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   Introduction 



•  Very wide range of space and time scales 
•  Range from very small scale short duration (tornadoes) to 

large scale long duration (eg drought) 

•  Language used in climate science is not very precise 
–  High impact (but not really extreme) 
–  Exceedance over a relatively low threshold  

•  e.g., 90th percentile of daily precipitation amounts 
–  Rare events (long return period) 
–  Unprecedented events (in the available record) 

Extremes in climate science … 



IPCC SREX, Fig SPM.1 



Economic losses from climate-related disasters have 
increased, with large spatial and interannual variations 

10 Data from Munich Re, 2011 

Economic disaster losses are higher in developed countries 

12 

Pakistan floods, 2010 
6 million left homeless 

Increasing exposure of people and assets has been 
the major cause of changes in disaster losses 
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From 1970-2008, over 95% of natural-disaster-related deaths occurred in 
developing countries 

Fatalities are higher in developing countries 
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Effective risk management and adaptation are tailored 
to local and regional needs and circumstances 

19 

 changes in climate 
extremes vary across 
regions 

 each region has unique 
vulnerabilities and exposure 
to hazards 

 effective risk management 
and adaptation address the 
factors contributing to 
exposure and vulnerability  



   Observed changes 



Summary of Observed Changes 

•  Changes in many extreme weather and climate events 
have been observed since about 1950  

•  Cold days and nights: Frequency has very likely 
decreased globally 

•  Heat waves: Frequency has likely increased in some 
regions.  

•  Heavy precipitation: Frequency has likely increased in 
more land regions than where it has decreased.  

•  Intensity of heavy precipitation: Confidence varies 
regionally, very likely has intensified in North America. 

IPCC WG1 AR5 Table SPM-1 



  Temperature extremes – 1951-2010 

IPCC WG1 AR5 Fig 2.32 
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Annual maximum 1-day precipitation 
trends, 1900-2009 

•  Tests conducted at the 5% level (two sided) 
•  8.6% showed significant increasing trends (red dot, left) 
•  2.0% showed significant decreasing trends (red dot, right) 
•  Increasing trends substantially more frequent than expected by random chance 

(blue bootstrap distributions for rejection rate). 
this issue in more detail by conducting a nonstationary
extreme value analysis using the global near-surface
temperature trend as the covariate. Similar to theMann–
Kendall test described above, we commence by analyzing
the set of 8326 stations with more than 30 years of data
over the period from 1900 to 2009, with the average re-
cord length being 53 years. We also analyze longer pe-
riods of record and different time windows and discuss
the results from these alternative analyses later in this
section.
We use the likelihood ratio test to evaluate the hy-

pothesis that the extremes are varying in response
to global mean near-surface temperature variations
against the null hypothesis that there is no significant
covariation. To this end, we classified stations as ‘‘sig-
nificant positive association,’’ ‘‘significant negative as-
sociation,’’ and ‘‘no significant association’’ with the
global mean near-surface temperature series. Once
again, we used a 5% significance level, which means
that under the null hypothesis, about 2.5% of stations
should show significant positive association and about
2.5% should show significant negative association by
random chance.

1) GEOGRAPHIC DISTRIBUTION OF STATIONS

EXHIBITING SIGNIFICANT TRENDS

The results of the analysis show that 10.0% of stations
globally had statistically significant positive associations
with the annual global mean near-surface temperature
series and 2.2% had significant negative associations.
The spatial locations of these stations are given in Fig. 5,
and the larger number of positive associations relative to
negative associations is clearly apparent. The uneven

geographic distribution of stations is also evident, with
locations that have long records being well represented
in North America (particularly the United States),
western Europe, and South Africa. In contrast, the
majority of the African landmass, Indonesia, parts of
South America, and the sparsely populated areas of
Australia are particularly poorly represented, either
because the records are unavailable or because they
were shorter than the 30-yr threshold used in this
analysis.

FIG. 3. Percentage of stations showing statistically significant (left) increasing and (right) decreasing trends based
on the Mann–Kendall test. The histogram represents the distribution of results from 1000 bootstrap realizations of
the global annual maximum rainfall data, and the red dot represents the value from the observed data.

FIG. 4. Percentage of sample with increasing trends based on the
Mann–Kendall test. The blue histogram was obtained from re-
sampling with 1000 replicates, and the red dot was based on the
observed sample.
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Percentage of significant Mann-Kendall trend tests based on 8376 

GHCN-D stations with 30-years or more data (median length 53 years) 
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• 8376 stations with > 30 yrs data, median length 53 yrs 
• Significant positive (10.0% of stations, expect 2.5%) 
• Significant negative (2.2% of stations, expect 2.5%) 
• Rejection rate similar everywhere 

   Assessment of association between annual maximum 
1-day precipitation and global mean temperature   

Westra et al (2013, Fig. 5) 



AR5 attribution assessments for 
the 2nd half of the 20th century 

•  Daily temperature extremes: very likely that 
anthropogenic forcing has contributed to 
changes in frequency and intensity  

•  Heavy precipitation: medium confidence that 
anthropogenic forcing has contributed to 
intensification in global land regions 

•  Drought and tropical cyclones: low confidence 
in attributing changes 

•  Some of the supporting evidence, and 
underlying methods, will be presented in the 
remainder of this talk 

IPCC WG1 AR5 Table SPM-1 



  Rest of this lecture: approaches 
for D&A on extremes 

1.  Indices + standard paradigm 
•  Hegerl et al 2004, J Climate, Christidis et al 2005, GRL, Wen 

et al., 2013, GRL 
2.  Transformation of variable + standard paradigm 

•  Fit GEV distribution locally 
•  Apply probability integral transform 
Min et al 2011, Nature, Zhang et al., 2013, GRL 

3.  Standard paradigm applied to EV distribution 
parameters 
•  Brown et al 2008, JGR, Christidis et al 2011, J Climate  

4.  Cast problem directly within framework of extreme 
value theory 
•  Zwiers et al, 2011, J. Climate 



   Methods 
Four approaches using different 
variants of the standard paradigm 
 
1. Applied directly to indices  



•  Extreme values or indices averaged over space and time such that 
Gaussian assumption is valid due to central limit theorem 

•  Originally proposed by Hegerl et al, 2004  
•  Model-model assessment of potential detectability based on 

temperature and precipitation 
•  Response in indices of temperature extremes seen to be different 

from that in means, but S/N ratio nearly as large 
•  Forced changes in moderately extreme precipitation may be more 

detectable than change in mean precipitation 

•  First application to annual temperature extremes by Christidis et al, 2005 

1. D&A applied directly to indices 

Possible figure?? 



• Some subsequent studies include 
•  Christidis et al, 2010 

•  Temperature of the warmest night of the year (1950-1997) 
•  Morak et al, 2011 

•  Frequency of warm nights (1951-1999) 
•  Morak et al, 2013 

•  Frequency of warm and cold days and nights (1951-2003) 
•  Wen et al., 2013 

•  Annual temperature extremes over China 

• There is also a literature on extreme seasonal 
temperature that uses the standard paradigm 

•  Jones et al, 2008 
•  Frequency of warm NH summers (1900-2006) – 2 step 

•  Stott et al, 2011 
•  Frequency of extremely warm summer seasons 

(1909-2008) – 1 step 
•  Christidis et al, 2014 (submitted) 

•  Odds of very warm annual and seasonal mean 
temperatures (1950-2012) 



•  Christidis et al, 2005 

•  Consider N warmest days, 
warmest nights, coldest days 
and coldest nights of the year 
(N = 30, 10, 5 and 1) 

•  Observations from Caesar et 
al, 2005 

•  Signals and control runs from 
HadCM3 

•  2-D spatial patterns and 3-D 
space-time patterns considered 

•  TLS, truncate at EOF 20 

D&A applied directly to indices 

Station data have not been homogenised, so that genuine
climatic shifts will not inadvertently be adjusted, while
erroneous extremes have been checked and filtered. This
new dataset provides the first opportunity to analyse quasi-
global daily data. Model data came from runs with HadCM3,
the 3rd generation Hadley Centre Atmosphere Ocean Gen-
eral Circulation Model [Gordon et al., 2000; Pope et al.,
2000; Stott et al., 2000]. Four model experiments were
considered [Johns et al., 2002], forced with: a) changes in
well-mixed greenhouse gases (GHG), b) changes in well-
mixed greenhouse gases, tropospheric and stratospheric
ozone and sulphate aerosols with their indirect effect taken
into account (ANTHRO), c) changes in volcanic aerosols
and in the solar output (NAT), and d) the combined effect of
ANTHRO and NAT (ALL). A control simulation was also
used to provide estimates of natural climate variability.
[7] The detection signals comprise spatial (2-D) response

patterns, constructed as the change in the period mean index
between periods 1950–1969 and 1980–1999. To minimise
the impact of internal climate variability on the model

response, we used the ensemble mean of the model signals
to form the model patterns. A comparison between obser-
vation and model patterns of change for the warmest night
of the year is shown in Figure 1. The observations
(Figure 1a) show a global mean increase in the warmest
night, with large regional variations, while the model
response to all forcings (Figure 1b) shows a more uniform
warming pattern. This discrepancy is expected, since the
observations show a strong imprint of internal climate
variability that is reduced by ensemble averaging of the
model simulations. The model response to natural forcings
only (Figure 1c) is negative in the global mean, with large
regional variations. Like the warmest night of the year, all
the other indices under investigation also indicated a warm-
ing during the last 50 years of the 20th century, in both
observations and experiments which include the greenhouse
gas forcing and a cooling in experiments with natural
forcings only.

