String Phenomenology Círca 2014

Luis Ibáñez

European Research Council

SPLE Advanced Grant

Instituto de Física Teórica UAM-CSIC, Madrid

String Pheno 2014, ICTP July 7–11, 2014

String Phenomenology Círca 2014

Luis Ibáñez

European Research Council

SPLE Advanced Grant

Instituto de Física Teórica UAM-CSIC, Madrid

String Pheno 2014, ICTP July 7–11, 2014

Friday, May 13, 16

Friday, May 13, 16

Some Properties of O(32) Superstrings

Edward Witten (Princeton U.)

Oct 1984 - 12 pages

Phys.Lett. B149 (1984) 351-356

(He was 32)

• First String Pheno paper

• U(1) bundles, axions....

First de	cade: Heterotic Monopoly					
1985	CY Het.					
	Orbifolds, free fermions, Gepner					
	T-duality effective actions					
1990	S-duality					
	Gaugino condensation, moduli fixing					
	Soft terms					
1995	String GUT's					

Second	decade: Type II resurects						
1995	M-theory Revolution D-branes, F-theory						
2000	ADD large dimensions Toroidal orientifolds Randall-Sundrum D3,D7 at singularities Intersecting D6-branes						
	GKP KKLT						
2005	Landscape studies						

Third decade: eclectic

2005 Large Volume Scenario Heterotic revisited **D**-instantons and applications F-theory GUT's 2010 **Discrete symmetries** (Higgs found at LHC) Large field inflation (Planck, BICEP2) 2015

We are exploring terra incognita...

...very much like XVI c. explorations

Knowledge of string vacua and effective action accumulates

We are unveiling the rich structure of string theory in its application as a unified theory of all interactions

Friday, May 13, 16

Topics plenary talks at String Pheno 2014

Charting the vacua

15

D-branes allow for localized SM

Bottom-up local approach

(Sure, a global solution better, but....)

Also : F-theory local GUT's

F-theory SU(5)

Vafa'96

F-theory may be considered as a non-perturbative version of Type IIB orientifolds.

Matter curves:

- At matter curves there are U(1)' fluxes $F_{U(1)}$ ' needed for chirality.
 - SU(5) is broken by an additional hypercharge flux F_Y

Friday, May 13, 16

• F-theory: Interesting in its own right: possibly one of the most general class of compactifications.

New phenomena could be uncovered

 Phenomenological virtues (compared to IIB orientifolds): 1) Allow for top quark Yukawa, 2)
 Aproximate unification of coupling constants

Talks: Collinucci, Cvetic, Schafer-Nameki, Grimm, Weigand, Garcia-Etxebarria, Mayrhofer,....

F-theory developments

• 1) U(1)'s in F-theory.

Important:

 May be required to forbid dim 4, 5 proton decay operators, as well as a mu-term.

Give rise to chirality on the matter curves

22

• Hypercharge flux: SU(5) breaking and doublet triplet splitting

• The U(1) structure given by elliptic fibrations with extra sections (beyond the zero one): Mordell-Weil group

 $SU(5) \times U(1)^n$

Each extra section comes with a $\omega_{(1,1)}$ form Reduction of $C_3 = A \wedge \omega_{(1,1)}$ gives a U(1)

• Construction of G_4 fluxes

A lot of progress:

Cuetic, Schafer-Nameki, Grimm, Weigand,

Garcia - Etxebarria, Mayrhofer,....

• Direct SU(3)xSU(2)xU(1)xU(1) (local) Ftheory models (rank M-W=2) Weigand talk

The two phenomenological motivations lost (unification and t-quark Yukawa). Still interesting. May be better suited for large SUSY breaking scale > 10^11 GeV

Fibrations without a section

 Model building. Global F-theory compactifications

Comment:

- U(1)'s phenomenologically motivated in F-theory by p-stability, mu-term....
- U(1) technology is slightly painful....
- If SUSY breaking scale above 10^11 GeV, no such U(1)'s would be required, easier model-building

Friday, May 13, 16

- Yukawa couplings are typically rank=1: (good starting point)
- Non-pert. effects give mass to first two generations.

