Approaches for climate and weather extremes
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Introduction




Extremes In climate science ...

* Very wide range of space and time scales

* Range from very small scale short duration (tornadoes) to
large scale long duration (eg drought)

« Language used in climate science is not very precise
— High impact (but not really extreme)
— Exceedance over a relatively low threshold
 e.g., 90t percentile of daily precipitation amounts
— Rare events (long return period)
— Unprecedented events (in the available record)



Increasing vulnerability, exposure, or severity and
frequency of climate events increases disaster risk
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Disaster risk management and climate change adaptation can influence the
degree to which extreme events translate into impacts and disasters
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Economic losses from climate-related disasters have
increased, with large spatial and interannual variations
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Economic disaster losses are higher in developed countries
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Increasing exposure of people and assets has been
the major cause of changes in disaster losses
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Pakistan floods, 2010
6 million left homeless
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Fatalities are higher in developing countries

From 1970-2008, over 95% of natural-disaster-related deaths occurred in
developing countries
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Effective risk management and adaptation are tailored
to local and regional needs and circumstances

= changes in climate
extremes vary across
regions

= each region has unique
vulnerabilities and exposure
to hazards

= effective risk management
and adaptation address the
factors contributing to
exposure and vulnerability
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Observed changes




Summary of Observed Changes

Changes in many extreme weather and climate events
have been observed since about 1950

Cold days and nights: Frequency has
decreased globally

Heat waves: Frequency has iIncreased in some
regions.
Heavy precipitation: Frequency has Increased In

more land regions than where it has decreased.

Intensity of heavy precipitation: Confidence varies
regionally, has intensified in North America.

IPCC WG1 ARS Table SPM-1



Temperature extremes — 1951-2010
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Annual maximum 1-day precipitation
trends, 1900-2009

Percentage of significant Mann-Kendall trend tests based on 8376
GHCN-D stations with 30-years or more data (median length 53 years)

200

150 150
g
o 100 1004
(]
50 ‘l | ||
0- I II-____ & I II-___
T T T T T T T T
0 2 4 6 0 2 4 6

D -
T T T T T I
8 10 12 8 10 12
Percentage of sample with statistically significant increasing trend Percentage of sample with statistically significant decreasing trend

Count

2009

Westra et al 2013, Fig. 3

Tests conducted at the 5% level (two sided)

8.6% showed significant increasing trends (red dot, left)

2.0% showed significant decreasing trends (red dot, right)

Increasing trends substantially more frequent than expected by random chance
(blue bootstrap distributions for rejection rate).



Assessment of association between annual maximum
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» 8376 stations with > 30 yrs data, median length 83 yrs
« Significant positive (10.0% of stations, expect 2.5%)
« Significant negative (2.2% of stations, expect 2.5%)

* Rejection rate similar everywhere
Westra et al (2013, Fig. 5)



AR5 attribution assessments for
the 29 half of the 20t century

Daily temperature extremes: that
anthropogenic forcing has contributed to
changes in frequency and intensity

Heavy precipitation: that
anthropogenic forcing has contributed to
intensification in global land regions

Drought and tropical cyclones: low confidence
In attributing changes

Some of the supporting evidence, and
underlying methods, will be presented in the
remainder of this talk

IPCC WG1 ARS Table SPM-1



Rest of this lecture: approaches
for D&A on extremes

1. Indices + standard paradigm

» Hegerl et al 2004, J Climate, Christidis et al 2005, GRL, Wen
et al., 2013, GRL

2. Transformation of variable + standard paradigm
« Fit GEV distribution locally

* Apply probability integral transform
Min et al 2011, Nature, Zhang et al., 2013, GRL

3. Standard paradigm applied to EV distribution
parameters
 Brown et al 2008, JGR, Christidis et al 2011, J Climate

4. Cast problem directly within framework of extreme
value theory
 Zwiers et al, 2011, J. Climate






1. D&A applied directly to indices

« Extreme values or indices averaged over space and time such that
Gaussian assumption is valid due to central limit theorem

 Originally proposed by Hegerl et al, 2004
* Model-model assessment of potential detectability based on
temperature and precipitation
* Response in indices of temperature extremes seen to be different
from that in means, but S/N ratio nearly as large
» Forced changes in moderately extreme precipitation may be more
detectable than change in mean precipitation

 First application to annual temperature extremes by Christidis et al, 2005

Possible figure??