4. Analysis

[8] Our analysis used a formal optimal detection tech-
nique to assess in an objective way how well the model
response patterns match the observations. Optimal detection
is a generalised multivariate regression, extensively used in
the detection of climate change and its attribution to
external forcings [Hasselmann, 1979; Allen and Tett,
1999]. The aim is to estimate scaling factors that are applied
to the model fingerprints in order to best match the
observations, given a model estimate of the internal climate
variability. We used 39 control segments (20 non-over-
lapping) to construct the covariance matrix of the internal
climate variability and 19 additional segments (10 non-
overlapping) to estimate the uncertainty in the scaling
factors. A power spectra analysis of detrended global
indices timeseries for observations and 30 non-overlapping
control segments indicates HadCM3 provides an adequate
representation of internal climate variability. Most discrep-
ancy appears at interdecadal timescales for indices of cold
extremes, suggesting that the model may underestimate
variability in these cases. We restricted the analysis to the
sub-space of the noise covariance defined by the 20 leading
eigenvectors, as this truncation was found to satisfy pre-
scribed criteria for the majority of the indices [Allen and
Tett, 1999]. The results are insensitive to the exact level of
truncation. Scaling factors consistent with zero imply no
detection, whereas values consistent with unity and with a
small uncertainty range imply a good match between model
and observations. Our detection algorithm has been previ-
ously used in numerous investigations [Tett et al., 1999,
2002; Stott, 2003; Stott et al., 2004] and its details are
discussed elsewhere [Allen and Stott, 2003]. Gillett et al.
[2000] found that changes in the N. Hemisphere circulation
had no adverse impact on the detection of changes in
temperature and it is assumed that this also holds true for
analyses of temperature extremes.
[9] Scaling factors for various applications of the optimal

detection technique together with the associated 5–95%
uncertainty range are depicted in Figure 2. We first concen-
trate on changes in the warm nights (Figure 2a). The
leftmost panel of Figure 2a shows the scaling factors from
a single fingerprint detection analysis with spatial response

Figure 1. Patterns of change in the warmest night of the
year for a late period (1980–1999) relative to an early
period (1950–1969) of the second half of the 20th century
from a) observations and model experiments with
b) anthropogenic and natural forcings and c) natural
forcings only. The model patterns are the average of four
ensemble members.
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Observed TNx change (1980-1999 vs 1950-1969) 

Christidis et al, 2005, Fig 2 
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patterns from different experiments and for indices of
different extremity. Apart from changes in the N warmest
days of the year, changes in the seasonal mean were also
considered. In all cases, the warming trend is detected in the
observations when greenhouse gas emissions are taken into
account. GHG generates more warming than the observa-
tions, due to the absence of the negative sulphate aerosol
and volcanic forcings and is assigned a scaling factor less
than one, to account for the excess warming. ANTHRO and
ALL experiments have scaling factors that are consistent
with unity for the more pronounced extreme indices. Warm-
ing in the seasonal mean is overestimated by the model,
whereas extreme changes seem to be modelled better than
seasonal changes. NAT experiments, not shown here, have
negative scaling factors and large uncertainties, indicating
an opposite response (cooling) to the observations. As the
results are similar for different extreme indices, as expected
from [Hegerl et al., 2004], we will henceforth focus solely
on changes in the most extreme annual record.
[10] We have applied our detection analysis also to

spatio-temporal (3-D) response patterns, as an alternative
signal definition that allows us to represent its evolution in
more detail. The patterns in this case are constructed as the

five decadal mean index anomaly values for the five
decades in the segment 1950–1999, and the anomalies are
relative to the segment mean. The middle panel of Figure 2a
shows that 3-D patterns are also detected in the observa-
tions, even though they are assigned smaller scaling factors.
When all forcings are included, the scaling factor is con-
sistent with unity. The rightmost panel of Figure 2a gives an
example of a multi-fingerprint analysis, where the model
response is represented by the linear combination of the
ANTHRO and NAT 3-D patterns. Such an analysis attempts
to partition the response between the two components and is
therefore useful for attribution purposes. As in the single-
fingerprint case, the ANTHRO patterns are detected in the
observations, whereas the NAT scaling factor is associated
with a large uncertainty range. The high uncertainty could
imply that the signal is dominated by the ANTHRO
response, which makes it difficult to separate the smaller
NAT contribution from the internal climate variability.
[11] Scaling factors for all types of indices are plotted in

Figure 2b. Results are shown for 3-D response patterns and
again only for the change in the most extreme annual value.
Apart from warm days, the response patterns for all other
types of indices are detected in the observations, for model
runs that include the greenhouse gas forcing. Daily mini-
mum temperatures are known to have risen faster than daily
maximum temperatures [Braganza et al., 2004; Stone and
Weaver, 2002], which may in part explain why changes in
warm day extremes are not detected, without, however,
explaining the difference between cold days and warm days.
The scaling factors for cold days and nights are close to unity
for GHG and increase significantly when anthropogenic
aerosol forcing is included, suggesting that aerosols cause
too much cooling in the model, although it is also possible
that there are confounding errors with the model’s green-
house gas response. An analysis of 2-D patterns for cold
days gives large scaling factor increases between ANTHRO
and ALL. This discrepancy suggests that when taking the
difference between period means some of the cooling in
ANT is lost, while the cooling in ALL from natural forcing is
exacerbated. As all the forcings are variable with time, the
use of 3-D patterns is deemed the most appropriate.

5. Warm Night Trends

[12] The change in the annual mean and area averaged
temperature anomaly for the warmest night of the year,
relative to the 1950–1959 mean, is illustrated in Figure 3.
The warming trend in the observations during the second
half of the 20th century is also captured in the ALL runs,
while simulations with natural forcings only give an oppo-
site trend. The warming of about 1 K in the end of the 20th
century shows a manifold increase over the 21st century
under the SRES A2 scenario and grows to about 7 K by
2100. Such a scale of change would not only increase the
intensity of heat waves in areas that already experience
them, but also their frequency in areas where such events
are currently uncommon.