One obtains fermion mass hierarchies $\simeq 1$, ϵ , ϵ^2

T-branes and Up-type Yukawas

Analogous hierarchies in both D and UYukawas

Font, Marchesano, Regalado, Zocaratto 2013

Soft terms from fluxes on mat. curves

$$m_{\overline{5}}^{2} = \frac{M^{2}}{2} \left(1 - \frac{\tilde{M}}{2}\right) + \frac{q_{Y}}{4} \tilde{N}_{Y} M^{2}$$

$$m_{10}^{2} = \frac{M^{2}}{2} \left(1 - \frac{\tilde{M}}{2}\right) - \frac{q_{Y}}{4} \tilde{N}_{Y} M^{2}$$

$$m_{ij}^{2} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$M_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{+} (\varphi_{j}^{+})^{*}$$

$$H_{ij}^{3} = \frac{g_{s}}{4 \text{Vol}(S)} \int_{S} d^{2}z d^{2} \bar{z} \sqrt{g_{4}} |G|^{2} \left(1 - \left|\frac{F_{-}}{m}\right|\right) \varphi_{i}^{-} (\varphi_{i}^{+})^{*} (\varphi_{i}$$

But there IS life beyond F-theory:

- Heterotic: Lukas, Vaudrevange, Rizos talks..
- Large class of SU(5) models from Heterotic with U(1) bundles (instead of SU(N),N=3,4,5):

35,000 SU(5) models in CICY's (with a Higgs and no anti-10). May be broken to MSSM with discrete W.L.

30

Quite impresive...

Anderson, Constantin, Gray, Lukas, Palti 2013

Heterotic Orbifolds

The OrbifoldLandscape

		max. #	# models with					# MSSM	
orb	oifold	# MSSM	of indep.	0	1	2	3	\geq 4	without
			WLs	indep. vanishing WLs				$U(1)_{anom}$	
\mathbb{Z}_3	(1,1)	0	3	0	0	0	0	0	0
ℤ₄	(1,1)	0	4	0	0	0	0	0	0
	(2,1)	128	3	128	0	0	0	0	0
	(3,1)	25	2	25	0	0	0	0	0
ℤ₀-	(1,1)	31	1	31	0	0	0	0	0
	(2,1)	31	1	31	0	0	0	0	0
Z6-11	(1,1)	348	3	13	335	0	0	0	1
	(2,1)	338	3	10	328	0	0	0	2
	(3,1)	350	3	18	332	0	0	0	2
	(4,1)	334	2	39	295	0	0	0	3
\mathbb{Z}_7	(1,1)	0	1	0	0	0	0	0	0
ℤ ₈ -Ι	(1,1)	263	2	221	42	0	0	0	7
	(2,1)	164	2	123	41	0	0	0	5
	(3,1)	387	1	387	0	0	0	0	27
Z8-11	(1,1)	638	3	212	404	22	0	0	7
	(2,1)	260	2	92	168	0	0	0	3
Z12-	(1,1)	365	1	365	0	0	0	0	8
	(2,1)	385	1	385	0	0	0	0	9

31

Vaudrevange talk

The OrbifoldLandscape

			max. #		# MSSM				
orbifold		# MSSM	of indep.	0	1	2	3	\geq 4	without
			WLs indep. vanishing WLs						$U(1)_{anom}$
\mathbb{Z}_{12} -II	(1,1)	211	2	135	76	0	0	0	3
$\mathbb{Z}_2\times\mathbb{Z}_2$	(1,1)	101	6	0	59	42	0	0	0
$\mathbb{Z}_2 \times \mathbb{Z}_4$	(1,1)	3632	4	67	2336	1199	30	0	10
$\mathbb{Z}_2 \times \mathbb{Z}_{6}$ -	(1,1)	445	2	332	113	0	0	0	5
$\mathbb{Z}_2 \times \mathbb{Z}_6$ -II	(1,1)	0	0	0	0	0	0	0	0
$\mathbb{Z}_3 \times \mathbb{Z}_3$	(1,1)	445	3	1	369	75	0	0	9
$\mathbb{Z}_3 \times \mathbb{Z}_6$	(1,1)	465	1	441	24	0	0	0	0
$\mathbb{Z}_4 \times \mathbb{Z}_4$	(1,1)	1466	3	11	529	921	5	0	1
$\mathbb{Z}_6 \times \mathbb{Z}_6$	(1,1)	1128	0	1128	0	0	0	0	0
total		11940		503	1997				102

12,000 MSSM's

100 MSSM models without anomalous U(1)

33

Rizos: Free fermion PS models

Friday, May 13, 16

Discrete gauge symmetries

F = dA $B \leftrightarrow a^{n} a = 2\pi^{n} a^{n} a^{n$

 $\mathcal{L}_{4d} \sim n(B \wedge F) \quad \xleftarrow{dB = *da} \quad (da - nA) \wedge *(da - nA)$

