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Statistics and Earth sciences

“There is, today, always a

risk that specialists in two

subjects, using languages Quiz

full of words that are .

unintelligible without study, m (A) Gilbert Walker

will grow up not only, without m (B) Ed Lorenz
m (C) Rol Madden
= (D)

Francis Zwiers

knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.



EVT = Going beyond the data range
What is the probability of observing data above an high threshold ?
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March precipitation amounts recorded at Lille (France) from 1895 to 2002. The 17 black dots corresponds to the number of exceedances

above the threshold up = 75 mm. This number can be conceptually viewed as a random sum of Bernoulli (binary) events.



An example in three dimensions

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Typical question in multivariate EVT
What is the probability of observing data in the blue box ?
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Siméon Denis Poisson (1781-1840)

Counting excesses

As a sum of random binary events, the variable N, that counts the number of
events above the threshold u, has mean n Pr(X > up)

Poisson’s theorem ' in 1837
If u, such that
nlim n Pr(X > up) =X € (0,00).

then N, follows approximately a Poisson variable N.

1. Give HW



Poisson and maxima

Counting = max
Pr(Mn, < up) = Pr(N, = 0) with M, = max(X, ..., Xn)
Poisson’s at work

lim Pr(M, < up) = nlim Pr(N, =0) = Pr(N = 0) = exp(—\)

n— oo



Equivalences

Maxima

High
quantiles

Counting
exceedances

Tail behavior




An univariate summary

Poisson

Counting
exceedances

Tail behavior




A few studies linking EVT with geophysical extremes

Casson and Coles (1999) a Bayesian hierarchical model for wind speeds

exceedances
Stephenson and Tawn (2005) Bayesian modeling of sea-level and

rainfall extremes
Cooley et al. (2007) a Bayesian hierarchical GPD model that pooled

precipitation data from different locations
Chavez and Davison (2005) GAM for extreme temperatures (NAO)

Wang et al. (2004) Wave heights with covariates

Turkman et al. (2007), Spatial extremes of wildfire sizes

Lichenometry, Jomelli et al., 2007

Hydrology Katz et al.

Downscaling Vrac M., Kallache M., Rust H., Friedrichs P, etc
GCMs and RCMS analysis Zwiers F., Maraun D., etc
Attribution Smith R.




Limits of the univariate approach

Independence or conditional independence assumptions

Observed BHM with Cl assumption
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Ribatet, Cooley and Davison (2010)



Why is Multivariate EVT needed ?

Compute confidence intervals

Calculating probabilities of joint extreme events
Clustering of regions

Extrapolation of extremes

Downscaling of extremes

Trading time for space (for small data sets)

etc



MRV

A fundamental question 2 for iid bivariate vector (X, V)

Suppose that we have unit Fréchet margins at the limit

lim P(max(Xi, ..., X»)/an < x) = lim P(max(Y1,..., Yn)/an < x) = exp(—x~")

n— oo

with a, such that
P(X > an)=1/n

2. L. de Hann, S. Resnick



MRV

A fundamental question 2 for iid bivariate vector (X, V)

Suppose that we have unit Fréchet margins at the limit

lim P(max(Xi, ..., X»)/an < x) = lim P(max(Y1,..., Yn)/an < x) = exp(—x~")

n— oo

with a, such that
P(X > an)=1/n

lim P(max(Xi, ..., Xn)/an < x,max(Y1,..., Yn)/an < y) =77

2. L. de Hann, S. Resnick



MRV

Why is the solution so ugly ?

lim P(max(Xi,..., Xn)/an < x,max(Yi,..., Yn)/an <y) = G(x,y)

G(x,y) = exp <7/01 max <¥ PTW> dH(W)>

where H(.) such that [, wdH(w) = 1

then




Still counting

P(max(Xi,...,Xn)/an < x,max(Yi,..., Yn)/an < y) = P(Na(A) =0)
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Still counting

P(max(Xi, ..., Xn)/an < x,max(Yi,..., Ya)/an < y) = P(Ns(A) = 0)

Poisson again

If
lim_E(N(A)) = A(A),
then
nimoc P(Nn(A) = 0) = P(N(A) = 0) = exp(—A(A))



Still counting

P(max(Xi, ..., Xn)/an < x,max(Yi,..., Ya)/an < y) = P(Ns(A) = 0)

Poisson again

I
lim E(Na(A)) = A(A),

n— oo

then
nimoc P(Nn(A) = 0) = P(N(A) = 0) = exp(—A(A))

One of the main question

m What are the properties of A(A) ?



