Quantum
guench

T aWa

v
Vm\ /Qﬁ

When g=0 (no periodic potential), exactly solvable problem.
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FORMALISM: Schwinger-Keldysh “Action”
—Tr\_e IH t ><(D| ‘eintJ

Zk = /D[md g €150 F5e9)

Quadratic part that describes the nonequilibrium Luttinger liquid

Sp= / d’l‘l/ d.’c:;] df1/ dfg ; Oq

(C 1,2) -6 7N D 2>) (%g)) )

[GRA(1,2)] " = —5(z1 — 22)d(t: —tg)ﬂfm

(07,245 — u*0Z,]

Action for the sine-Gordon potential

Sey=2 [Z2 1 [y diy [cos{yo— (1)} — cos{y9(1)}] 14
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Two-point correlation function:
Derivation of a Callan-Symanzik equation

. _ Related to staggered antiferromagnetic
R(z1t, zot) = 4(cos (@) COS (L;ﬂf)) order in a spin-chain,
R(j) = (=1)7(5557)

y =2

R(xqt, zot) =Tr [p(t)O(x210)O(x20)]
= Tr [~ 1% 16,) (il O (21)O(a)|

B ]f’ [Get, dg] €550V Oy (218) Oy (22t)
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Renormalization group procedure where fast modes are gradually
Integrated out
Split fields into slow and fast modes in momentum space. Fast modes oscillate
rapidly both in position and in time.
b+ = I + o%
Goan = Goa_an + GX_aan

e A dGoa
GA—dA._A =dA dA

Go=Correlators for the slow
and fast fields

Integrate fast modes perturbatively in g, then rescale action in position and time.
This leads to corrections to the quadratic action and to the correlation function.

The corrections will depend on the time after the quench.

This procedure leads to the derivation of a Callan-Symanzik like differential equation
for the correlation function.

CAYAN

RO,A — RO,A—dA 1- A

14



Derivation of a Callan-Symanzik equation

Lower the cut-off A — A — dA reabsorb changes to coupling
parameters such that R remains invariant.

e

0 d Aoy AT,
. ‘|‘3(Q‘g)ﬁ — Tan,0 +2W§I{‘] xR - 1j: . D?gi(g) =0
Q‘i \ } E E

Anomalous dimension of R

[
Correlation function at large distances may be related to correlation function

at short distances but with renormalized couplings, where the latter may be
evaluated within perturbation theory.

_ ety 5 rvanta’
R (Aor, AcTrmo, go) = €™ Jao % ") XR(mUva?ﬁDﬁg(i)

Integrate upto * = Agmin(r, Tjo)

Qualitatively different behavior depending upon whether the distance r is large,
small or the same order as the time after the quench.

Lets discuss the ﬂ -function 15



Corrections to the action: Generation of new terms out of equilibrium
representing dissipation and noise

Aditi Mitra, PRL 2012
Aditi Mitra, PRB 2013
Mitra and Giamachi, PRL 2011

S = S5 465

o0 w V‘IE
Sy = dR / d(uT, L v < (92 — 52 H< V< (92 — 52 (< 5_“ v< (92 + 82 <
=0 = ) . [u' ni.]lzﬂ_-ﬁ: @q ( R uTm) LA + {Dc.[ { R uTm) @q + " Qq [ R + qun) @cf

1u2

2N

Dissipation of long N n lon
wavelength modes oise on 1ong
wavelength modes

o AnTe
+? {aR +d‘f¢T }{D _ ‘}n@{a“ Tm c'f + M (@;) ]

The magnitude of these corrections 77(T0), 7(T ) T (T1)

depend on time. 16



The inelastic scattering rate implies a new energy scale in the problem

universal prethermalized regime |, thermal regime

|
|
: -
|
l / J'"i 1 .'.I_.I '1_111
n~ ¢*(Kg— K)* < 1 Time after quench

1 oc g%|Energydensity [

Next:

1. Results for the correlation function in the prethermalized regime where inelastic
effects are weak.

2. A kinetic equation approach to understand dynamics in the thermal regime

where dissipative effects are strong. 17



Correlation functions after a quantum quench in the prethermalized

R=(O(r,T,)0(0,T,)) 9™ 1<T,<

n
0 =219 9 )
Outside the light-cone r>>2Tm
In(T
R(r>>2T )= ( m)
r
Inside the light-cone r<<2Tm b e
0
JIn(r
R(r << 2T, )=~ JIn(r)
r HORIZON EFFECT
A Im
On the light-cone {ziTm o "5 2%Im
In(r : h
Rx —~= r=20y

r \ /
720y

Aditi Mitra, PRB 2013 - -




Correlation functions after a quench slightly away from the critical point

R (Aor, AgTmo. go, v << 2T0) ~

o =2ng

OF

9

Critical line

LA B EE ... _FT_F_F.F
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universal prethermalized regime |, thermal regime

|
|
: >~
|

1/A I/m Iy

v

NEXT: WHAT HAPPENS WHEN INELASTIC EFFECTS BECOME IMPORTANT ?

BUT FIRST: Disorder quench in the intermediate time pre-thermal regime

20



Ground state properties: Interacting bosons in a periodic potential

ANw\/V\/V\AMM\(W+ - -
o | -l

Superfluid Bose- g|ass
Berezinskii-Kosterlitz-Thouless Flows

ND

Critical line

Giamarchi&Schulz, 87

Bose-Glass

Superfluid
s Increasing
Kc=3/2 Interactions

Ling of stable fixed points (QLRO) 21



Hy = g [ de|K (xT1(2)7 + & (0:0(2))°]

Quench 2: Sudden switching on of a disordered potential: Dynamics in the
vicinity of the superfluid-Bose glass quantum critical point

Hf = H; +Vais
Vais = /d;tf [17?(*5)8330 + (& + 662%)]

-

n, 5 ‘Random variables n(w)n(x’) = Dfé(i.- x")

— — . —

()& (@) = Dyd(ax — )

Time evolution of correlation functions:

Density-correlator: R, (r,t) = (g;i|EinfEEiqb(r)E—Eifin(ﬂ)e—inf|¢i)

Boson prOpagator: RHEJ ('T‘._. t) _ {Ua |EiHJ~tEiH(T)E—iE(D)E—iHIt |L‘1>
22



Correlators may be written as a Keldysh path-integral

(wilﬂaa(tﬂ’wi) =Tr [E_iHItltﬁIQ(wileiHItRaa}

_ / D [6u1s 6] €SI R, [810/a(8), 8ot (8)]

Disorder-average within Keldysh formalism: (no replicas required)

_ng{ar} E(x)E” (=)

(ﬂrilﬂaa(tﬂwi) Z/'D[?L tf, g*]ﬁ 2Dy o~ Dy,
x<wi|Rﬂﬂ(t)hﬁjf>

23



Results when only forward scattering disorder is present

J

Hy = g fde [K (1) + & 0,07 + [ do |20,

d(z) = o(z) - % / dyn(y)

2 L
Hy = o [ de K (@ll@)* + £ (0:6) | = Z,ulpllfT,

Initial state is the ground state of the unshifted fields, and corresponds to a
nonequilibrium distribution of the quasiparticles of Hf

Rc{?ﬂg (f__.._. f-) _ <ﬁ-?,i|t_‘_21ri-{r t] —120&- 0, t}h1 )
o e Demat [[TT dym(y) =[5 dyn(y)]
R{D}( t) = (a;e®(rD)ei0(0:6) .y

¢ E- E’u [IT-I_;L: dyﬂ _f_u:-“ dyﬁ(y}]

D=0

D¢=0

Random phases due scattering off the random forward scattering potential 24




Disorder averaging leads to correlators that decay exponentially in min(t,r/2)

2K 2
—(0) B 1 KDy
Ry, (r.t) = [ o ?-21"1‘3] exp{— ”

2t0(|r|/u — 2t) + (4t — |r|/u) ©2t — |r|/w)O(|r|/u — 1)
+3|r|O(t — |-r|/u]] }

1/(2K)
—-(0) 1 Dy
Ry (ryt) = { 1_|_;.~-21’12] exp{— ™ [‘Zt

(2t — |rl/w)O 2t - |-r|/uﬂ } ®)

Forward scattering disorder causes dephasing that destroys superfluidity even
at short times .