• R-parity or B-triality not terribly frequent in MSS/P/I--like Type II vacua

 $(1)^{34} \rightarrow \mathbb{Z}_{n}$

2(+1) Crucial Experimental inputs
I) The Universe is accelerating

Linear scale of the universe relative to today

Dark energy = cosmological cons. $\Lambda_{c.c.} \simeq (10^{-3} eV)^4$

The rich flux structure leads to a huge String Landscape

Small, positive c.c. may be environmentally selected

- A large landscape of vacua may be argued to be a virtue rather than a shortcoming
- It allows for an anthropic understanding of the c.c.

- Interesting:
 - The idea of the landscape an anthropics has permeated the comunity. More respectable.
 - Still not much recent work on pure landscape issues...

Moduli Fixing

Conlon, Zavala....

Landscape of vacua intimately connected to moduli stabilization

 First examples of moduli stabilization still the paradigms in Type IIB: KKLT, LVS

KKLT

Large Volume Scenario

• $\tau_b \gg \tau_{s_i}$

- Hierarchy of volumes and scales, parametrically controlled. Up-lifting less clear...
- SM on D3's (D7 also possible)
- A lot of work on low energy effective action, cosmology, ALP's,

• Progress towards first examples of models with both moduli stabilization and a MSSMlike sector (from D3-branes at singularities). Cicoli et al....

Possible lamp-post effect:

Present technology does not make use of ingredients like e.g non-geometric fluxes (which are mirror to IIA fluxes)....could play an important role...

No example as yet able to reproduce the smallness of the c.c.

42

Conlon: further caveats.....

The second crucial experimental input comes from LHC and it is two-fold:

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

*Only a selection of the available mass limits on new states or phenomena shown. 44				
		10 ⁻¹	1	10
VVIIV	The interaction (DS, Dirac χ). Monoper + $E_{T,miss}$	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M [*] SCale (<i>m_χ</i> < 80 GeV, limit of < 687 GeV for D	8)
$\widetilde{g} \rightarrow tt, t \rightarrow bs : 2 SS-lep + (0-3b-)j's + E_{T,miss}$ Scalar gluon : 2-jet resonance pair WIMP interaction (D5 Dirac χ) : 'monoiet' + F		L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	100-287 GeV SGIUON MASS (incl. limit from 1110.2693)	
		L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	880 GeV \tilde{g} mass (any $m(\tilde{t})$)	
RPV	$\widetilde{g} \rightarrow qqq$: 3-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	\widetilde{G} 666 GeV \widetilde{g} mass	
	$\widetilde{\chi}_{1}^{*}\widetilde{\chi}_{1}^{*},, \widetilde{\chi}_{1}^{*} \rightarrow \tau \tau v_{e}, e \tau v_{\tau} : 3 \text{ lep } + 1\tau + E_{T, \text{miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	350 GeV $\widetilde{\chi}_1^+$ MASS $(m(\widetilde{\chi}_1^0) > 80 \text{ GeV}, \lambda_{133} > 0)$	
	$\widetilde{\chi}_{1}^{\dagger}\widetilde{\chi}_{1},\widetilde{\chi}_{1}^{\dagger} \rightarrow W\widetilde{\chi}_{1}^{\upsilon},\widetilde{\chi}_{1}^{\bullet} \rightarrow eev_{\mu}, e\muv_{\mu}: 4 lep + E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	760 GeV $\widetilde{\chi}_{1}^{+}$ MASS $(m(\widetilde{\chi}_{1}^{0}) > 300 \text{ GeV}, \lambda_{121} > 0)$	
	Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	1.2 TeV $\widetilde{\mathbf{q}} = \widetilde{\mathbf{g}} \text{ mass} (c\tau_{LSP} < 1 \text{ mm})$	
	LFV : pp $\rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.10 TeV \tilde{v}_{τ} mass $(\lambda_{311}^{-1}=0.10, \lambda_{1/2)33}^{-1}=0.05)$	
	LFV : pp $\rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.61 TeV $\widetilde{\nu}_{\tau}$ mass $(\lambda_{311}^{-}=0.10, \lambda_{132}^{-}=0.10, $	0.05)
Long-livec particles	$\tilde{\chi}^0 \rightarrow qq\mu (RPV)^1: \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV $\widetilde{\mathbf{q}}$ mass (1 mm < $c\tau$ < 1 m, $\widetilde{\mathbf{g}}$ decoupled)	
	GMSB, $\widetilde{\chi}^0 \rightarrow \gamma \widetilde{G}$: non-pointing photons	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2013-016]	230 GeV $\tilde{\chi}_{4}^{0}$ MASS $(0.4 < \tau(\tilde{\chi}_{4}^{0}) < 2 \text{ ns})$	
	GMSB. stable $\tilde{\tau}$: low β	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	300 GeV $\tilde{\tau}$ MASS (5 < tan β < 20)	
	Stable $\tilde{\alpha}$ B-hadrons : low R By	$L=4.7 \text{ fb}^{-1}$, 7 TeV [1211.1597]	985 Gev ã mass	
	$\chi_1 \chi_2 \rightarrow \gamma \gamma \chi_2 \leftarrow \chi_1 \cdot 3 iep + E_{T,miss}$ Direct $\widetilde{\gamma}^{\pm 1}$ pair prod (AMSR) : long-lived $\widetilde{\gamma}^{\pm}$	L=20.7 fb ⁻¹ , 7 TeV [1210 2852]	220 GeV $\tilde{\chi}_1^{\pm}$ mass $(m(\chi_1) = m(\chi_2), m(\chi_1) = 0$, sieptons decoupled)	
EW direct	$\lambda_1 \lambda_2 \xrightarrow{\sim} \lfloor \nu_1 \rfloor (\nu \nu), \forall \nu_1 (\nu \nu) : \mathbf{J} \models \mathbf{P} + \mathbf{E}_{T,\text{miss}}$	L=20.7 fb ⁻¹ & TeV [ATLAS-CONF-2013-035]	600 GeV χ_1 IIIaSS $(m(\chi_1^-) = m(\chi_2), m(\chi_1) = 0, m(l,v)$ as above 315 GeV χ^{\pm} MASS $(m(\chi^{\pm}) = m(\chi^0) = 0$ electrons decouveled)	<i>!)</i>
	$\chi_1 \chi_2, \chi_1 \rightarrow \text{tv}(\text{tv}) \cdot 2\text{t} + E_{T,\text{miss}}$ $\tilde{\chi}^{\pm}\tilde{\chi}^0 \rightarrow \tilde{\chi}_1 \tilde{\chi}(\tilde{\chi}_1) \tilde{\chi}_1 \tilde{\chi}(\tilde{\chi}_2) \tilde{\chi}_1 \text{len} \pm F$	L=20.7 fb ⁻ , 8 lev [A1LAS-CONF-2013-028]	180-330 GeV χ_1 III as $(m(\chi_1) < 10 \text{ GeV}, m(\tau, v) = \underline{p}(m(\chi_1) + m(\chi_1)))$	
	$\chi_1 \chi_2, \chi_1 \rightarrow \text{Iv}(\text{Iv}) : 2 \text{ lep } + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	110-340 GeV χ_1 IIIdSS $(m(\chi_1) < 10 \text{ GeV}, m(l,v) = \frac{1}{2}(m(\chi_1^-) + m(\chi_1^-)))$	
	$\lim_{t \to t_{T,miss}} L_L, I \to b_{T,miss} = E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884]	5-195 GeV I I Mass $(m(\tilde{\chi}_1) = 0)$	