6. Conclusions

[13] Our analysis demonstrates the early detection of a
significant anthropogenic influence in temperature extremes

Figure 2. Scaling factors and their 5–95% uncertainty
range from the optimal detection analysis. a) Changes in the
N warmest nights (N = 30, 10, 5 and 1) and in the boreal
summer (JJA) mean of the daily minimum temperature from
a single fingerprint analysis with 2-D patterns (left panel)
and 3-D patterns (middle panel, warmest night only). Results
from a two-fingerprint (ANTHRO and NAT) analysis with
3-D patterns are also shown (right panel, warmest night
only). b) Changes in the most extreme day and night of the
year from a single fingerprint analysis with 3-D patterns.
Single fingerprint analyses used patterns from 3 different
HadCM3 experiments (ALL, ANTHRO and GHG).
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Station data have not been homogenised, so that genuine
climatic shifts will not inadvertently be adjusted, while
erroneous extremes have been checked and filtered. This
new dataset provides the first opportunity to analyse quasi-
global daily data. Model data came from runs with HadCM3,
the 3rd generation Hadley Centre Atmosphere Ocean Gen-
eral Circulation Model [Gordon et al., 2000; Pope et al.,
2000; Stott et al., 2000]. Four model experiments were
considered [Johns et al., 2002], forced with: a) changes in
well-mixed greenhouse gases (GHG), b) changes in well-
mixed greenhouse gases, tropospheric and stratospheric
ozone and sulphate aerosols with their indirect effect taken
into account (ANTHRO), c) changes in volcanic aerosols
and in the solar output (NAT), and d) the combined effect of
ANTHRO and NAT (ALL). A control simulation was also
used to provide estimates of natural climate variability.
[7] The detection signals comprise spatial (2-D) response

patterns, constructed as the change in the period mean index
between periods 1950–1969 and 1980–1999. To minimise
the impact of internal climate variability on the model

response, we used the ensemble mean of the model signals
to form the model patterns. A comparison between obser-
vation and model patterns of change for the warmest night
of the year is shown in Figure 1. The observations
(Figure 1a) show a global mean increase in the warmest
night, with large regional variations, while the model
response to all forcings (Figure 1b) shows a more uniform
warming pattern. This discrepancy is expected, since the
observations show a strong imprint of internal climate
variability that is reduced by ensemble averaging of the
model simulations. The model response to natural forcings
only (Figure 1c) is negative in the global mean, with large
regional variations. Like the warmest night of the year, all
the other indices under investigation also indicated a warm-
ing during the last 50 years of the 20th century, in both
observations and experiments which include the greenhouse
gas forcing and a cooling in experiments with natural
forcings only.

4. Analysis

[8] Our analysis used a formal optimal detection tech-
nique to assess in an objective way how well the model
response patterns match the observations. Optimal detection
is a generalised multivariate regression, extensively used in
the detection of climate change and its attribution to
external forcings [Hasselmann, 1979; Allen and Tett,
1999]. The aim is to estimate scaling factors that are applied
to the model fingerprints in order to best match the
observations, given a model estimate of the internal climate
variability. We used 39 control segments (20 non-over-
lapping) to construct the covariance matrix of the internal
climate variability and 19 additional segments (10 non-
overlapping) to estimate the uncertainty in the scaling
factors. A power spectra analysis of detrended global
indices timeseries for observations and 30 non-overlapping
control segments indicates HadCM3 provides an adequate
representation of internal climate variability. Most discrep-
ancy appears at interdecadal timescales for indices of cold
extremes, suggesting that the model may underestimate
variability in these cases. We restricted the analysis to the
sub-space of the noise covariance defined by the 20 leading
eigenvectors, as this truncation was found to satisfy pre-
scribed criteria for the majority of the indices [Allen and
Tett, 1999]. The results are insensitive to the exact level of
truncation. Scaling factors consistent with zero imply no
detection, whereas values consistent with unity and with a
small uncertainty range imply a good match between model
and observations. Our detection algorithm has been previ-
ously used in numerous investigations [Tett et al., 1999,
2002; Stott, 2003; Stott et al., 2004] and its details are
discussed elsewhere [Allen and Stott, 2003]. Gillett et al.
[2000] found that changes in the N. Hemisphere circulation
had no adverse impact on the detection of changes in
temperature and it is assumed that this also holds true for
analyses of temperature extremes.
[9] Scaling factors for various applications of the optimal

detection technique together with the associated 5–95%
uncertainty range are depicted in Figure 2. We first concen-
trate on changes in the warm nights (Figure 2a). The
leftmost panel of Figure 2a shows the scaling factors from
a single fingerprint detection analysis with spatial response

Figure 1. Patterns of change in the warmest night of the
year for a late period (1980–1999) relative to an early
period (1950–1969) of the second half of the 20th century
from a) observations and model experiments with
b) anthropogenic and natural forcings and c) natural
forcings only. The model patterns are the average of four
ensemble members.
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Station data have not been homogenised, so that genuine
climatic shifts will not inadvertently be adjusted, while
erroneous extremes have been checked and filtered. This
new dataset provides the first opportunity to analyse quasi-
global daily data. Model data came from runs with HadCM3,
the 3rd generation Hadley Centre Atmosphere Ocean Gen-
eral Circulation Model [Gordon et al., 2000; Pope et al.,
2000; Stott et al., 2000]. Four model experiments were
considered [Johns et al., 2002], forced with: a) changes in
well-mixed greenhouse gases (GHG), b) changes in well-
mixed greenhouse gases, tropospheric and stratospheric
ozone and sulphate aerosols with their indirect effect taken
into account (ANTHRO), c) changes in volcanic aerosols
and in the solar output (NAT), and d) the combined effect of
ANTHRO and NAT (ALL). A control simulation was also
used to provide estimates of natural climate variability.
[7] The detection signals comprise spatial (2-D) response

patterns, constructed as the change in the period mean index
between periods 1950–1969 and 1980–1999. To minimise
the impact of internal climate variability on the model

response, we used the ensemble mean of the model signals
to form the model patterns. A comparison between obser-
vation and model patterns of change for the warmest night
of the year is shown in Figure 1. The observations
(Figure 1a) show a global mean increase in the warmest
night, with large regional variations, while the model
response to all forcings (Figure 1b) shows a more uniform
warming pattern. This discrepancy is expected, since the
observations show a strong imprint of internal climate
variability that is reduced by ensemble averaging of the
model simulations. The model response to natural forcings
only (Figure 1c) is negative in the global mean, with large
regional variations. Like the warmest night of the year, all
the other indices under investigation also indicated a warm-
ing during the last 50 years of the 20th century, in both
observations and experiments which include the greenhouse
gas forcing and a cooling in experiments with natural
forcings only.

4. Analysis

[8] Our analysis used a formal optimal detection tech-
nique to assess in an objective way how well the model
response patterns match the observations. Optimal detection
is a generalised multivariate regression, extensively used in
the detection of climate change and its attribution to
external forcings [Hasselmann, 1979; Allen and Tett,
1999]. The aim is to estimate scaling factors that are applied
to the model fingerprints in order to best match the
observations, given a model estimate of the internal climate
variability. We used 39 control segments (20 non-over-
lapping) to construct the covariance matrix of the internal
climate variability and 19 additional segments (10 non-
overlapping) to estimate the uncertainty in the scaling
factors. A power spectra analysis of detrended global
indices timeseries for observations and 30 non-overlapping
control segments indicates HadCM3 provides an adequate
representation of internal climate variability. Most discrep-
ancy appears at interdecadal timescales for indices of cold
extremes, suggesting that the model may underestimate
variability in these cases. We restricted the analysis to the
sub-space of the noise covariance defined by the 20 leading
eigenvectors, as this truncation was found to satisfy pre-
scribed criteria for the majority of the indices [Allen and
Tett, 1999]. The results are insensitive to the exact level of
truncation. Scaling factors consistent with zero imply no
detection, whereas values consistent with unity and with a
small uncertainty range imply a good match between model
and observations. Our detection algorithm has been previ-
ously used in numerous investigations [Tett et al., 1999,
2002; Stott, 2003; Stott et al., 2004] and its details are
discussed elsewhere [Allen and Stott, 2003]. Gillett et al.
[2000] found that changes in the N. Hemisphere circulation
had no adverse impact on the detection of changes in
temperature and it is assumed that this also holds true for
analyses of temperature extremes.
[9] Scaling factors for various applications of the optimal

detection technique together with the associated 5–95%
uncertainty range are depicted in Figure 2. We first concen-
trate on changes in the warm nights (Figure 2a). The
leftmost panel of Figure 2a shows the scaling factors from
a single fingerprint detection analysis with spatial response

Figure 1. Patterns of change in the warmest night of the
year for a late period (1980–1999) relative to an early
period (1950–1969) of the second half of the 20th century
from a) observations and model experiments with
b) anthropogenic and natural forcings and c) natural
forcings only. The model patterns are the average of four
ensemble members.
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Station data have not been homogenised, so that genuine
climatic shifts will not inadvertently be adjusted, while
erroneous extremes have been checked and filtered. This
new dataset provides the first opportunity to analyse quasi-
global daily data. Model data came from runs with HadCM3,
the 3rd generation Hadley Centre Atmosphere Ocean Gen-
eral Circulation Model [Gordon et al., 2000; Pope et al.,
2000; Stott et al., 2000]. Four model experiments were
considered [Johns et al., 2002], forced with: a) changes in
well-mixed greenhouse gases (GHG), b) changes in well-
mixed greenhouse gases, tropospheric and stratospheric
ozone and sulphate aerosols with their indirect effect taken
into account (ANTHRO), c) changes in volcanic aerosols
and in the solar output (NAT), and d) the combined effect of
ANTHRO and NAT (ALL). A control simulation was also
used to provide estimates of natural climate variability.
[7] The detection signals comprise spatial (2-D) response

patterns, constructed as the change in the period mean index
between periods 1950–1969 and 1980–1999. To minimise
the impact of internal climate variability on the model

response, we used the ensemble mean of the model signals
to form the model patterns. A comparison between obser-
vation and model patterns of change for the warmest night
of the year is shown in Figure 1. The observations
(Figure 1a) show a global mean increase in the warmest
night, with large regional variations, while the model
response to all forcings (Figure 1b) shows a more uniform
warming pattern. This discrepancy is expected, since the
observations show a strong imprint of internal climate
variability that is reduced by ensemble averaging of the
model simulations. The model response to natural forcings
only (Figure 1c) is negative in the global mean, with large
regional variations. Like the warmest night of the year, all
the other indices under investigation also indicated a warm-
ing during the last 50 years of the 20th century, in both
observations and experiments which include the greenhouse
gas forcing and a cooling in experiments with natural
forcings only.