MRV

Back to univariate case : Fréchet margins

Poisson condition

n||m nP(X/an € Ax) = /\X(Ax)
with
Ax(Ax) = x~, for Ay = [x, o0)



Special cases

The independent case

lim P(max(Xi,...,Xn)/an < x,max(Ys,..., Yn)/an < y) =

n—oo



Special cases

The independent case

HmmemM,”VMV%gxmwﬂ%,”,nymgyﬁ:wmffﬁyq)

n—oo

Hence

Xy = AA) +A(A) = A(A)



Special cases

The independent case

nlimoo P(max(Xi,...,Xn)/an < x,max(Yi,..., Yn)/an < y) = exp(fx’Lyq)

Hence

Xy = AdA) + M (AY) = NA)
The general case

ANA) < A(A) + Ay (Ay)



Special cases

The dependent case X, = Y,

lim P(max(Xi,...,Xn)/an < x,max(Ys,...,Yn)/an <y)=

n—oo



Special cases

The dependent case X, = Y,

lim P(max(Xi,...,Xn)/an < x,max(Y1,..., Yn)/an <y) = exp(—max(1/x,1/y))

n—oo

Hence,
max(1/x,1/y) = max(Ax(Ax), Ax(Ay)) = A(A)



Special cases

The dependent case X; = V;

lim P(max(Xi,...,Xn)/an < x,max(Ys,..., Yn)/an <y)= exp(—max(1/x,1/y))

n—oo

Hence,
max(1/x,1/y) = max(Ax(Ax), Ax(Ay)) = A(A)

The general case

max(A«(As), A(A) < A(A)



Special cases

The dependent case X; = V;

lim P(max(Xi,...,Xn)/an < x,max(Ys,..., Yn)/an <y)= exp(—max(1/x,1/y))

n—oo

Hence,
max(1/x,1/y) = max(Ax(Ax), Ax(Ay)) = A(A)

The general case
max(A«(Ax), Ax(Ay)) < A(A)

max(Ac(Ar), Ad(A) < AA) S Ad(Ad) + Ay(Ay)



Scaling property

Univariate case with A, (Ax) = x~*
Ax(tAx) =t Ax(Ax)

Bivariate case

A(tA) = t ' A(A)?




MRV

Going back to maxima

lim P(max(Xi,...,Xn)/an < x,max(Y1,..., Yn)/an <)

n— oo

exp(—A(A))
P(Mx < x,My <y)
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MRV

Going back to maxima

P(Mx < x,My < y) = exp(—A(A))

Scaling
A(tA) = t'A(A)
is equivalent to

Max-stability

(exp(—A(tA)))" = exp(—tA(tA))
exp(—A(A))
= P(Mx <x,My <y)

P'(Mx < t x,My < ty)



MRV

Scaling property : an essential property of inference

4 A
A AA Area with data points




MRV

Interpreting the scaling property A(tA) = t~'A(A) with ||y|| = y1 + 2

A

! n.}_ﬂﬂ/z - {y :.y/yll € B and ||y||.>.{}.'
1 _‘?1+y2:1 .‘. . . o

| S R




MRV

Interpreting the scaling property A(tA) = t~'A(A)

A special case

A={z=(x,y):z/|lz|]| € Band |[z|]| > 1}
where ||z|| = x 4+ y and B any set belonging to the unit sphere

A surprising property

A

{tz:2z/||z]| € Band ||z|| > 1},
{u:u/||u|| € Band |Ju|| > t}, withu = {z.

This implies
A({u:u/|jul| € Band ||u|| > t}) =t""H(B)

where H(.) is the mean measure restricted to the unit sphere and often called
the spectral measure.



MRV

Interpreting the scaling property A(tA) = t~'A(A)

A special case

A={z=(x,y):z/|lz|]| € Band |[z|]| > 1}
where ||z|| = x 4+ y and B any set belonging to the unit sphere

A surprising property

A

{tz:2z/||z]| € Band ||z|| > 1},
{u:u/||u|| € Band |Ju|| > t}, withu = {z.

This implies
A({u:u/|jul| € Band ||u|| > t}) =t""H(B)

where H(.) is the mean measure restricted to the unit sphere and often called
the spectral measure.