	$\iota_2\iota_2, \iota_2 \rightarrow \iota_1 + \angle : \angle (\rightarrow II) + 1 \text{ lep } + D \text{ -Jet } + E$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	520 GeV I_2 Mass $(m(t_1) = m(\tilde{\chi}_1) + 180 \text{ GeV})$	
3rd dire	tt (natural GIVISB) : ∠(→II) + D-Jet + E \widetilde{T} \widetilde{T} \widetilde{T} \widetilde{T} \widetilde{T} \widetilde{T} \widetilde{T} ,miss	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	500 GeV I mass $(m(\tilde{\chi}_1) > 150 \text{ GeV})$	
	tt (heavy), t \rightarrow t $\tilde{\chi}$: 0 lep + 6(2b-)jets + $E_{T,miss}$	L=20.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-024]	320-660 GeV t mass $(m(\tilde{\chi}_1) = 0)$	
ge ict i	tt (heavy), $t \rightarrow t \widetilde{\chi}_1^{\sim}$: 1 lep + b-jet + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	200-610 GeV t mass $(m(\tilde{\chi}_1^0) = 0)$	
n. pro	tt (medium), t $\rightarrow b\tilde{\chi}_1^{\pm}$: 2 lep + $E_{T,\text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV t mass $(m(\chi_1^0) = 0 \text{ GeV}, m(\tilde{t}) - m(\tilde{\chi}_1^{\pm}) = 10 \text{ GeV})$	
npu	tt (medium), t \rightarrow b $\tilde{\chi}_1^{\pm}$: 1 lep + b-jet + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	160-410 GeV t mass $(m(\tilde{\chi}_1^0) = 0 \text{ GeV}, m(\tilde{\chi}_1^{\pm}) = 150 \text{ GeV})$	
ctic	\underbrace{tt} (light), $\widetilde{t} \rightarrow b \widetilde{\chi}_{1}^{\pm}$: 1/2 lep (+ b-jet) + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102] 16	7 GeV t mass $(m(\tilde{\chi}_1^0) = 55 \text{ GeV})$	
ks nn	$\widetilde{b}\widetilde{b}, \widetilde{b}_1 \rightarrow t \widetilde{\chi}^{\pm}$: 2 S-lep + (0-3b-)j's + $E_{T.miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	430 GeV b mass $(m(\tilde{\chi}_1^{\pm}) = 2 m(\tilde{\chi}_1^{0}))$	
	$\widetilde{b}\widetilde{b}, \widetilde{b}_1 \rightarrow b\widetilde{\chi}^0$: 0 lep + 2-b-jets + $E_{T \text{ miss}}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	620 GeV b mass $(m(\tilde{\chi}_{+}^{0}) < 120 \text{ GeV})$	7 TeV, all 2011 data
3r G	$\tilde{g} \rightarrow t \tilde{t} \tilde{\chi}^0$: 0 lep + 3 b-j's + $E_{\tau \text{ miss}}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV g̃ mass (m(χ̃ ⁰ ₁) < 200 GeV)	o rev, partial 2012 data
d gen. jluino ediatei	$\widetilde{g} \rightarrow tt \widetilde{\chi}^{0}$: 0 lep + multi-i's + E	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV $\widetilde{\mathbf{G}}$ mass $(m(\widetilde{\chi}^0) < 300 \text{ GeV})$	9 ToV partial 2012 data
	$\widetilde{q} \rightarrow tt \widetilde{\gamma}^0$: 2 SS-lep + (0-3b-)i's + F	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	900 GeV $\widetilde{\mathbf{Q}}$ mass (any $m(\widetilde{\mathbf{x}}^0)$)	8 TeV, all 2012 data
σ.	$\tilde{a} \rightarrow b \bar{b} \tilde{v}^0$ · 0 len + 3 b-i's + F	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	1.24 TeV $\widetilde{\alpha}$ mass $(m(\overline{\alpha}) > 10 \text{ GeV})$	
	Gravitino I SP : 'monoiet' + F_{-}	L=5.8 10 , 8 TeV [ATLAS-CONF-2012-152]	645 GeV G 102 SCale $(m(\vec{H}) > 200 \text{ GeV})$	·
	GGM (higgsino bill O NEOF) : 7 + b + E	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV 9 IIIass $(m(\chi_1) > 220 \text{ GeV})$	s = 7, 8 TeV
Inclusive se	GGM (biggsing-bing NLSP) $\gamma + 1ep + E$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	$\int \frac{1}{2} $	
	GGM (wind NLSP) $\gamma \gamma + E$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV G MASS $(m(\chi_1) > 50 \text{ GeV})$	$dt = (4.4 - 20.7) \text{ fb}^{-1}$
	GMSB (τ NLSP) : 1-2 τ + J'S + E	L=20.7 fb ⁻¹ , 8 TeV [1210.1314]	1.40 TeV ğ mass (tanβ > 18)	
	GMSB (INLSP) : 2 lep (OS) + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV \widetilde{g} mass (tan β < 15)	
ean	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\chi}_1^0) < 200 \text{ GeV}, m(\widetilde{\chi}^{\pm}) = \frac{1}{2}(m(\widetilde{\chi}^0))$	+ <i>m</i> (ĝ))
ches	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV $\widetilde{\mathbf{q}}$ mass $(m(\widetilde{\mathbf{g}}) < 2 \text{ TeV}, \text{ light } \widetilde{\chi}_1^0)$	Preliminary
	Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\mathbf{q}}) < 2 \text{ TeV}, \operatorname{light} \widetilde{\chi}_1^0)$	AILAS
	MSUGRA/CMSSM : 1 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV $\tilde{q} = \tilde{g}$ mass	
	MSUGRA/CMSSM : 0 lep + j's + E _{7.miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV	