4. Analysis

[8] Our analysis used a formal optimal detection tech-
nique to assess in an objective way how well the model
response patterns match the observations. Optimal detection
is a generalised multivariate regression, extensively used in
the detection of climate change and its attribution to
external forcings [Hasselmann, 1979; Allen and Tett,
1999]. The aim is to estimate scaling factors that are applied
to the model fingerprints in order to best match the
observations, given a model estimate of the internal climate
variability. We used 39 control segments (20 non-over-
lapping) to construct the covariance matrix of the internal
climate variability and 19 additional segments (10 non-
overlapping) to estimate the uncertainty in the scaling
factors. A power spectra analysis of detrended global
indices timeseries for observations and 30 non-overlapping
control segments indicates HadCM3 provides an adequate
representation of internal climate variability. Most discrep-
ancy appears at interdecadal timescales for indices of cold
extremes, suggesting that the model may underestimate
variability in these cases. We restricted the analysis to the
sub-space of the noise covariance defined by the 20 leading
eigenvectors, as this truncation was found to satisfy pre-
scribed criteria for the majority of the indices [Allen and
Tett, 1999]. The results are insensitive to the exact level of
truncation. Scaling factors consistent with zero imply no
detection, whereas values consistent with unity and with a
small uncertainty range imply a good match between model
and observations. Our detection algorithm has been previ-
ously used in numerous investigations [Tett et al., 1999,
2002; Stott, 2003; Stott et al., 2004] and its details are
discussed elsewhere [Allen and Stott, 2003]. Gillett et al.
[2000] found that changes in the N. Hemisphere circulation
had no adverse impact on the detection of changes in
temperature and it is assumed that this also holds true for
analyses of temperature extremes.
[9] Scaling factors for various applications of the optimal

detection technique together with the associated 5–95%
uncertainty range are depicted in Figure 2. We first concen-
trate on changes in the warm nights (Figure 2a). The
leftmost panel of Figure 2a shows the scaling factors from
a single fingerprint detection analysis with spatial response

Figure 1. Patterns of change in the warmest night of the
year for a late period (1980–1999) relative to an early
period (1950–1969) of the second half of the 20th century
from a) observations and model experiments with
b) anthropogenic and natural forcings and c) natural
forcings only. The model patterns are the average of four
ensemble members.
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patterns from different experiments and for indices of
different extremity. Apart from changes in the N warmest
days of the year, changes in the seasonal mean were also
considered. In all cases, the warming trend is detected in the
observations when greenhouse gas emissions are taken into
account. GHG generates more warming than the observa-
tions, due to the absence of the negative sulphate aerosol
and volcanic forcings and is assigned a scaling factor less
than one, to account for the excess warming. ANTHRO and
ALL experiments have scaling factors that are consistent
with unity for the more pronounced extreme indices. Warm-
ing in the seasonal mean is overestimated by the model,
whereas extreme changes seem to be modelled better than
seasonal changes. NAT experiments, not shown here, have
negative scaling factors and large uncertainties, indicating
an opposite response (cooling) to the observations. As the
results are similar for different extreme indices, as expected
from [Hegerl et al., 2004], we will henceforth focus solely
on changes in the most extreme annual record.
[10] We have applied our detection analysis also to

spatio-temporal (3-D) response patterns, as an alternative
signal definition that allows us to represent its evolution in
more detail. The patterns in this case are constructed as the

five decadal mean index anomaly values for the five
decades in the segment 1950–1999, and the anomalies are
relative to the segment mean. The middle panel of Figure 2a
shows that 3-D patterns are also detected in the observa-
tions, even though they are assigned smaller scaling factors.
When all forcings are included, the scaling factor is con-
sistent with unity. The rightmost panel of Figure 2a gives an
example of a multi-fingerprint analysis, where the model
response is represented by the linear combination of the
ANTHRO and NAT 3-D patterns. Such an analysis attempts
to partition the response between the two components and is
therefore useful for attribution purposes. As in the single-
fingerprint case, the ANTHRO patterns are detected in the
observations, whereas the NAT scaling factor is associated
with a large uncertainty range. The high uncertainty could
imply that the signal is dominated by the ANTHRO
response, which makes it difficult to separate the smaller
NAT contribution from the internal climate variability.
[11] Scaling factors for all types of indices are plotted in

Figure 2b. Results are shown for 3-D response patterns and
again only for the change in the most extreme annual value.
Apart from warm days, the response patterns for all other
types of indices are detected in the observations, for model
runs that include the greenhouse gas forcing. Daily mini-
mum temperatures are known to have risen faster than daily
maximum temperatures [Braganza et al., 2004; Stone and
Weaver, 2002], which may in part explain why changes in
warm day extremes are not detected, without, however,
explaining the difference between cold days and warm days.
The scaling factors for cold days and nights are close to unity
for GHG and increase significantly when anthropogenic
aerosol forcing is included, suggesting that aerosols cause
too much cooling in the model, although it is also possible
that there are confounding errors with the model’s green-
house gas response. An analysis of 2-D patterns for cold
days gives large scaling factor increases between ANTHRO
and ALL. This discrepancy suggests that when taking the
difference between period means some of the cooling in
ANT is lost, while the cooling in ALL from natural forcing is
exacerbated. As all the forcings are variable with time, the
use of 3-D patterns is deemed the most appropriate.

5. Warm Night Trends

[12] The change in the annual mean and area averaged
temperature anomaly for the warmest night of the year,
relative to the 1950–1959 mean, is illustrated in Figure 3.
The warming trend in the observations during the second
half of the 20th century is also captured in the ALL runs,
while simulations with natural forcings only give an oppo-
site trend. The warming of about 1 K in the end of the 20th
century shows a manifold increase over the 21st century
under the SRES A2 scenario and grows to about 7 K by
2100. Such a scale of change would not only increase the
intensity of heat waves in areas that already experience
them, but also their frequency in areas where such events
are currently uncommon.

6. Conclusions

[13] Our analysis demonstrates the early detection of a
significant anthropogenic influence in temperature extremes

Figure 2. Scaling factors and their 5–95% uncertainty
range from the optimal detection analysis. a) Changes in the
N warmest nights (N = 30, 10, 5 and 1) and in the boreal
summer (JJA) mean of the daily minimum temperature from
a single fingerprint analysis with 2-D patterns (left panel)
and 3-D patterns (middle panel, warmest night only). Results
from a two-fingerprint (ANTHRO and NAT) analysis with
3-D patterns are also shown (right panel, warmest night
only). b) Changes in the most extreme day and night of the
year from a single fingerprint analysis with 3-D patterns.
Single fingerprint analyses used patterns from 3 different
HadCM3 experiments (ALL, ANTHRO and GHG).
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•  Wen et al, 2013 

•  China, 1961-2007, 
annual extremes (TNn, 
TNx, TXn, TXx) 

•  Observations from Wu 
and Gao (2012), based 
on 2416 stations 

•  Signals and control 
runs from CanESM2 

•  Space-time analysis 
(decadal averages, 7-
subregions) 

 
•  TLS, truncate at EOF 

15 or 20 depending 
upon index used 

(TXn) and daily minimum (TNn) temperatures for every
grid. TXx and TNx typically occur as the highest afternoon
and nighttime temperatures in summer, respectively. They
have significant impacts on human health and have been
used to construct indices for heat wave intensity [Karl and
Knight, 1997; Meehl et al., 2007; Fischer and Schär,
2010; Kuglitsch et al., 2010]. They are referred to as warm
extremes. TNn and TXn typically occur as the lowest night-
time and daytime temperatures in winter, respectively, and
will be referred to as cold extremes.
[6] Linear trends in annual series of TXx, TNx, TXn, and

TNn during the period 1961–2007 have been estimated for
each 0.5! " 0.5! grid point by using ordinary least squares
regression (Figure 1). Increasing trends appear almost every-
where in China in both the warm and cold extremes, which
are consistent with earlier findings [e.g., Yan et al., 2002;
Meehl et al., 2007; Alexander and Arblaster, 2009]. In addi-
tion, increasing trends in cold extremes are much stronger
and more uniform across the space. Cooling trends are
observed in TXx in some areas of central China region. As
a result, the averaged warming trend in TXx for central
China becomes weak (see Figure S2).