Independence between the strength of event ||z|| = x + y and the location on
the unit simplex



Polar coordinates




2D Polar coordinates

2D : INDEPENDENT CASE 2D : COMPLETE DEPENDENCE
r=(u+v)and r=(u+v)and
r="7102=7 01=1,00=7]




MRV

Again, back to maxima

lim P(max(Xi,...,Xn)/an < x,max(Ys,..., Yn)/an < y) = exp(—A(A))

n— oo
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Back to maxima

How to express Ain

lim P(max(Xi,...,Xn)/an < x,max(Ys,..., Yn)/an < y) = exp(—A(A))

n—oo



Back to maxima

How to express Ain

lim P(max(Xi,...,Xn)/an < x,max(Ys,..., Yn)/an < y) = exp(—A(A))

n—oo

Changing coordinates : r = u+vand w = u/(u+ v)

(u,v)¢ A <& u<xand v<y,
& r<x/wand r<y/(1—w),
& r<min(x/w,y/(1 —w))



Back to maxima

How to express Ain

lim P(max(Xi,...,Xn)/an < x,max(Ys,..., Yn)/an < y) = exp(—A(A))

n—oo

Changing coordinates : r = u+vand w = u/(u+ v)

(u,v)¢ A <& u<xand v<y,
& r<x/wand r<y/(1—w),
& r<min(x/w,y/(1 —w))

Computing A(A)

ANA) = / / r2dH(w)
wel0,1] J r>min(x/w.y /(1-w))

/ max(w/x, (1 — w)/y)dH(w)
welo,1]



MRV

Rewriting the counting rate in function of H(dw)




Max-stable

Max-stable vector

lim P(max(Xi,..., Xn)/an < x,max(Yi,..., Yn)/an <y) = G(x,y)

n— oo
then
wl-—-w

—log G(x,y) = /01 max (;, T) dH(w)

where H(.) such that [, wdH(w) = 1




Max-stable vector properties
! wil-w
G(x,y)=exp|— [ max|—,—— | dH(w)
0 X y

and H(.) such that ;' w dH(w) = 1
Max-stability

G'(tx,ty) = G(x,y), forany t > 0
Marginals : unit-Fréchet

G(x,00) = G(o0, X) = exp(—1/x)




Max-stable

A multivariate summary

Max-stability
G'(tz) = G(z)

High
quantiles

[ Regularly varying Scaling property]
)

A(tA,) =t A(4,

Counting

Tail behavior

exceedances



Max-stable

Recipe for Disaster: The Formula That Killed Wall
Street

By Felix S8almon ]  o2.23.09

Pr{T<1,T<1] = ¢,@"(E(L), ¢*(E,1),Y)

Here's what killed your 401(k) David X. Li's Gaussian copula function as first
published in 2000. Investors exploited it as a quick—and fatally flawed—way to assess risk. A
shorter version appears on this month's cover of Wired.




Max-stable

A quick summary about the basics

Learned lessons

m Multivariate maxima can be handled with Poisson counting processes

m “Polar coordinates” allows to see the independence between the strength
of the event and the dependence structure that lives on the simplex

m The dependence structure has not explicit expressions (in contrast to the
margins and to the Gaussian case)

m Max-stable property = scaling property for the Poisson intensity
m Conceptually easy to go from the bivariate to the multivariate case



Max-stable

Remaining questions

m How to make the inference of the dependence structure ?
m How can we use this dependence structure ?
m No easy regression scheme (how to do D&A, see Francis’ talk) ?



Max-stable

Inference

Strategies for either the marginal behavior or the dependence
m Parametric : (+) Reduce dimensionality & easy to deal with covariates (-)
impose a parametric form, model selection needed

m Non-parametric : (+) General without strong assumptions, (-) no practical
for large dimension (curse of dimensionality), difficult to insert covariates



Max-stable

Inference

Strategies for either the marginal behavior or the dependence
m Parametric : (+) Reduce dimensionality & easy to deal with covariates (-)
impose a parametric form, model selection needed

m Non-parametric : (+) General without strong assumptions, (-) no practical
for large dimension (curse of dimensionality), difficult to insert covariates

Techniques
m Maximizing the likelihood : (+) easy to integrate covariates (-) impose a
parametric form, no straightforward for large dimension
m Bayesian inference : (+) easy to insert expert knowledge, (-) no
straightforward for large dimension (slow)
m Methods of moments : (+) fast and simple to understand, can be
non-parametric (-) no straightforward to have covariates



Max-stable

Hourly precipitation in France, 1992-2011 (Olivier Mestre)
92 stations

Latitudes

Longitudes



Max-stable

Our game plan to handle extremes from this big rainfall dataset

Spatial scale
Large (country) Local (region)
Problem | Dimension reduction Spectral density

in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses
Method | Clustering algorithms Mixture of
for maxima Dirichlet

Without imposing a given parametric structure



Max-stable

Clustering of maxima (joint work with E. Bernard, M. Vrac and O. Mestre)

Task 1
Clustering 92 grid points into around 10-20 climatologically homogeneous
groups wrt spatial dependence



Max-stable

Clusterings

Challenges
m Comparing apples and oranges
m An average of maxima (centroid of a cluster) is not a maximum
m variances have to be finite
m Difficult interpretation of clusters

Questions

m How to find an appropriate metric for maxima ?
m How to create cluster centroids that are maxima ?