25



1
For times Tm2— when the clean or disordered backscattering
potential cause@ Inelastic scattering: Tavora and Mitra (2013)
A quantum kinetic equation approach. Tavora, Rosch, Mitra (2014)

In the absence of the uniform and/or disordered backscattering potential,
the boson distribution n(p) is out of equilibrium and conserved.

1
A (D) n(p) = AT | Equilibrium (T>0)

(K, -K) Quench

4K, \ Equilibrium (T=0)
—>)

For disordered bosons, nonequilibrium distribution:

TS + T _ Lo
u|p| u|p

np(t = 0) = (1 rLl_p|~'_-'".'_; =

f KDrA b N reK—2)1
Th = "5 T = AStKD, |32 |

26



Quantum Sine-Gordon (g#O) Derivation similar for clean and disordered case

» The exact Green’s function G(x7,yt") obeys the Dyson equation:
~

- ; (E)f—knjqz)(?ﬂ:§(f—f’)+(ZROGR)(I,_r’)
T Ku
G=go(l+XoG) < Gy =G o F—Fo (F(g.T)=1+2n(q.T))
. 1 .
Dyson equation | _JIKH( L 8 )F(“’) X (1,07) - (ZRCF)(?' )+ (FoX*)(t.1")

L

Quantum Kinetic Equation ‘

» We simplify the Dyson equations by performing a gradient expansion to
lowest order, which is equivalent to a quasi-particle approximation (energy
levels are not modified but only the occupation numbers change)

10F

nef |

a_F it K © - |
o7 (@)= ( ‘q][i (¢.7)—(Z(q.T) - E(qf))F(qT)] |

AG.-G))

.E-E A {,qu' :0 - 00 02 D4 uﬂ.ﬁ 08 10
JdT (¢.T) _ m' + e A(k.@w)~o(w—|qg))




This potential describes multi-particle scattering and even to leading order in
the gradient expansion the system has dynamics and has the capacity to thermalize

(F(q.T)=1+2n(q.T))

r

a I[n(k)]~ J [(1 +n()(1+n(p)n(g)n(r)—n(kn(p)1+n(g))(1+ H{:.")):|
F ra

—(g.T)=1|F(qg.T
- (@.1)=1[F(q.T)] <

(F(q.T)=1+2n(¢.T))

C[)“-theory

f[f?(ﬁ’)]'“f?ipl—‘[”(q}] Sine-Gordon

q
L.

S ~ (cos(y0) cos(7d)) ~ e~V (99)

Equilibrium q a
Y(q,T)=qF(g.T) — gqcoth
2T




0.15
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q
Thermalization time shortens on approaching the critical point at K=3/2:
Critical speeding up. Relaxation rate from the long time tail of the
time-evolution is found to be

. K—
Yeu ~ Dy [Toro]

Faster relaxation near critical points also observed in numerics and experiments

J.  P. Ronzheimer, M. Schreiber, 5. Braun, C. P. Grams, M. Valldor, M. Garst, and
S. 8. Hodgman, 8. Langer, L P. MecCulloch, J. Hemberger, ArXiv e-prints (2013), 29
F. Heidrich-Meisner, 1. Bloch, and U. Schneider, arXiv:1307.8987 [cc:»nd—mat.str-el].

Phys. Rev. Lett. 110, 205301 (2013).



FIG. 3. The distribution function ¥(g) = gF'(g) plotted for
increasing times for a quench where K.q = 3, Kpeq = 13.8. At
the initial time, the quench Eﬁnera,tes the distribution given
by the straight line ¥ig) = qﬁ. The distribution converges

to the equilibrinm distribution given by ¥(q) = g coth ( 2.}‘.; }
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T-::ﬂ"

1 .
Ty = 5¥(q=0)
1 ]
2_ —
1.5 -
1-___ — e e
0.3 f__:_:_ T _ _ ____ — N
-l _— e _ _ _ __]
[
_D = i_ 1 I 1 _|_ 1 I
0 230 500 50 1000

Decreasing
(interaction KO to K)
guench

amplitude

FIG. 6. Time-evolution of the effective temperature for (bot-
tom to top) Kneq = 4.40,4.72, 5.38,6.0,6.72,9.08, 11.48, 13.91

and 17.72 with Keq = 4. For all quenches the system ther-

malizes to the equilibrium temperate Taq (dashed line).
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Non-monotonic dependence of the thermalization time on the quench amplitude