2.2. Model Simulations
[7] We use simulations conducted with the earth system

model of the Canadian Centre for Climate Modelling and
Analysis (CanESM2) to estimate climate responses (or signals)
to external forcings and to estimate internal variability of the
climate system. The atmospheric component of the CanESM2
is a spectral model employing T63 triangular truncation with
physical processes calculated on a 128" 64 (#2.81!) horizon-
tal linear grid. It has a climate sensitivity of 3.7K, and its

climate transient response is 2.4 K (N. Gillett, 2013, per-
sonal communication). The CanESM2 contains land carbon
cycle components. Land use change is interactively
modeled on the basis of changes in land cover [Arora and
Boer, 2010]. As a part of Canadian contributions to the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
[Taylor et al., 2012], this model has produced six ensembles
for 1850–2012 forced with (1) historical forcing that in-
cludes both anthropogenic and natural external forcings
(ALL), (2) natural forcings that represent changes in solar
irradiance and volcanic activity (NAT), and individual forc-
ing such as (3) greenhouse gases (GHG), (4) anthropogenic
aerosol (AA), (5) land use change (LU), and (6) solar radia-
tion (SL). Each ensemble has five member runs. Detailed
information on forcing data can be found at the CMIP5
website (http://cmip-pcmdi.llnl.gov/cmip5/forcing.html).
The model also produced 1096 year preindustrial control
simulation. Values of annual extreme temperatures are
extracted from the daily output of these simulations.
[8] Model-simulated responses (or signals) are repre-

sented by the ensemble mean of each forcing run. The signal
for the combined effect of anthropogenic forcings (ANT) is
estimated as the sum of relevant individual anthropogenic
forcing run (see Supporting Information for details). Figure 2
shows the annual time series of extreme temperatures aver-
aged across China from observations and model simulations,
presented as anomalies relative to the 1961–1990 climatol-
ogy. Visual inspection suggests a good match in the long-
term changes of temperature extremes between observations
and ALL, but not between observations and NAT. Estimated
long-term trends for observations and model simulations are
presented in Figure S8.

Figure 1. Estimated trend (!C/47 years) affecting extreme temperatures over China during the period 1961–2007.
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Meehl et al., 2007; Alexander and Arblaster, 2009]. In addi-
tion, increasing trends in cold extremes are much stronger
and more uniform across the space. Cooling trends are
observed in TXx in some areas of central China region. As
a result, the averaged warming trend in TXx for central
China becomes weak (see Figure S2).

2.2. Model Simulations
[7] We use simulations conducted with the earth system

model of the Canadian Centre for Climate Modelling and
Analysis (CanESM2) to estimate climate responses (or signals)
to external forcings and to estimate internal variability of the
climate system. The atmospheric component of the CanESM2
is a spectral model employing T63 triangular truncation with
physical processes calculated on a 128" 64 (#2.81!) horizon-
tal linear grid. It has a climate sensitivity of 3.7K, and its

climate transient response is 2.4 K (N. Gillett, 2013, per-
sonal communication). The CanESM2 contains land carbon
cycle components. Land use change is interactively
modeled on the basis of changes in land cover [Arora and
Boer, 2010]. As a part of Canadian contributions to the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
[Taylor et al., 2012], this model has produced six ensembles
for 1850–2012 forced with (1) historical forcing that in-
cludes both anthropogenic and natural external forcings
(ALL), (2) natural forcings that represent changes in solar
irradiance and volcanic activity (NAT), and individual forc-
ing such as (3) greenhouse gases (GHG), (4) anthropogenic
aerosol (AA), (5) land use change (LU), and (6) solar radia-
tion (SL). Each ensemble has five member runs. Detailed
information on forcing data can be found at the CMIP5
website (http://cmip-pcmdi.llnl.gov/cmip5/forcing.html).
The model also produced 1096 year preindustrial control
simulation. Values of annual extreme temperatures are
extracted from the daily output of these simulations.
[8] Model-simulated responses (or signals) are repre-

sented by the ensemble mean of each forcing run. The signal
for the combined effect of anthropogenic forcings (ANT) is
estimated as the sum of relevant individual anthropogenic
forcing run (see Supporting Information for details). Figure 2
shows the annual time series of extreme temperatures aver-
aged across China from observations and model simulations,
presented as anomalies relative to the 1961–1990 climatol-
ogy. Visual inspection suggests a good match in the long-
term changes of temperature extremes between observations
and ALL, but not between observations and NAT. Estimated
long-term trends for observations and model simulations are
presented in Figure S8.
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Wen et al., 2013, Fig 3 

We conduct our analysis on 1, 2, 5, and 10 year nonoverlapping
mean series. We found that the detection results are not
sensitive to the use of time averaging, though the use of 10 year
mean series does result in a more robust result in general.
For this reason, we will report our results based on the analysis
of 10 year mean series. The number of EOFs retained is
determined based on residual consistency check [Allen and
Tett, 1999].
[13] Two independent estimates of covariance of internal

variability needed for the optimization and testing of the
scaling factors are estimated using the 1096 year
preindustrial simulation and intraensemble differences from
the six 5-member ensembles. In total, 56 samples are used
for optimization, with additional 56 for testing (see Supporting
Information).

4. Results

4.1. One-Signal Analyses
[14] Figure 3 displays the scaling factors and their 90%

confidence intervals for ALL, ANT, and GHG for the four
indices. These are based on 20 EOFs for warm extremes
(TXx and TNx) and 15 EOFs for cold extremes (TXn and
TNn) determined from residual consistency tests (see
Figure S3 in the Supporting Information). Model-simulated
variability is quite consistent with the residual for warm
extremes. On the other hand, the model simulated smaller var-
iability in cold extremes, which is comparable with the resid-
ual only when the first few EOFs are retained. However, when
the model-simulated variability is doubled, the simulated var-
iability would then be comparable with the residual even when
larger number of EOFs is retained. Morak et al. [2012] also
found smaller variability in model-simulated cold extremes
inAsia. They suspected that this might be related tomore com-
plex changes in regional circulation and/or forcings. There-
fore, though cold extremes have more increases during the
past 47 years, due to the larger internal variability in winter-
time temperatures, the signal-to-noise ratio for cold

extremes (details in the Supporting Information) is smaller
than that for warm extremes.
[15] Overall, detection results are not sensitive to the number

of EOFs retained (see Figure S4 in the Supporting Informa-
tion). Both ALL and ANT are robustly detected in every type
of the four extreme indices across a wide range of EOF trunca-
tions. The magnitude and the confidence intervals of the scal-
ing factors for ALL and ANT are very comparable. NAT is
not detected in the one-signal analysis, even when the time
averaging is done on 2 or 5 years (not shown) for which volca-
nic signal is less smoothed out.
[16] It appears that the model may overestimate response in

TXx as the scaling factors are much smaller than 1 and may
underestimate changes in TNn as the scaling factors are larger
than 1 in general. This is also the case in other studies
[e.g., Zwiers et al., 2011;Morak et al., 2012]. GHG is detected
in TNx with scaling factors similar to ALL and ANT and in
TNn with a much larger scaling factor. The scaling factor of
GHG for TNn is larger than those of ANT and ALL,
suggesting that the model-simulated increase in TNn due to
GHG may be smaller than that due to ANT or ALL. In order
to understand this, we estimated linear trends in the TNn
signal. It appears that CanESM2 simulated larger trends in
ANT and ALL than in GHG over China during the years
1961–2007. However, TNn trends computed from a 47 year
period within the 163 year historical simulation would in
general be larger in GHG than in ANT or ALL. Therefore, the
smaller trend in GHG simulation during the years 1961–2007
may be a reflection of uncertainty in GHG signal estimation in
cold extremes. We expect much reduced uncertainty when
multimodel ensembles are used in a future study.
[17] Changes in land cover can have substantial impacts on

extreme temperatures [Avila et al., 2012] due to land-
atmosphere interactions [Seneviratne et al., 2006]. Christidis
et al. [2013] showed that land use changes may have a cooling
effect on temperature extremes at global scale, especially on
extremely warm days. Here, we also found a detectable effect
of LU in TXx (not shown), implying that impact of land use
changes on extremely warm days might be detectable even
at regional scale. However, the signal pattern of LU over
China as simulated by CanESM2 is a weak warming
(see Figure S2), which is in contrast to the results of
Christidis et al. [2013]. Further analysis with more detailed
regional land use change data and multimodel simulations
would be required to improve our understanding of LU’s
influence on extremely warm days in China.