Friday, May 13, 16

No sign so far of SUSY nor anything BSM !!

Perhaps new physics will arise at LHC-13 !!!

(perhaps WW excess?)

No sign of new physics in the Higgs couplings either...

STILL.

Just-SM unlikely to survive all the way to Planck scale:

 $m_h = 126 \text{ GeV}$

• `Stability Problem': the Higgs potential unbounded well below the Planck scale....

String Theory Suggests SUSY is present at some scale

• 1) It is a fundamental symmetry of string theory

• 2) To avoid the presence of tachyons in string compactifications

• 3) Additional reason: to stabilize the Higgs potential:

SUSY could be realized at a scale $\gg 1 TeV$

SUSY would be needed NOT to stabilize the hierarchy but to stabilize the SM vacuum

This would require $M_{SS} \leq 10^{11} - 10^{13} \text{ GeV}$ (before λ becomes negative)

The solution of the hierachy problem would be then anthropic again...

Hebecker. and Weigand '12, '13 L. I. Marchesano, Regalado, Valenzuela ar Xiv:12, L. I. and Valenzuela 2013

• SUSY breaking scale could be in the range $10^{10} - 10^{13}$ GeV. Consistent with $m_H = 125$ GeV

 Such scales arise if SUSY broken by isotropic bulk fluxes in Type IIB+ gauge coupling unification

 No symmetries needed to suppress p-decay dim 4,5 operators nor doublet triplet splitting!!

The third crucial experimental input came (??) from the South Pole

Inflation before March 17-th 2014

57

But the dust still has to settle

58

B-mode power spectrum

Slow roll inflation

$$\epsilon = \frac{M_p^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1 \quad , \quad \eta = M_p^2 \frac{|V''|}{V} \ll 1$$

Perturbations:

Scalar spectral index : $n_s - 1 = 2\eta - 6\epsilon$ $tensor/scalar \ ratio: \ r = 16\epsilon$ $Number \ e - folds: \ N_* = \frac{1}{M_p} \int_{\phi_{end}}^{\phi_*} \frac{d\phi}{\sqrt{2\epsilon}}$ $\frac{\Delta\phi}{M_n} \geq 0.25 \left(\frac{r}{0.01}\right)^{1/2}$

Lyth bound:

Large r requires trans-Planckian inflaton excursions

Chaotic Inflation Linde 88

 $V(\phi) = \mu^{4-p} \phi^p$

(Bauman McAllister book)

$$N_* \simeq \frac{1}{2p} \left(\frac{\phi_*}{M_p}\right)^2$$

$$trans - Planckian$$

$$n_s - 1 = -\frac{(2+p)}{2N_*}$$
, $r = \frac{4p}{N_*}$

If BICEP2 correct:

$V^{1/4} \simeq \left(\frac{r}{0.01}\right)^{1/4} \times 10^{16} \ GeV \simeq 10^{16} GeV$

$$H_I \simeq \left(\frac{r}{0.20}\right)^{1/2} \times 10^{14} \ GeV$$

 $m_I \simeq 10^{13} GeV$

String theory and large field inflation

Talks:

Nilles, Westphal, Burgess, Jakahashi, Maharana, Hebecker, Sagnotti, Uranga, Shiu, Kaloper, Lust...

Scales in string large inflaton

 $\phi_* \simeq 10 M_p \ ok, \ as \ long \ as V(\phi)^{1/4} \leq M_c, M_{str}$

But in the large field seas....

people say there are dragons....