MEV

A central question (assuming that P [M(x) < v] = P[M(y) < u] = exp(—1/u))

wi1l—-w

P[M(x) < u,M(y) < v] =exp [— /01 max <u’ v) dH(W)]




¢ = Extremal coefficient

P[M(x) < u, M(y) < u] = (P[M(x) < u])’

Interpretation
m Independence = 0 = 2
B M(x)=M(y)=0=1
m Similar to correlation coefficients for Gaussian but ...
m No characterization of the full bivariate dependence




MEV

A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

d(x, ) = JEIFy(M(y)) ~ F(M(x)



MEV

A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

d(x, ) = JEIFy(M(y)) ~ F(M(x)

If M(x) and M(y) bivariate GEV, then

14+ 2d(x,y)

extremal coefficient = 1-2d(x,y)




Clusterings

Questions

m How to find an appropriate metric for maxima ?
m How to create cluster centroids that are maxima ?



Partitioning Around Medoids (PAM) (Kaufman, L. and Rousseeuw, P.J. (1987))




PAM : Choose K initial mediods




PAM : Assign each point to each closest mediod




PAM : Recompute each mediod as the gravity center of each cluster




Motivation

PAM : continue if a mediod has been moved

Basics

Max-stable




PAM : Assign each point to each closest mediod




PAM : Recompute each mediod as the gravity center of each cluster
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¢ Clustering validation

SILHOUETTE COEFFICIENT
bi
V4 . b; — a;
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a; ~b;, s;~0 — Neutral
a; >b;, s;~—1 — Badly classified
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Latitudes

PAM with K= 15

| onnitiides



Applying the kmeans algorithm to maxima (15 clusters)
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Summary on clustering of maxima

m Classical clustering algorithms (kmeans) are not in compliance with EVT

m Madogram provides a convenient distance that is marginal free and very
fast to compute

m PAM applied with mado preserves maxima and gives interpretable
results

m R package available on my web site



Project : Dimension reduction (via clustering ?)

m Are clusters of maxima change over time, say pre-industrial, today,
future ?

m How robust are clusters of maxima in climate models (is it model
sensitive) ?
m Are clusters of maxima different from classical patterns (EOF) ?

m PAM applied with mado preserves maxima and gives interpretable
results

m Can we compute the FAR within a given cluster ?
m What about the marginal behavior (the intensity) ?

Data = field of temperature yearly maxima or precipitation (per season ?)



Methods of moments in a non-stationary spatial case®

ST [ [T ———"

88 94 100 106 112 118 124 130 136 142 148 184 190 196 202 208 214 220 226 232

Figure 4. Inferred 50 year return levels in mm for heavy precipitation in Switzerland, see Figure 3.

3. Naveau, Toreti, Smith, Xoplaki, WRR, 2014.Daily precipitation recorded (220 stations) in Swit-
zerland from 2001 to 2010 in autumn. Excesses over the 90" percentile by using a 2-dimensional
spatial kernel. To estimate threshold values, universal kriging applied to the station-based thresholds
by using elevation as external drift.



Methods of moments in a non-stationary spatial case*

Probability Weighted Moments (PWM), see Hoskings and colleagues)

= E[Z@’(Z)}

4. Naveau, Toreti, Smith, Xoplaki, WRR, 2014



Methods of moments in a non-stationary spatial case*

Probability Weighted Moments (PWM), see Hoskings and colleagues)
= E[Z@’(Z)}

PWM for the GPD in the IID case

(2

e na+r—g

4. Naveau, Toreti, Smith, Xoplaki, WRR, 2014



Methods of moments in a non-stationary spatial case*

Probability Weighted Moments (PWM), see Hoskings and colleagues)

= E[Z@’(Z)}

PWM for the GPD in the IID case

(2

e na+r—g

PWM and GPD parameters for ¢ < 1.5

2.5p1.501

> 41 — (2.5)°11 5
21 —2.5p15 '

and £ = 21 —2.5u15

An estimation of u, can be obtained by noticing that G, ¢(Z) follows a
uniform distribution on [0, 1].