4.2. Two-Signal Analyses
[18] Figure 4 displays 90% confidence regions and marginal

confidence intervals for the two-signal detection analysis using
ANT and NAT for the 10 year nonoverlapping mean of
warm and cold extremes. The origin (0, 0) is outside the
90% confidence regions, suggesting that ANT and NAT are
jointly detected at the 90% confidence level in all four types
of extreme temperatures. The marginal 90% confidence inter-
vals for ANT are all above 0, but the marginal 90% confidence
intervals for NAT all include 0. These suggest that ANT is
clearly detected in all temperature extremes and that NAT
is not detected in any of them. They also indicate that effects
of ANT on extreme temperatures can be separated from
those of NAT. The magnitude of scaling factors and their
90%marginal confidence intervals for ANT are also comparable
to those from one-signal analyses. These two-signal analysis
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Figure 3. Scaling factors and their 90% confidence
intervals for ALL, ANT, and GHG forcing signals and
different extreme temperatures obtained from one-signal
analyses. Dashed error bars for TXn and TNn represent
90% confidence intervals when model-simulated internal
variability is doubled.
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Scaling factors on CanESM2 simulated change in annual 
extreme temperatures for China, 1961-2007 



90% confidence 
regions and marginal 
confidence intervals 
based on a 2-signal 
analysis 
 
Sensitivity to EOF 
truncation, using 
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Scaling factors on CanESM2 simulated change in annual 
extreme temperatures for China, 1961-2007 

detection result is not sensitive to the number of EOFs retained in the analysis. 
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  D&A applied directly to indices 

•  Advantages 
– Simple 
– Tries to optimize signal to noise ratio by 

accounting for spatial covariance structure of 
extremes indices 

•  But  
– Residuals might still have a skewed 

distribution 
– Potential losses in efficiency of estimators, 

bias, etc. 



   Methods 
2. Standard paradigm applied to 

transformed extremes 



  Detection and attribution 
•  Transform to a probability index  

–  Fit an extreme value distribution locally 
– Apply probability integral transform 
– Transformed values have approximately the 

uniform distribution 
– Time and area averaging produces Gaussian 

values 
– Could use simpler transforms 

•  Apply standard D&A paradigm 
•  Examples include  

– Min et al 2011, 2013, Zhang et al, 2013. 

2. D&A on transformed extremes 



Zhang et al, 2013 

• RX1day, RX5day, 1951-2005 

• HadEX2 (Donat et al, 2012) augmented with 
Russian station data, transformed 

• Multi-model signals and control runs (54 ALL runs, 
14 GCMs; 34 NAT runs, 9 GCMs; >15K years 
control, 31 GCMs) 

• Time evolution only (5-year means, domain 
averaged) and space-time evolution (5-year 
means, regionally averaged, 2 or 3 regions)  

• TLS, no EOF truncation (except when considering 
1-year means); total of 460 chunks to estimate 
internal variability 
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  Detection results – 1951-2005 

•  Space-time (3 regions, 5 year means à 33-dim problem) 

•  54 ALL runs (14 models), 34 NAT runs (9 models) 

•  No dimension reduction (>15000 years control, 31 models) 

•  460 “chunks” for internal variability 
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detection becomes more difficult for the regions overall.
Single-signal nonoptimized analyses show essentially the
same results, indicating that nonoptimized analyses pro-
duce robust results in this case, although scaling factor esti-
mates are in general associated with larger uncertainty
bands when the signal strength is strong (e.g., ALL, ANT,
and Figure S6) than those resulting from optimal detection.

4.2. Two-Signal Optimal Fingerprint Analysis
[19] Figure 3 shows the best estimate scaling factors for

ANT and NAT in two-signal analyses of Northern
Hemisphere land in three regions (NA+EU+AS), together
with their marginal confidence intervals and joint confidence
regions. Even when separately estimating the naturally
forced signal, the anthropogenic influence is detected at the
10% significance level in both RX1day and RX5day. The
ANT scaling factors are significantly greater than zero and
consistent with one in both cases. The NAT scaling factors
are not significantly different from zero. This indicates that
the simulated ANT response is consistent with observed
changes while the simulated NAT response is not signifi-
cantly contributing to observed changes. The two-signal
analyses conducted in one or two regions (NH or ML+TR,
and supporting information Figure S13), and with ANT and
NAT simulated by the same GCMs, yield similar results
(supporting information Figure S12).

a: RX1day b: RX5day

Figure 3. Results from two-signal optimal detection ana-
lyses of extreme precipitation indices. for (a) RX1day
and (b) RX5day when using 5 year mean PI in three
(NA+EU+AS) regional averages combined with weighting
to NA, EU, and AS corresponding to areas of available data
grids. The intersections of the two error bars represent best es-
timates of the scaling factors for ANT and NAT. The 5–95%
marginal confidence intervals of the scaling factors are
displayed as error bars. The 5–95% joint confidence regions
are represented by ellipses.

Figure 2. Results from single-signal optimal detection analyses of extreme precipitation indices for (top) RX1day and (bottom)
RX5day. Best estimates (data points) and 5–95% confidence intervals (error bars) of the scaling factors are displayed for ALL,
ANT, and NAT, when using 5 year mean PI averaged over midlatitude (ML), northern tropics (TR), western Hemisphere land
(NA), western East Hemisphere land (EU), and eastern East Hemisphere land (AS), Northern Hemisphere (NH), and when using
two regional averages (ML+TR) or three regional averages (NA+EU+AS). Refer to supporting information Figure S6 for
results from nonoptimized detection analyses.
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  Detection results – 1951-2005 

5-95% uncertainty intervals on scaling factors 
1-signal analyses, 5-year regional means with 1, 2 or 3 regions  

ML – mid-latitudes, TR – tropics, NA – North America, EU – Europe, AS - Asia  
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  Implications 
•  PI for RX1day increased 4.0 [1.4 – 6.8] % over 

1951-2005 due to ANT forcing 
•  Implies 

–  RX1day intensification of 3.3 [1.1 – 5.8] % 
–  Sensitivity of 5.2 [1.3 – 9.3] %/K 
–  Waiting time for early 1950’s 20-year event reduced to 

~15 years 
–  Fraction of Attributable Risk ≈ 25% 

•  For extremes 
–  Primary response appears to be thermodynamic 
–  Station data do not allow us to see a dynamic response 
–  Offsetting effects of GHGs and aerosols may be too 

subtle to detect with current methods 



 CMIP5 RCP4.5 precipitation projections 

% 

Change in 20-yr extremes relative to 1986-2005 

Kharin et al (2013, Fig. 4) 



  D&A on transformed extremes 
•  Advantages 

– Partial solution to scaling issue for variables like 
precipitation 

•  Allow extreme events at difference locations to be more 
comparable 

– Can optimize signal to noise ratio by accounting for 
spatial covariance structure of extremes 

– Can use model output to estimate uncertainties 
•  Disadvantages 

– Results can be difficult to interpret physically 



Aside – the ‘scaling issue’ 
and model performance 



Mean daily precipitation in the MIROC4h  
grid box centered on 49.1N, 123.2W (Vancouver) 
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1973 1974 

40 stations reporting on average 

Courtesy B. Veerman, PCIC 
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  5-day precip extremes 
(1981-2000) 

HadEX2 CMIP5 – 31 models 

Sillmann et al (2013a, Fig. 6) 



 20-year 1-day precip events (1986-2005) 