» Some subsequent studies include
» Christidis et al, 2010
» Temperature of the warmest night of the year (1950-1997)
 Morak et al, 2011
* Frequency of warm nights (1951-1999)
 Morak et al, 2013
* Frequency of warm and cold days and nights (1951-2003)
« Wen et al., 2013
* Annual temperature extremes over China

* There is also a literature on extreme seasonal

temperature that uses the standard paradigm
« Jones et al, 2008
* Frequency of warm NH summers (1900-2006) — 2 step
» Stott et al, 2011
* Frequency of extremely warm summer seasons
(1909-2008) — 1 step
 Christidis et al, 2014 (submitted)
« Odds of very warm annual and seasonal mean
temperatures (1950-2012)



D&A applied directly to indices

S Observed TNx change (1980-1999 vs 1950-1969)
» Christidis et al, 2005 ' e T—— |
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Scaling factor on model simulated change in temp. of warm nights, 1950-1999
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Scaling factor on HadCM3 ALL, ANT, and GHG TNx (1980-1999 vs 1950-1969)
responses fitted to observed temperature extremes BONT : : ' '
(1-signal analyses, 1950-1999)
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D&A applied directly to indices

« Wen et al, 2013 Observed 47-year trend in annual temperature extremes
TXx I~ e °
* China, 1961-2007, ~ 1
annual extremes (TNn, | d.
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Scaling Factor

Scaling factors on CanESM2 simulated change in annual
extreme temperatures for China, 1961-2007
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90% confidence
regions and marginal
confidence intervals
based on a 2-signal
analysis

Sensitivity to EOF

truncation, using
15-30 EOFs

Scaling factors on CanESM2 simulated change in annual

extreme temperatures for China, 1961-2007
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D&A applied directly to indices

* Advantages
— Simple
— Tries to optimize signal to noise ratio by

accounting for spatial covariance structure of
extremes indices

 But

— Residuals might still have a skewed
distribution

— Potential losses in efficiency of estimators,
bias, etc.






2. D&A on transformed extremes

* Transform to a probability index
— Fit an extreme value distribution locally
— Apply probability integral transform

— Transformed values have approximately the
uniform distribution

— Time and area averaging produces Gaussian
values

— Could use simpler transforms
* Apply standard D&A paradigm

 Examples include
— Min et al 2011, 2013, Zhang et al, 2013.



Zhang et al, 2013
« RX1day, RX5day, 1951-2005

« HadEX2 (Donat et al, 2012) augmented with
Russian station data, transformed

« Multi-model signals and control runs (54 ALL runs,
14 GCMs; 34 NAT runs, 9 GCMs; >15K years
control, 31 GCMs)

 Time evolution only (5-year means, domain
averaged) and space-time evolution (5-year
means, regionally averaged, 2 or 3 regions)

* TLS, no EOF truncation (except when considering
1-year means); total of 460 chunks to estimate
internal variability



Pl Trends (RX1D; 1951-2005)
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Detection results — 1951-2005

RX1day RX5day

NAT
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Zhang et al., 2013, Fig 3
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Space-time (3 regions, 5 year means - 33-dim problem)
54 ALL runs (14 models), 34 NAT runs (9 models)

No dimension reduction (>15000 years control, 31 models)

460 “chunks” for internal variability



Detection results — 1951-2005

5-95% uncertainty intervals on scaling factors
1-signal analyses, 5-year regional means with 1, 2 or 3 regions
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Implications

« Pl for RX1day increased 4.0 [1.4 — 6.8] % over
1951-2005 due to ANT forcing

* Implies
— RX1day intensification of 3.3 [1.1 — 5.8] %
— Sensitivity of 5.2 [1.3 — 9.3] %/K

— Waiting time for early 1950’s 20-year event reduced to
~15 years

— Fraction of Attributable Risk = 25%
* For extremes
— Primary response appears to be thermodynamic
— Station data do not allow us to see a dynamic response

— Offsetting effects of GHGs and aerosols may be too
subtle to detect with current methods



CMIP5 RCP4.5 precipitation projections

Change in 20-yr extremes relative to 1986-2005

APoqg, %, 2081-2100, +10.9%

Kharin et al (2013, Fig. 4)



D&A on transformed extremes

* Advantages

— Partial solution to scaling issue for variables like
precipitation
» Allow extreme events at difference locations to be more
comparable

— Can optimize signal to noise ratio by accounting for
spatial covariance structure of extremes

— Can use model output to estimate uncertainties

» Disadvantages
— Results can be difficult to interpret physically



Aside — the 'scaling issue’
and model performance
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Precipitation (mm/day)

Precipitation (mm/day)
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20-year 1-day precip events (1986-2005)

Pog, CMIP5/ERAint, 1.1
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* Models compare reasonably well with reanalyses in mid-latitudes

« Great uncertainty in the tropics

* Note that precipitation is a “Type C” reanalysis product (i.e., no direct
observational constraints and thus reanalysed values are

predominately determined by the model)
Kharin et al (2013, Fig. 1)



Zonal means of 20-yr 5-day events
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* Median model (not shown) compares quite well with GPCP and CMAP