4. Naveau, Toreti, Smith, Xoplaki, WRR, 2014



Methods of moments in a non-stationary spatial case

Non-stationary case with Y(x) followed a GP(c(x), &)
Now o (x) can vary according to a covariate X,

1r(X) = E[Y(X)Goxe (Y(X))],



Methods of moments in a non-stationary spatial case

Non-stationary case with Y(x) followed a GP(c(x), &)
Now o (x) can vary according to a covariate X,

11r(X) = E[Y(X) Gl 0.6 (Y(X))],
A simple rewriting

(30 = o) =g — “WEIZG ()L

where Z follows GP(1, &) distribution.



Methods of moments in a non-stationary spatial case

Non-stationary case with Y(x) followed a GP(c(x), &)
Now o (x) can vary according to a covariate X,

1r(X) = E[Y(X)Goxe (Y(X))],

A simple rewriting

1
pr(X) = U(X)m
where Z follows GP(1, &) distribution.

= o(XE[ZG1 £(2)],

A new system

(1482 —(1+r2as

€= s (1 s e and olx) = (0(1 &),
with .,
o, EIZG 2]
E[ZG ¢(2)]

The only variables depending on x are o(x) and po(X).



Methods of moments in a non-stationary spatial case

Non-stationary case with Y(x) followed a GP(c(x), &)
Suppose that fig(x) and & represent any estimators for po(x) and ays,

a2 and 5(x) = ()1~ &)

é\:



Methods of moments in a non-stationary spatial case

Non-stationary case with Y(x) followed a GP(c(x), &)
Suppose that fig(x) and & represent any estimators for po(x) and ays,

a2 and 5(x) = ()1~ &)

é\:

A kernel regression approach for jio(x)
Let K be a weighting Kernel, e.g. a standard Gaussian pdf, we set

fio(x) = m ; Y(x) K(x — x,).



Methods of moments in a non-stationary spatial case

Non-stationary case with Y(x) followed a GP(c(x), &)
Suppose that fig(x) and & represent any estimators for po(x) and ays,

a2 and 5(x) = ()1~ &)

é\:

A kernel regression approach for jio(x)
Let K be a weighting Kernel, e.g. a standard Gaussian pdf, we set

000 = S~ Ky —x) DY) Kx — x)

Estimation of «/s
Replace the unobserved Z’s by their estimated renormalized version
Z/ = Y(x;)/fio(x;)- Then, simply use your favorite inference PWM methods

to estimate E[Z'G'; ¢(Z')] for r = 1,2.



Simulations
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Figure 1. For a GPD(a(x), &), the solid black line represents the true scale parameter
a(x) in function of x (x axis). The shape parameter is constant and equals to 0.2 (right
axis). From one realization, the boxplot and the gray 90% confidence intervals repre-
sent the estimated shape and scale (left axis) obtained by resampling, respectively.



Simulations

0.6

0.4

0.2
1

-0.2
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0 200 400 600 800 1000

Figure 2. Estimated shape parameter (y axis) from 1000 replicas (x axis) based on
the setup described in Figure 1. The vertical red lines correspond to the samples
outside of the estimated 90% coverage probability. As expected for 1000 replicas,
around 100 false positive (red lines) occurrences are detected.



Daily precipitation recorded in Switzerland 2001-2010 Autumn (u = 90")

5 9 13 17 21 25 29 33 37 41 45 49 53

Figure 3. Inferred scale parameter obtained from heavy precipitation (i.e,, threshold at the 90% quantile of wet days) recorded at 220 sta-
tions in Switzerland from 2001 to 2010 in autumn. The top, middle, and bottom rows correspond to the 5%, median, and 95% values,
respectively. The columns from the left represent three different bandwidths, 0.3, 0.5, and 0.7, respectively.



Heavy rainfall in Switzerland

Pros and cons about the inference

m Parametric structure with a GPD : (+) Reduce dimensionality & easy to
deal with covariates (-) impose a parametric form, model selection
needed

m Non-parametric for the scale parameter

m (+) Fast and conceptually easy (method of moments)
m (-) Independent assumption

m (-/+) Constant shape parameter



Bayesian inference with hidden structures

Notations
m Model = statistical model
m Datay = (y1,...,¥n)
m Hidden signal x = (x1,...,Xn)
Problems at hand
m Model [y|x], the likelihood distribution
m Choose [x] the prior
m Model [x:|x;—1], the dynamical part of the unobserved system
m Find [x|y] the inverse probability (posterior)



A classical and old problem

The problem

m Find [x|y] the inverse probability (posterior)
Different names
Statistical data assimilation

Statistical inverse problem

Latent variables

Filtering methods (Kalman, particles, etc)
State-space modeling

Bayesian hierarchical model

Mixed models



Pierre Simon Laplace (1749-1827)

“Lanalyse des probabilités
assigne la probabilité de ces
causes, et elle indique les
moyens d’'accroitre de plus
en plus cette probabilité.”
“Essai Philosophiques sur
les probabilités” (1774)




Pierre Simon Laplace (1749-1827)

“If an event can be produced by a number of n different causes, then the
probabilities of the causes given the event ... are equal to the probability of
the event given that cause, divided by the sum of all the probabilities of the
event given each of the causes.”