• Models compare reasonably well with reanalyses in mid-latitudes 
• Great uncertainty in the tropics 
• Note that precipitation is a “Type C” reanalysis product (i.e., no direct 

observational constraints and thus reanalysed values are 
predominately determined by the model) 

Kharin et al (2013, Fig. 1) 



Zonal means of 20-yr 5-day events 

• Median model (not shown) compares quite well with GPCP and CMAP 
• Models compare reasonably well with reanalyses at mid-latitudes 
• Question of whether models reproduce precip correctly on resolved 

scales remains open 

Kharin et al (2013, Fig. S5) 



   Methods 
3. Standard paradigm applied to 

EV distribution parameters 



3. D&A on EV distribution parameters 

•  Fit an extreme value distribution to 
observed extreme values and conduct 
D&A on the space-time pattern of extreme 
value distribution parameter estimates 



Brown et al, 2008 
•  Evaluate observed temperatures for evidence of non-stationarity 

in extremes using a peaks-over-threshold approach 

•  Based on a limit theory which predicts that exceedances above 
a high threshold will behave like a Poisson process (in the limit), 
and that the distribution of the exceedances will converge to the 
Generalized Pareto distribution 

•  Conditional on x > u the expected number of exceedances 
above x per year is given by 

and the expected magnitude of an exceedance occurring, on average, 
once every m years is 

[1+ ξ ! − !
! ]!!/! !!!

!! =
! − !/! 1− −ln 1− 1

!
!!

!!!! ≠ 0

! − !ln −ln 1− 1
! !!!!!!!!!!!!!!!!!!!!!!!!ξ = 0!
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Brown et al, 2008 
•  Use Caesar et al (2006) gridded daily max and min temperatures 

•  Location, scale and shape parameters are made functions of time 

•  Threshold u made a function of time by fitting a trend to local 
temperature anomalies, and then shifting the trend line up or 
down such that exceedance frequency is 1.5% 

 

•  Since anomalies are used, the threshold effectively follows the 
local annual cycle. 

!! = !! + !!!!
!! = exp !! + !!! !
!! = !! + !!!!!



Results 
• A change in the behaviour of extremes is detected (the 

location parameter is non-stationary) 
• Daily temperature extremes warm 1-3°C over 

1950-2004 
• Greater warming in the cold tail. 
• Trends in extremes are not found to be significantly 

different from trends in means for most of the land 
surface with data 

• NAO modulates winter temperature extremes across 
much of the Northern Hemisphere 

• Argument for using POT approach is that data are 
used more efficiently 



found for the 90th and 10th percentiles of daily Tmin and
Tmax by Robeson [2004]. The largest increases in Tmin and
Tmax are similarly found to be in Northern Hemisphere
winter and spring (not shown, see Figures S1–S8) and
occurring in the western and northwestern parts of the
continent. The strongest period showing extremes cooling
for some regions is in SON as with Robeson [2004],
however the inclusion of all percentiles in the cluster
analysis of Robeson [2004] probably explains the different
patterns of extremes cooling between the two studies. The
percentile trend analysis of Caesar et al. [2006] using the
same data set as used here but focussing on less extreme
temperatures (5th to 95th percentile) and that of Alexander
et al. [2006] which used daily extreme indices (occurrence
of warm or cold days or nights above/below the 90th/10th

percentiles) are in broad agreement with the results shown
here. Both these studies find that the greatest warming of
temperature extremes occurs over Eurasia and that this has
predominately occurred in DJF and MAM as found here
(not shown, see Figures S1–S8). Nogaj et al. [2006] apply
an alternative nonstationary extreme value methodology to
NCEP reanalysis data restricted to the North Atlantic
region. For the land points in their domain there is consid-
erable agreement with a decrease (increase) in warm JJA
extremes for the southern (northern) east coast of North
America and extremes increasing for most of Europe. For
DJF we find more extensive indication that extreme cold
events are getting warmer (see Figures S1–S8). Possible
reasons for these differences could include the use of daily
mean temperatures from the reanalysis and the limitations of
the land surface schemes in the assimilation model resulting
in discrepancies with the observations [Kharin et al., 2005].
[23] The sensitivity of these results to the declustering

window width was found to be small. Repeating the
analysis using 5-d and 30-d windows produces very similar
location trend patterns with the only difference being a
larger number of retrievals failing to converge to a solution
with the numerical solver for the 30-d window due to the
smaller volume of data available for fitting. The magnitudes
of the retrieved trends were found to be within one standard
error of the original estimates for most grid boxes. Likewise
sensitivity to threshold level was also found to be small.
Thresholds of 0.75% and 3.0% produce very similar loca-
tion trend patterns although substantially more retrievals fail
to converge due to lack of data with the 0.75% threshold.
Magnitudes of the trends from the different thresholds were
also found to be within one standard error of the original
estimates for most grid boxes.
[24] The average magnitude of the observed positive

trends in the location parameter together with the area
covered by positive trends, are presented for selected
regions in Table 2. Assessment of field significance with
respect to unforced natural climate variability is made
through comparison with equivalent values from CNTRL
as outlined earlier. Trends and areas not significantly
different from that which might be expected from the
model’s unforced natural variability, at the 10% significance
level, are italicized in Table 2. All regions have positive
trends and nearly all their averages are greater in magnitude
than can be expected from unforced natural variability for
the four measures of extreme temperatures. Exceptions are
nTmax and nTmin extremes for southern Africa and nTmax
extremes for Europe. Considering the area with positive
trends within these regions, 25 out of the 36 measures have
areas which are greater than expected from unforced natural
climate variability at the 10% significance level. The area of
positive trends for all four temperature tails for Europe,
central Asia, South Asia and the Arctic are significantly
greater than expected from a stable climate. If the control
climate of HadCM3 is an accurate measure of the unforced
natural variability of daily temperature extremes the results
of Table 2 suggest that the observed changes in extreme
temperatures are being driven by external forcing of the
climate system. The similarity between the significance
mask derived from the likelihood ratio test and the CNTRL
data (not shown) provides additional confidence that the
detected changes in extreme temperatures are real. These

Figure 3. Trend in location parameter derived from
time-dependent marked point process extreme distribution
(L-TREND) fitted to (a) xTmax, (b) nTmax, (c) xTmin,
and (d) nTmin. Values correspond to the change over the
observation period 1950–2004 of all extreme tempera-
tures more extreme than the data selection threshold; units
are !C. Unshaded areas have significant trends rejecting
the hypothesis of no trend at the 10% significance level
derived from a likelihood ratio test with the corresponding
stationary marked point process extreme distribution.
Points failing the goodness-of-fit test at the 1% level
are masked as missing.
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Trend in location parameter, 1950-2004 
Evaluation of trends in 
location parameter: 
 
•  Cross-hatching indicates 

that the estimated trend 
is not significant at 10% 
level based on a 
likelihood-ratio test 

•  Locations masked 
missing are points 
where Kolmogorov-
Smirnov test fails at the 
1% level 

 
 



regional studies [e.g., Wettstein and Mearns, 2002; Higgins
et al., 2002; Gong and Ho, 2004]. Here, the influence of the
NAO on the location parameter is determined through the
introduction of an NAO index (defined as the standardized
seasonal mean pressure difference between the Azores and
Iceland) as a covariate in the estimation of the location
parameter (L-NAO) and also where the location parameter
depends on both NAO and time (L-TREND-NAO) to give
location parameters that are, respectively:

mt ¼ a0 þ a2nao
mt ¼ a0 þ a1t þ a2nao

ð4Þ

These are tested for significance using the likelihood ratio
test against STAT and L-TREND.
[28] For most regions there is little or no NAO influence

on extreme daily temperatures found for ANN or for
seasons other than DJF (not shown). For DJF, L-TREND-

NAO is found to produce the largest number of grid boxes
with significantly better fits with respect to STAT than L-
TREND. The areas of significance for L-TREND and L-
NAO with respect to STAT indicate regions for which both
covariates have an influence, as for Europe and central
Eurasia, in addition to regions where only one has a
significant contribution, as with L-TREND in central and
western North America (not shown). The introduction of an
NAO covariate does not alter the retrieved temperature
trends (a1 in equations (2) and (3)) for most areas, the
largest difference occurring for western Europe and north-
ern Eurasia with coefficients for nTmax and nTmin being
up to 0.4!C/decade lower if the NAO is included in the
MPP model. Similarly the introduction of a trend covariate
does not have a significant effect on the magnitude of the
NAO coefficient (not shown).
[29] Figure 5 plots a2 of L-TREND-NAO in equation (4),

representing the effect NAO has had on extreme DJF

Figure 5. The effect the range of the North Atlantic Oscillation (NAO) has had on extreme DJF
temperatures during the period 1950 to 2004 as derived from a marked point process model of extreme
values of daily temperatures where the location parameter depends on both time and NAO (L-TREND-
NAO) (a) xTmax, (b) nTmax,(c) xTmin, and (d) nTmin. Units are !C. Unshaded areas reject the
hypothesis of no NAO effect and no trend at the 10% significance level derived from a likelihood ratio
test. Points failing the goodness-of-fit test at the 1% level are masked as missing.
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Range of variation in location parameter for 
winter temperature extremes due to NAO, 

1950-2004 
Evaluation of effect 
of NAO on location 
parameter: 
 
 
 
•  Lack of cross-hatching 

indicates that both time 
and the NAO index are 
significant at 10% level 
based on a likelihood-
ratio test 

•  Locations masked 
missing are points 
where Kolmogorov-
Smirnov test fails at 
the 1% level 

 
 

!! = !! + !!! + !!NOA!!