* Models compare reasonably well with reanalyses at mid-latitudes

* Question of whether models reproduce precip correctly on resolved
scales remains open

Kharin et al (2013, Fig. S5)
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3. D&A on EV distribution parameters

* Fit an extreme value distribution to
observed extreme values and conduct
D&A on the space-time pattern of extreme
value distribution parameter estimates



Brown et al, 2008

« Evaluate observed temperatures for evidence of non-stationarity
in extremes using a peaks-over-threshold approach

« Based on a limit theory which predicts that exceedances above
a high threshold will behave like a Poisson process (in the limit),
and that the distribution of the exceedances will converge to the
Generalized Pareto distribution

« Conditional on x > u the expected number of exceedances
above x per year is given by

[1+§(— )17

0}

and the expected magnitude of an exceedance occurring, on average,
once every m years is

. ;u — (c/%) {1 - [—m (1 - %)]_6} £+ 0
\u — oln [—ln (1 — %)] E=0




Brown et al, 2008

« Use Caesar et al (2006) gridded daily max and min temperatures

 Location, scale and shape parameters are made functions of time

U = g + aqt
o, = exp(fy + B1t)
St = VYot Vit

« Threshold u made a function of time by fitting a trend to local
temperature anomalies, and then shifting the trend line up or

down such that exceedance frequency is 1.5%
« Since anomalies are used, the threshold effectively follows the

local annual cycle.



Results

* A change in the behaviour of extremes is detected (the
location parameter is non-stationary)

 Daily temperature extremes warm 1-3°C over
1950-2004

» Greater warming in the cold tail.

 Trends in extremes are not found to be significantly
different from trends in means for most of the land
surface with data

 NAO modulates winter temperature extremes across
much of the Northern Hemisphere

« Argument for using POT approach is that data are
used more efficiently



Evaluation of trends in
location parameter:

» Cross-hatching indicates
that the estimated trend
is not significant at 10%
level based on a
likelihood-ratio test

* Locations masked
missing are points
where Kolmogorov-
Smirnov test fails at the
1% level
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Brown et al, 2008, Fig 3




Evaluation of effect
of NAO on location
parameter:

U = g + a;t + a;,NOA,

« Lack of cross-hatching
indicates that both time
and the NAO index are
significant at 10% level
based on a likelihood-
ratio test

 Locations masked
missing are points
where Kolmogorov-
Smirnov test fails at
the 1% level

Range of variation in location parameter for
winter temperature extremes due to NAO,
1950-2004
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Some other studies that have used covariates in
extreme value distributions include -

 Kharin et al, 2007, 2013
— Block maximum approach

— Use time as a covariate in analyses of projected
temperature and precipitation extremes

 Zhang et al, 2010

— Block maximum approach

— Use SO, PDO and NAO indices as covariates in
analysis of North American precipitation extremes

 Sillmann et al, 2011

— Block maximum approach

— Use a blocking index in an analysis of European
winter cold temperature extremes



Christidis et al, 2011
 Application to D&A of change in TXx
« Observations: Caesar et al, 2006, 1950-1999
* Models: HadCM3 with ANT, NAT and ALL (4 member
ensembles) + 3500 years of control simulations

Data processing

« Separately consider
TXx), and
* maxAT, ., (@anomalies of daily T

* maxT, ., (

relative to its climatology)

max
« For each 50-year segment, at each grid point that is not masked
as missing ...

* Perform a PP-POT extreme value analysis with threshold u
set so that daily T, > u less than 2% of days

max

 Retain the decadal location parameters for further analysis



Trends in location parameters, 1950-1999

(o) OBS: max ATmox (b) OBS: mox Tmax
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Christidis et al, 2011, Fig 1



D&A analysis approach
 For both maxT_ ., and maxAT

* Do a standard TLS based D&A analysis where the
analysis is on decadally varying and “T8” spatially
filtered location parameter estimates derived from

* observations
* forced runs (and then ensemble averaged)
* control simulations
* Detect ANT in both maxT

max

and maxAT, .,

max



One- and two-signal detection results for change in the GPD location
parameter of extreme warm daily T, _, over the period 1950-1999 based
on data with the annual cycle removed (left) and retained (right)

(a) Scaling Factors: max ATmax (b) Scaling Factars: max Tmax
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Likelihood

Estimate PDF of trend in location
- parameters using scaling factors

Trend (K/decade)
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4. D&A on extremes using an EV distribution

« Zwiers et al, 2011

— D&A on the extremes themselves using the block
maximum approach

— Fit a GEV distribution to observed extremes , with
“signal” described in terms of expected changes in the
location parameter

— Consider TNn, TNx, TXn, TXx, 1961-2000 (annual
cycle not removed)

— Observations from HadEX (Alexander et al, 2006)