P(event|cause;) x P(cause;)
P(causejlevent) = —5
>4 P(event|cause;) x P(cause;)




Bayes’ formula = calculating conditional probability

[ [xly] o< [yx] x [ ]

Rev. T. BAves

1701(7?)- 1761 “An essay
towards solving a Problem in
the Doctrine of Chances”
(1764)



Bayesian vs frequentist statistics

[xIy] o< [y[x] x [x]

. . Bayesian statistics
Frequentist statistics

m Find and trust expert information
(independent of our data) through
prior [x]

m Trust your data and your model

m Trust your data and your
model

m Find estimators of [x|y] by
imizing the likelihood

[;T;]Ir?if ne%essary, [ ] Updat_e your expert ?nformation vig the
penalize it with prior [x]) ?Xa|tya], (l).(e[.yf;zc]j[)p()]osterlor [xly] by using



Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.
Quiz

m (A) Gilbert Walker

m (B) Ed Lorenz

m (C) Rol Madden

m (D) Francis Zwiers
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“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.
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m (D) Francis Zwiers




Bayesian approach

[Xy] oc [y[x] x [x]

Advantages Drawbacks
m Integration of expert m Integration of expert information via prior
information via prior [x] [x]
m Deals with the full m Complex algorithmic techniques (MCMC,
distribution particle-filtering)
m Non-Gaussian m Can be slow and not adapted for large

m Non-linear data sets



Daily precipitation (April-October, 1948-2001, 56 stations)
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Precipitation in Colorado’s front range

Data

m 56 weather stations in Colorado (semi-arid and mountainous region)
Daily precipitation for the months April-October

Time span = 1948-2001

Not all stations have the same number of data points

Precision : 1971 from 1/10th of an inche to 1/100

D. Cooley, D. Nychka and P. Naveau, (2007). Bayesian

Spatial Modeling of Extreme Precipitation Return Levels.
Journal of The American Statistical Association.



Thresholding : the Generalized Pareto Distribution (GPD)

Vilfredo Pareto : 1848-1923

? Born in France and trained as an
‘ engineer in ltaly, he turned to the
social sciences and ended his
career in Switzerland. He
formulated the power-law
distribution (or "Pareto’s Law”), as
a model for how income or wealth
is distributed across society.




Our main assumptions

m Process layer : The scale and shape GPD parameters (£(x), o(x)) are
random fields and result from an unobservable latent spatial process

m Conditional independence : precipitation are independent given the GPD
parameters

Our main variable change

a(x) = exp(¢(x))



Hierarchical Bayesian Model with three levels

P(process, parameters|data) o [P(data|process, parameters)
x P(process|parameters)
xP(parameters)

Process level : the scale and shape GPD parameters (£(x), o(x)) are hidden
random fields



Our three levels

A) Data layer := IP(data|process, parameters) =

gy \ TV
exp @i

Po{R(xi) —u > y|R(xi) > u} = (1 +
B) Process layer := P(process|parameters) :
e.g. ¢i = ag + a1 x elevation; + Gaussian (0, 8o exp(—051]|xk — Xj||))
and & = émoutain.s; if x; € mountains
Eplains» if x; € plains

C) Parameters layer (priors) := P(parameters) :
€.9. (&moutains, &plains) Gaussian distribution with non-informative mean and
variance



Bayesian hierarchical modeling

Priors— ag + ajp elev —Priors

o |—| 2z |—| &

/ ! AN
Pl’iOI’S*‘BO exp(—61||.||)‘ ‘P(R(x) = u)‘ M —Priors
T

Priors




Climate space

lon/lat space climate space
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Priors for the spatial compoment
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Traditional Space (a) & Climate Space (b). The dashed lines denote the envelope of possible variograms given the sill and range priors