Some other studies that have used covariates in 
extreme value distributions include −  

•  Kharin et al, 2007, 2013 
–  Block maximum approach 
–  Use time as a covariate in analyses of projected 

temperature and precipitation extremes 
•  Zhang et al, 2010 

–  Block maximum approach 
–  Use SO, PDO and NAO indices as covariates in 

analysis of North American precipitation extremes 
•  Sillmann et al, 2011 

–  Block maximum approach 
–  Use a blocking index in an analysis of European 

winter cold temperature extremes 



Christidis et al, 2011 
•  Application to D&A of change in TXx 
•  Observations: Caesar et al, 2006, 1950-1999 
•  Models: HadCM3 with ANT, NAT and ALL (4 member 

ensembles) + 3500 years of control simulations 

Data processing 
•  Separately consider  

•  maxTmax (TXx),  and  
•  maxΔTmax (anomalies of daily Tmax relative to its climatology) 

•  For each 50-year segment, at each grid point that is not masked 
as missing … 

•  Perform a PP-POT extreme value analysis with threshold u 
set so that daily Tmax > u less than 2% of days 

•  Retain the decadal location parameters for further analysis 
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Figure 1. Patterns of the 1950-1999 trend in the location parameter from the 

observations (panels a, b), the ALL (c, d), ANTHRO (e, f) and NAT (g, h) HadCM3 

experiments for extremes of Tmax with the annual cycle removed (left column 

panels) and retained (right column). Model patterns correspond to the ensemble mean 

of four individual runs. 
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D&A analysis approach 
• For both maxTmax and maxΔTmax 
• Do a standard TLS based D&A analysis where the 

analysis is on decadally varying and “T8” spatially 
filtered location parameter estimates derived from 

• observations   
•  forced runs (and then ensemble averaged) 
• control simulations 

• Detect ANT in both maxTmax and maxΔTmax 
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Figure 3. Scaling factors from optimal detection analyses for (a) max ΔTmax and (b) 

max Tmax extremes. The left section of the panels the best estimate and the 5-95% 

uncertainty range from single fingerprint analyses with the fingerprint taken from the 

ALL (red), ANTHRO (green) and NAT (blue) experiments. Results from a two-

fingerprint analysis that separates the ANTHRO (green) and NAT (blue) contributions 

to the response are shown at the right section. The ellipse marks the two-dimensional 

90th percentiles and the horizontal and vertical bars the one-dimensional 5-95% 

confidence interval for each of the two signals.
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One- and two-signal detection results for change in the GPD location 
parameter of extreme warm daily Tmax over the period 1950-1999 based 

on data with the  annual cycle removed (left) and retained (right) 
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Estimate PDF of trend in location 
parameters using scaling factors 
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    Methods 

4. D&A in an EV 
modelling 
framework 



4. D&A on extremes using an EV distribution 

•  Zwiers et al, 2011 
–  D&A on the extremes themselves using the block 

maximum approach 
–  Fit a GEV distribution to observed extremes , with 

“signal” described in terms of expected changes in the 
location parameter 

–  Consider TNn, TNx, TXn, TXx, 1961-2000 (annual 
cycle not removed) 

–  Observations from HadEX (Alexander et al, 2006) 
–  Model simulations from 7 CMIP3 models that 

provided daily data (hence 1961-2000, rather than 
another period) 

•  Approach is similar to Christidis et al, 2011, except 
that estimated location parameter changes are not 
analysed separately with a linear regression model 



Recall GEV distribution 
•  Asymptotic distribution of block maxima 
•  Based on a limit theory which predicts that block maxima will 

have a Generalized Extreme Value distribution, in the limit, as 
blocks become large 

•  Distribution function 

• m year return value 

•  Density function 

 !(!|!,!, !) =
1
! exp −! − !! − exp −! − !! , !!! = 0

1
! 1+ ξ! − !!

!!!!/!
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Weibull  ξ<0	


Gumbel  ξ=0	


Fréchet  ξ>0	





Recall idea 
•  Fit the GEV to the observed block maxima at individual grid boxes 
•  Allow the location parameter μ to vary with time 
•  But impose the pattern of change in μ that is predicted by climate 

models forced with ALL or ANT forcing 

How do we get the pattern of change in μ? 
•  Assume an ensemble of M runs from a given model for a given forcing 
•  Provides 10M years of output for each decade, and thus a sample of 

l=1,…, 10M block maxima xilk for decade i=1, …, N at grid box k	


•  For grid box k, we estimate the location parameters μik i=1, …, N 

decades, scale parameter σk and shape parameter ξk by maximizing 
the joint likelihood of these N+2 parameters 

   Equivalently, minimize the negative log-likelihood     
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!!
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How do we represent the observed extremes statistically? 

•  Use the GEV distribution (we have block maxima) 
•  Make location parameter signal-dependent as follows 

 

•  The μ’s are constant within decades 

•         is the ensemble mean of the location estimates for grid box k in 
decade t from the forced simulations 

•  Parameters to be estimated from observations are  

•  Note that β is the same at all locations k 

 

!!,! = !!!,! + !Δ!!,!!

!!,!!
!!"#!,! ,!! , !! ,!!

!!!,! = !!,! − !!!,! , !! = 1961!



  
à  We fit the GEV distribution at all grid boxes simultaneously by 

minimizing 

Where 
 
 
 
 
 
 
 
 
 
 
 

•  Do this using the profile likelihood technique 
 

− ln !!
= (! − ! + 1)ln !!
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!!
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Parallels with standard D&A 
 
•  Single scaling factor to modify the space-time pattern of 

change in model simulated location parameters 

•  Like OLS rather than TLS because we don’t take uncertainty in 
model derived location factors into account (could think about 
how to do that as an exercise) 

•  Non-optimized because the likelihood function does not 
represent dependence between extremes at different locations 

Unlike standard D&A 
 

•  Uncertainty analysis (next slide) was not based on control 
variability because daily output was not available from CMIP3 
control runs 
 



 

Approach used for uncertainty analysis 
•  Daily output from control runs not available for CMIP3 
•  Used a resampling process instead 

1. Remove scaled signal from observed extremes 
2. Randomly reorder residuals in 5-year blocks 
3. Add scaled signal back 
4. Re-estimate scaling factor 
5. Repeat 1-4 many times to build a sampling 

distribution for β	


•  This process accounts for spatial dependence and 

temporal dependence up to ~5-year time scale only, but 
is conditional upon the estimated signals (changes in 
location parameter due to forcing that are estimated 
from models) 

•  We also used a resampling process to estimate signal 
uncertainty 



Results: Global 
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Discussion 



•  Considered several approaches 
•  Have not assessed which approach results in most efficient 

detection 
•  Ability to model spatial dependence in extremes remains 

limited 
•  Thus detection on suitably transformed data or on EV 

distribution parameters currently remains preferable 
•  Nevertheless, advantages to further developing detection 

approaches within EVT framework 
•  Should be able to calculate FAR directly 
•  Potentially a constraint on projections of future extremes 
 

5. Discussion 



•  “Extremes” is a much broader topic, not all 
of which is amenable to extreme value 
theory 
– Tornadoes 
– Tropical cycles 
– Drought 
–  ... 

 

Discussion 



Thank you! 
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