Scattering rate

0.015F - w 1 increases as one
[ > K_=3. numerical approaches the
0.0125F - - N Kq=3 analytical| critical point
. eg 7
- %Kefﬁr, numerical
0.01F —- Keq=4, analytical | 7]
S 000754 x - K 2
i O y Nneq
0.005F W .
0.0025F NN /
0 - :\..r 1 ] ] ] ] ] ] ] ] 1 -<
0 10 20 30 40 50 60 70
K
neq
S ~ (cos(78) cos(yg)) ~ eV (49
(Kneq - Keq)2 Reason for longer thermalization times for large

guenches: Orthogonality catastrophe arising due to a
poorer overlap between initial wavefunction and low
energy eigenstates of Hf

Thermalization time shortens on approaching the critical point 32



0) Phase Diagram of Kane-Fisher Problem

Recall Equilibrium (T

K=1

Impurity has no effect

Impurity cuts the chain
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Loschmidt-Echo and the orthogonality catastrophe

H=1r / da [ﬁ (020(2))" + 7= (O=(2))” Hy = H+Vioc
H H

T'Iic-c = v}% + I‘I:b:s = Ofs d:r ﬁ}[.f} x=0 + Jbs COS 2{-::}{;? - Dj . >

O —& time

Suppose initially the system is in the ground state |Yo) of H

We then switch on the local potential for a certain period of time,
and switch it off again and study the overlap between the resulting
state and the initial state.

. . ~ PR I 2
Deg(r) = (Tple? M7 e 17| W) 0c4 = Ky, /2u
N (;)53‘3
AT K>1
Deq(r—>oo)=0

Overlap between ground state wavefunction with and without the local potential
vanishes: “orthogonality catastrophe”.

What about overlap between excited states??

We will study Loschmidt echo in excited states generated by a quench?’4



Orthogonality Catastrophe or Loschmidt Echo (LE) when the bulk is out of
equilibrium: Quench induced decoherence

W(t)) = e ' |Wy) while Hy = H + Vi

Dt t) = (U(t et (' —t) =i HL (1) (¢
(¢'8) = (2() ¥(2) e — HAVi
D(t'. t) = Dyt . 1) Dra(t'. 1). S
(t',t) = Dys(t', t) Drs(t', 1) LY H
|
>
Dy (1) ~ exp (=7, 7) 0 i t  time
9 2w F{M{mq_‘]
I+ = Jbs (zﬁ 12K neq — 1j) I'(Kneq + K)T (Kyeq — K)
[ | [ |' [ | I 15
| K =1 _
neq dgbs = Obe [1 . (I{neq 1 Lrj)]
B //,/7_/77 11 dInl 1+4T2
- % - dn o o o
B /%/4/{/// ﬁ%%f ) K dllllf - 2gh'- IT.T(Tm}
s dd /;// 7 7 - d{?]TefF]' . , a2 — IdTm . ,
dlni — ?]chf' + Ohs I'I-:;;.EE{Tm}? m - _Tm

35
Exponential decay of LE also seen in XXZ chain with impurity: Santos et al (2014)




Conclusions

. Results for quenches in a system with disorder and interactions in one
dimension.

. An RG approach is used to show that for quenches near a critical point there
IS a separation of time-scales. There is a short-time perturbative regime, an
intermediate time “prethermal” regime, and a long time thermal regime.
Different theoretical methods can be used to study these three different cases.

In the prethermalized regime, universal behavior emerges in the clean
system with new nonequilibrium scaling regimes related to the “horizon
effect”. In the disordered system, no universal behavior in the prethermal
regime, rather forward scattering disorder causes dephasing, causing
correlators to decay exponentially fast.

A new guantum kinetic equation which accounts for multiple scattering
between bosons captures the long time regime.

Thermalization becomes more efficient on approaching the critical point due
to non-linearities becoming more important (relevant).

Loschmidt echoes that study excited state overlaps as a new way of probing
the state generated by a quantum guench. These show thermal behavior
caracterized by an exponential decay of the echo with time.
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