Model selection

Baseline model D Pp DIC

Model 0: ¢=¢ 73,5955 2.0 73,597.2
§=§

Models in latitude/longitude space D Pp DIC

Model 1: ¢p=ap+¢€4 73,4420 409 73,4829
£=¢

Model 2: ¢ = ag +aq(msp) + € 73,4416 40.8 73,4824
£=§

Model 3: ¢ = ap +aq(elev) + €4 73,443.0 355 73,4785
E=§

Model 4: ¢ = ap+aq(elev)+ao(msp)+e€, 73,443.7 35.0 73,478.6

Models in climate space D PD DIC

Model 5: ¢ =ap+¢€4 73,437.1 30.4 73,467.5

Model 6: ¢ = ap +aq(elev) + €4 73,438.8 28.3 73,467.1
§=§

Model 7: ¢ =ap+ €y 73,437.5 28.8 73,466.3
é& = Emtny%—plains

Model 8: ¢ = ap + ay(elev) + ¢, 73,436.7 30.3 73,467.0
& = Emtn, Eplains

Model 9: ¢ =ap+¢€p 73,4339 54.6 73,488.5
§=6+e

NOTE: Models in the climate space had better scores than models in the longitude/latitude
space. €. ~ MVN(0, X), where [0];; = B. o exp(—p. 1[1X; — X; ).




Return levels posterior mean

latitude
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lonaitude




Posterior quantiles of return levels (.025, .975)
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Take-home messages for this rainfall application

Positive points
m Take advantage of Extreme Value Theory
m Spatial dependencies are captured within the process layer

m The hierarchical Bayesian framework provides a rich and flexible family
for modeling complex data sets

Drawbacks
m Computer-intensive implementation (MCMC)
m Difficulty to set the “spatial” priors
m Conditional independence of the observations



Hourly precipitation in France, 1992-2011 (Olivier Mestre)
92 stations

Latitudes

Longitudes



Our game plan to handle extremes from this big rainfall dataset

Spatial scale
Large (country) Local (region)
Problem | Dimension reduction Spectral density

in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses
Method | Clustering algorithms Mixture of
for maxima Dirichlet

Without imposing a given parametric structure



Spectral

Our game plan to handle extremes from this rainfall dataset

Spatial scale
Large (country) Local (region)
Problem | Dimension reduction Spectral density

in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses
Method | Clustering algorithms Mixture of

for maxima Dirichlet



Back to the cluster

-4 -2 0 2 4 6 8



Spectral

Bayesian Dirichlet mixture model for multivariate excesses (joint work with A.
Sabourin)

Meteo-France data
Wet hourly events at the regional scale (temporally declustered)
of moderate dimensions (from 2 to 8)

Task 2
Assessing the dependence among rainfall excesses



Multivariate Extreme Value Theory (de Haan, Resnick and others)

Max-stability
G'(tz) = G(z)

High
quantiles

[ Regularly varying Scaling property]
)

A(tA,) =t A(4,

Counting

Tail behavior

exceedances



Spectral

Defining radius and angular points
Example with d = 3 and X = (X;, X, Xs) such that P(X; < x) = e &

3
Simplex Sz = {W = (w1, w2, w3) : ZW,' =1, w; >0}.
=




Spectral

Mathematical constraints on the distribution of the angular points H

PWEBR>T) ~ %H(B)

Features of H

m H can be non-parametric
m The gravity center of H has to be centered on the simplex

vie{l,....d} [s, w;dH(w) = 1




Spectral

A few references on Bayesian non-parametric and semi-parametric spectral
inference

[ M.-O. Boldi and A. C. Davison.
A mixture model for multivariate extremes.
JRSS : Series B (Statistical Methodology), 69(2) :217-229, 2007.

@ S. Guillotte, F. Perron, and J. Segers.
Non-parametric bayesian inference on bivariate extremes.
JRSS : Series B (Statistical Methodology), 2011.

@ A. Sabourin and P. Naveau.
Bayesian Drichlet mixture model for multivariate extremes.
CSDA, 2013, in press.

@ P.J. Green.
Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination.
Biometrika, 82(4) :711, 1995.

@ Roberts, G.O. and Rosenthal, J.S.
Harris recurrence of Metropolis-within-Gibbs and trans-dimensional
Markov chains
The Annals of Applied Probability,16,4,2123 :2139, 2006.



Spectral

Dirichlet distribution

rv) 1

Yw € éd, diri(w | p,v) = ————— whki—1
H7:1 r(V/J“/) i=1 I

u:'(1/3,1/3,1/3) andv =9



Spectral

Dirichlet distribution

rv) 1

Yw € éd, diri(w | p,v) = ————— whki—1
H7:1 r(V/J“/) i=1 I

u:'(1/3,1/3,1/3) andv =9



Spectral

Dirichlet distribution

o r(l/) d
YW € Sy, diri(w | p,v) = w1

HL F(vhi) i=1 I

p=(.15,.35,.05)and v =9

But this one is not centered ! !