— Model simulations from 7 CMIP3 models that
provided daily data (hence 1961-2000, rather than
another period)

* Approach is similar to Christidis et al, 2011, except
that estimated location parameter changes are not
analysed separately with a linear regression model



Recall GEV distribution

« Asymptotic distribution of block maxima

« Based on a limit theory which predicts that block maxima will
have a Generalized Extreme Value distribution, in the limit, as
blocks become large

e Distribution function

exp | exp -2 1] £ = 0

o
Fiylwo,$) = — uy-1/E _
exp[—{1+fy0”} ,§¢o,1+z¥>o
® m year return value
( 1%
,u—(a/f){l— —In|1—— } E+0
-n(1-3)
ku—aln[—ln(l—a)] E=10
 Density function
( 1 — U — U
Eexp —yT—exp(—yU )], E=0
flwo,$) =1 1 y — py—1-1/8 y — uy—1/¢ y—pu
\5(1 E— ) exp’—(1+§—)  E#0,1+5——>0
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Recall idea
 Fit the GEV to the observed block maxima at individual grid boxes

« Allow the location parameter u to vary with time

« But impose the pattern of change in u that is predicted by climate
models forced with ALL or ANT forcing

How do we get the pattern of change in ©?
* Assume an ensemble of M runs from a given model for a given forcing

» Provides 10M years of output for each decade, and thus a sample of
[=1,..., 10M block maxima X, for decade i=1, ..., N at grid box &
« For grid box k, we estimate the location parameters i, i=1,...,N

decades, scale parameter 0, and shape parameter gk by maximizing
the joint likelihood of these N+2 parameters

L 1_[ Jik LrE, (xilka—k Hik)]_l_l/gk exp {_ [1 vE, (xilka—k :uik)] Elk}

i=1,..,

[=1,..10M
Equivalently, minimize the negative log-likelihood

—In(L) = | Z In(oy) + (1 n fik) In [1 Lz (xilko; :uik)] n [1 r e, (Xizkg—k liik)]_%}

1=1,..,.N
[=1,..,.10M




How do we represent the observed extremes statistically?

» Use the GEV distribution (we have block maxima)
» Make location parameter signal-dependent as follows

Utk = Utk T BAH:
Afte e = Bk — Heg ke to = 1961

« The U’s are constant within decades

«  Ht kis the ensemble mean of the location estimates for grid box k in
decade ¢ from the forced simulations

« Parameters to be estimated from observations are U1961 k) Ok fk, ,3

« Note that /3 is the same at all locations k



- We fit the GEV distribution at all grid boxes simultaneously by

minimizing
_In(L) = —Zln(Lk)
k
Where
—In(Ly)
= (T —t+ DlIn(oy)
T
1 — — BAfi
+ (1 +—) Z In|1+¢, ()’t,k Hto k B Ht,k)]
Sk = Ok

r ~ -1/&g
— — LA
+ z : [1 +E, (yt,k Mty k b ﬂtk)]
Ok
t=t0

to = 1961, T = 2000

Do this using the profile likelihood technique



Parallels with standard D&A

» Single scaling factor to modify the space-time pattern of
change in model simulated location parameters

« Like OLS rather than TLS because we don’t take uncertainty in
model derived location factors into account (could think about
how to do that as an exercise)

* Non-optimized because the likelihood function does not
represent dependence between extremes at different locations

Unlike standard D&A

« Uncertainty analysis (next slide) was not based on control
variability because daily output was not available from CMIP3
control runs



Approach used for uncertainty analysis

 Daily output from control runs not available for CMIP3
« Used a resampling process instead

1. Remove scaled signal from observed extremes
2. Randomly reorder residuals in 5-year blocks
3. Add scaled signal back

4. Re-estimate scaling factor
5. Repeat 1-4 many times to build a sampling

distribution for
* This process accounts for spatial dependence and
temporal dependence up to ~5-year time scale only, but
is conditional upon the estimated signals (changes in
location parameter due to forcing that are estimated
from models)

 We also used a resampling process to estimate signal
uncertainty
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Results: Global

Scaling factors and bootstrapped
95-95% uncertainty ranges
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Implied changes in waiting times (1990’s vs 1960’s)
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Discussion




« Considered several approaches

« Have not assessed which approach results in most efficient
detection

» Ability to model spatial dependence in extremes remains
limited

* Thus detection on suitably transformed data or on EV
distribution parameters currently remains preferable

* Nevertheless, advantages to further developing detection
approaches within EVT framework

« Should be able to calculate FAR directly
« Potentially a constraint on projections of future extremes



Discussion

« “Extremes” is a much broader topic, not all
of which is amenable to extreme value
theory

— Tornadoes
— Tropical cycles
— Drought
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