Inocent Uncontrolled Inflaton corrections

A shift symmetry String Phenomenologist

Non-trans-Planckian axion inflation 1) One axion Requires $f \ge 10 M_p$ $V = \lambda^4 \left(1 - \cos\left(\frac{\phi}{f}\right) \right)$... problematic in string theory see however Grimm, 14 2) Two axions, two confining gauge groups $\sum_{i=1}^{2} \frac{\phi_i}{f_i} \left(c_a^i (F_a \wedge F_a) + c_b^i (F_b \wedge F_b) \right)$ KNP 2004 $\rightarrow V = \Lambda_a^4 \left(1 - \cos(c_a^1 \frac{\phi_1}{f_1} + c_a^2 \frac{\phi_2}{f_2}) \right) + \Lambda_b^4 \left(1 - \cos(c_b^1 \frac{\phi_1}{f_1} + c_b^2 \frac{\phi_2}{f_2}) \right)$ For $c_a^1 c_b^2 = c_b^1 c_a^2$ one effective f_{eff} can be very large Embedded in string theory? Ben-Dayan, Pedro, Westphal 3) N axions: N-flationDimopoulos et al 2008 $N \simeq 10 - 1000$, renormalize G_{Newton} Maharana talk

Monodromy inflation

Silverstein, Westphal 08; McAllister, Silverstein, Westphal Kaloper, Sorbo 08

Gur-Ari, 13

Marchesano, Shiu, Uranga, 14

Talks: Westphal, Hebecker, Uranga, Shiu, Kaloper,...

1) Monodromy inflation from DBI Silverstein. Westphal 08: McAllister. Silverstein. Westphal

Consider a O(3)/O(7) IIB orientifold. Can have axionic moduli :

$$b = \int_{\Sigma_2^-} B_2 \quad , \quad c = \int_{\Sigma_2^-} C_2 \qquad (shift symmetry)$$

Consider a D5 - brane wrapping Σ_2^-
 $V_{DBI} \propto \int_{M_4 \times \Sigma_2^-} \sqrt{-\det(G+B)} \propto \sqrt{L^4 + b^2}$

Breaks shift symmetry : linear potential for large b

D3 tadpole cancellation and preservation of shift symmetry....

 $Non-SUSY\ configuration.Back-reaction\ could\ be\ strong$

 $V \simeq \mu^3 \phi + \Lambda^4 \cos(\frac{\phi}{f_a})$

subleading modulations

Generalization with (p,q) - 7 - branes(Palti. Weigand 14)

72

2) Monodromy with no D-branes

Monodromy induced on axions via Fluxes:

Kaloper, Sorbo 08;

Marchesano, Shiu, Uranga, 14

$$\int dx^4 \ |db_2 - C_3|^2 \ + \ |F_4|^2$$
$$C_3 \ \to \ C_3 \ + \ d\Lambda \ , \ b_2 \ \to \ b_2 \ + \ \Lambda$$

 $d\phi = *db_2 \qquad \phi F_4 + |F_4|^2 \longrightarrow (|F_4|^2)\phi^2$

F - term monodromy from fluxesshift symmetry has a gauge origin may be embedded in string theory : $\phi = massive W.L.$

Marchesano, Shiu, Uranga, 14 Many examples: McAllister, Silverstein, Westphal, Wrase 14 1) Type II - A, $T = \int_{\Sigma_2} (J + iB_2)$: $W = eT - qT^2 + mT^3$, $m = F_0$, $q = \int_{\Sigma_2} F_2$, $e = \int_{\Sigma_2} F_4$ quartic scalar potential 2) See directly from D = 10 action : $L = -\int dx^{10} \left(\frac{1}{g_s^2} |H_3|^2 + \sum |\tilde{F}_p|^2\right)$ e.g. $F_4 = dC_3 + C_1 \wedge H_3 + mB \wedge B, \rightarrow V \simeq m^2 |B|^4$ (expected to flatten at large B...)

3) Monodromy with D-branes+fluxes Inflatons are W.L. or position moduli from Silverstein, Westphal 08; branes Gur-Ari 14: Marchesano et al 14 1) D-branes wrapping twisted tori $Inflaton = D - brane \ position \ on S^{1}.$ $Monodromy \ from \ DBI \ + \ geometric \ flux$ $V(\phi) \simeq \phi^{2/3}, \phi, \phi^{6/5}, \phi^{4/3}, \phi^2 \text{ (for large } \phi)$

2) D7 – branes in IIB orientifolds with fluxes Large c.s. limit features shift symmetry Inflaton = position modulus Hebecker, Kraus, Witkowwski 14

Monodromy: superpotential from fluxes Quadratic potential (for small field) (also D3's wrapping 1 - cycles) Sklaer 12

76

3) Inflaton as a SUSY partner of the Higgs 6 D7-branes at $(\mathbf{C}^2 \times \mathbf{T}^2)/Z_4$ Gauge group: $U(3) \times U(2) \times U(1)$ Matter fields: $2(3,\overline{2}) + 2(1,\overline{3}) + (1,2) + (1,\overline{2})$

 $U(2) \times U(1) \rightarrow U(1) \times U(1)$

vector pair: Hu, Hd

One U(2)-brane + U(1)-brane can leave the singularity in opposite directions.