Spectral

Mixture of Dirichlet distribution
Boldi and Davision, 2007

k
h(l,l,,p’y)(W) = medlrl(w ‘ M.,vam)

m=1

with o = p . 14 ¥ = Vi, P = Prukc



Mixture of Dirichlet distribution
Boldi and Davision, 2007

k
h(H,P,V)(W) = medlrl(w | u-,mvl/m)

m=1
With o = g 44, ¥ = V14, P = Prk

Constraint on (u, p)

Prpe gt P = (50 )




Spectral

Inference of Dirichlet density mixtures

Boldi and Davison (2007)

Prior of [u«|p ] defined on the set

)

Ql—

Prpv g+ P = (%

m Sequential inference : first p, then p one coordinate after the other
- skewed, not interpretable, slow sampling
- Difficult inference in dimension > 3



Spectral

Inference of Dirichlet density mixtures

How to build priors for (p, 1) such that

Prpv gt P = (5 )
ey A—
S = g-:"r_. — [ ]
o

4



Spectral

Unconstrained Bayesian modeling for
O =1I2,0k ©k=1{(Sa) " x[0,1)" x (0,00]" "}

Prior
k ~ Truncated geometric
i ml(1t. 1.m_1, €1:m—1) ~ Dirichlet

em|(l’l’,71:m7 e1:m—1) ~ Beta

vm ~ logN

Posterior sampling : MCMC reversible jumps



Spectral

Summary of the Bayesian scheme

o
°

My, Oy, Vmins Vmax




Summary of the Bayesian schemes

Boldi and Davison (2012) Our approach

60

i i ‘”'Al' LA
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Figure 5: Convergence monitoring with five-dimensional data in the original DM model (left panel) and in the re-parametrized
with four parallel chains in each model. Grey lines: Evolution of (g, /g,(j). Black, solid lines: cumulative mean. Dashed lin




Spectral

Simulation example with d =5 and k =3

T, = 150103, T; = 50103.



Back to our excesses of the “Lyon” cluster

Stations 68, 70, 1




Spectral

Coming back to Leeds

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Spectral

Coming back to Leeds

NoO
0.50 0.75 1.00

025

0.00

0.25 050 075 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
NO2 03 PM10

Fig. 6. Five dimensional Leeds data set: posterior predictive density. Black lines: projections of the predictive angular density defined on the four-
dimensional simplex Ss onto the two-dimensional faces. Gray dots: projections of the 100 points with greatest L' norm.



Spectral

Take home messages

Conclusions
m Clustering of weekly maxima with PAM is fast and gives spatially
coherent structures

m Bayesian semi-parametric mixture can handle moderate dimensions and
provide credibility intervals

Going further

m Anne Sabourin = a Bayesian semi-parametric mixture for censored data
with an application to paleo-flood data

References

m Bernard, E., et al.. Clustering of maxima : Spatial dependencies among heavy
rainfall in france. Journal of Climate, 2013, [R package].

m Sabourin, A. , Naveau, P. Dirichlet Mixture model for multivariate extremes. To
appear in Computational Statistics and Data Analysis. [R package].

m Naveau P. et al., Modeling Pairwise Dependence of Maxima in Space. Biometrika,
(2009)



Motivation

Basics

Silhouette coefficients

0.0
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-0.1

MRV Max-stable MEV PAM MOM

Silhouette coefficients for different K
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2 4 6 8 10 12 14 16 18 20

BHM

Spectral



Different results from different Monte Carlo chains ?

Stations 68, 70, 42




Spectral

Simulation example with d =3 and k =3

Simulated points with true density Predictive density




The scale and shape GEV parameters

GEV scale GEV shape
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Take home messages from part |

m Extremes here means very rare

m |tis possible to estimate the
dependence between bivariate
extremes

m Multivariate EVT may help
characterizing extremes
dependencies in space or time

m Modeling trade off between
parametric and non-parametric
approaches

m Challenges to go beyond the
bivariate case and to have flexible
parametric models



Spectral

New parametrisation Ex:k=4and d =3

Ym : "Equilibrium” centers built from g, 4,0 k-

k
Pj
Ym = P OEETTE—— T
m j§_1pm+1+"‘+pk J



Spectral

New parametrisation Ex:k=4and d =3

[.L_Y1,e1 =Y = =61,



Spectral

New parametrisation Ex:k=4and d =3

12

o
Ay \|2
o

o

Koo, €2 = Yo —=




New parametrisation

Spectral

Ex:k=4and d =3

1 € Y273

Yo I3
= P3, P4

= ;3

=63, M 4="73



Spectral

New parametrisation Ex:k=4and d =3

Parametrisation of h with 0 = (p_ 4.1, €1.4—1,V1:)

(2 11, €1k—1) QIVES (1t 14, P1k)
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