Relative position:

 $\langle H \rangle \equiv \langle H_u + H_d^* \rangle \neq 0$ \checkmark Inflaton

Open string modulus monodromy inflation:

Periodic behaviour around 1-cycle of T².

♦ Addition of closed string fluxes: generate monodromy and the potential.
Potential linear at large field from DBI.

77

 Chaotic inflation naturally arises in string models where inflaton=axion,W-L,D-moduli, may have a large field range

 Stability at large field provided by continuous/discrete shift symmetries and periodicity of spectrum

•Generic: flattening of potential for large inflaton: N=1 SUGRA leading effective action may be not sufficient....

That's all very nice. But you have first to fix all moduli before talking about inflation!!

Yep. But advances are done step by step. It is not unreasonable to assume that moduli are fixed at a somewhat larger scale and study the consequences....

80

BICEP2 announcement has been very positive for the field. If the results are confirmed, most string inflationary models ruled out. This shows explicitly that experimental data can test the theory

Even if eventually not confirmed, it has forced us to test the theory in a challenging regime, giving rise to brand new ideas and scenarios.

Axions and axion-like particles

• Axion-like particles are abundant in string theory ($from B_2, C_n, ...$)

 One linear combination of these could remain massless and act as a QCD axion

 Others could also remain light and give rise to cosmological and/or astrophysical signatures.

82

Talks by Marsh. Conlon..... parallels

QCD axions after BICEP2 (??)

83

To avoid too much isocurvature perturbations..

 $f_a < 10^{12} \ GeV$

Ringwald 14

Axion-like states in cosmo/astro

EXAMPLE: Pseudo-scalar partner of lightest modulus in LVS

Talks by Marsh. Conlon.... parallels

Dark radiation

 Difusse gamma rays in clusters of galaxies (axion-photon conversion)

 3.55 KeV gamma ray line in Andromeda and clusters Dark radiation in minimal LVS:

Conlon. Marsh. Angus..... parallels

 $N_{eff} = 3.52^{+0.48}_{-0.45}$, with $H_0 = 67.3 \pm 1.2 \ Km \ s^{-1} Mpc^{-1}$

• Shows how data can rule out specific string models!

• Axion-like particles in string theory tend to get masses easily: GS mechanism, bulk fluxes, instantons.....

 It is probably too optimistic considering scenarios like N-flation or an 'axiverse" with hundreds of light ALP's Other data can give us important info

- Proton decay. Could be sizable in large SUSY-breaking 7alks by Hebecker, Kumar, Valenzuela
- U(1)'s: milicharged particles Marchesano

• SUSY at LHC. If found, specific models provide patterns for soft terms

Talks by Antoniadis, Ovrut, Kumar, Kripendorf,...

Formal versus less formal

 One historical characteristic of SP is that has always been eager to explore possible phenomenological applications of new formal developments (and viceversa, recall dualities).

• E.g., Double field theory, Gauged supergravity, Instantons, Matrix models, Topological field theory,.... could perhaps be crucial in future developments...

Talks by Jockers, Martucci, Lust, Triendl..

Next decade:

INSTITUTO DE FISICA TEORICA UAM-CSIC

STRING PHENOMENOLOGY 2015 8-12 JUNE, MADRID

INSTITUTO DE FISICA TEORICA VAN-CSIC STRING PHENO 2015 8-12 JUNE, MADRID

INSTITUTO DE FISICA TEORICA UAM-CSIC

STRING PHENO 2015 8-12 JUNE, MADRID

1231

METROPOLI

ORGANIZERS:

L.E. IBAÑEZ F. MARCHESAND A.M. URANGA

GENERALI

Real Property in such states

INSTITUTO DE FISICA TEORICA UAM-CSIC

STRING PHENOMENOLOGY 2015 8-12 JUNE, MADRID

STRING PHENO 2015 8-12 JUNE, MADRID

METROPOLI

111099970

Instituto de Física Teórica EXCELENCIA SEVERO OCHOA

European Research Council SPLE Advanced Grant

ORGANIZERS:

L.E. IBAÑEZ F. MARCHESAND A.M. URANGA

