Applying the simple OLS form




Observations Y

— Most studies of surface air temperature use

» decadal averages and some kind of spatial averaging
— To reduce noise from internal variability
— To reduce the dimension of Y

— Recent studies (e.g., Jones et al, 2013) use

» Gridded (5°%5°) monthly mean surface temperature
anomalies (e.g., HadCRUT4, Morice et al, 2012)

 Reduced to decadal means for 1901-1920, 1911-1920
... 2001-2010 (11 decades)

» Often spatially reduced using a “T4” spherical harmonic
decomposition = global array of 5°x5°decadal
anomalies reduced to 25 coefficients

* Y, .4 therefore has dimension n=11x25=275



Signals X, i=1, ..., s
— Number of signals s is small
« s=1 2> ALL
« s=2 - ANT and NAT
« s=3 2 GHG, OANT and NAT
e s=4 - ...

— Can’t separate signals that are “co-linear”

— Signals estimated from either
 single model ensembles (size 3-10 in CMIP5) or

* multi-model ensembles (~172 ALL runs available in
CMIPS from 49 models, ~67 NAT runs from 21 models ,
~54 GHG runs from 20 models)

— Process as we do the observations

» Transferred to observational grid, “masked”, centered,
averaged using same criteria, etc.



Examples of forced signals

PCM simulated
20™ century
temperature

response to
different kinds
of forcing

IPCC WG1 AR4 Fig. 9.1
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The generalized regression estimator of B is
B = Xtz 1x)"1xtx-1y

Need an estimate £ of X
« Usually estimated from control runs
« Even with decadal+T4 filtering, X is 275x275

* need >275 110-year “chunks” of control run for a full-
rank estimate

=» Need further dimension reduction

« Constraints on dimensionality
— Need to be able to invert covariance matrix
— Covariance needs to be well estimated
— Climate model should represent internal variability well
— Should be able to represent signal vector well



A frequently used dimension reduction approach is
projection onto the low order EOFs of X

Y = PAP!

PP = PP! =1
A = diag(A4, ..., A,)
1121222}\%20

n
— — U
€ = 2 e]-P]- where ej =& P]-
j=1

Var(e;) = A; and Cor(e; e;) = 0 for i #j



Further constraint on estimating X

— To avoid bias, optimization and uncertainty analysis
should be performed separately (Hegerl et al, 1997)

=» Require two independent estimates of of the covariance
matrix

— An estimate X, for the optimization step and to
estimate scaling factors f§

— An estimate ¥, to make estimate uncertainties and
make inferences

+ Residuals from the regression model, € = Y — Xf8

are used to assess misfit and evaluate model based
estimates of internal variability
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Review of Basic Procedure

1. Determine domain, period of interest, filtering
» Global, 1901-2010, T4 spatial smoothing, decadal averaging
2. Gather all data
* Observations
 Ensembles of historical climate runs
« ALL and NAT runs (to separate ANT and NAT responses in obs)
« Control runs (no forcing, needed to estimate internal variability)
3. Process all data
* Observations
* homogenize, center, grid, identify where missing
« Historical climate runs
* “mask” to duplicate “missingness” of observations,
« process each run as the observations (no need to homogenize)
* ensemble average to estimate signals
« Control runs
 divide into “chunks”, re-label years
» process as the historical runs



Observations (HadCRUT4) Multi-model mean (ALL forcings)
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11 decades (1901-1911 to 2001-2011)

Two (of hundreds) pre-industrial control run “chunks” (CanESM2)




Basic procedure ...

4. Estimate internal covariance structure for optimization
- Use 1%t sample of v, control run chunks to estimate X,

5. Fit the regression model in the reduced space
« Select an EOF truncation k
» Obtain an estimate of the scaling factors

= X)) IxtEly

- and an estimate of the residuals € = Y — X8

6. Evaluate goodness of fit ...



Basic procedure ...

6. Assess whether the residual variance in the observations is
consistent with model estimated internal variability

« Allen and Tett (1999)

» Note that this is conditional on fl(i.e., it ignores sampling
variability in the optimization, Allen and Stott, 2003).

* Ribes et al (2012a) show that

va(k —s) F
k—sv,—k+1

Uy — k+1 V2

gy, e~

provides a better approximation for the residual consistency test



Basic procedure ...
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Models adequately represent surface temperature
variability on global scales ...

10.0000 & — HadCRUT4 historical 5-95%.iles

- — GISS historicalNat 5-95%iles
; — NCDC

ol JMA

X 1.0000

>

= |
S 0.1000 s
g o

§ \ ‘ N =

@ 0.0100 N\ /

Q | )

p I\

o |

< 0.0010

3

o

Jones et al, 2013, Fig 5
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Variability of annual global mean surface temperature (1901-2010) estimated from
observations (4 datasets) and ALL and NAT forced models (CMIP3 and CMIP5)
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Basic procedure ....

8. Make inferences about scaling factors

« OLS expression that ignores uncertainty in ¥, looks like...
~ S—1,5
(B—=B)22" (B~ B)~sksy,

- -~ -1__,~
where Xg = F{Z;'F, and F = (thflx) Xz



A “typical” 1-signal detection result

Scaling factors

GS signal, EA, Annual mean, 1950-1999

M L

No. of EOFs retained in the truncation

Detection of “GS” signal in Eurasian surface air temperature



Northern Hemisphere
1-day and 5-day
extreme precipitation,
1951-2005

Details:

Two signals (ANT, NAT)
33-dimensions (11 5-yr
averages, 3 regions)
54 ALL runs (14 GCMs)
34 NAT runs (9 GCMs)

>15000-yr of control
simulations (31 GCMs)

total of ~455 “chunks”
for estimating
covariance matrices

NAT

a. RX1day
-2 0 2
ANT

NAT

-3 -2

4

A “typical” 2-signal detection result

b: RX5day
-2 0 1 2
ANT

Zhang et al, 2013, Fig. 2



Calculating attributed change

Usual approach is to calculate trend in signal,
multiply by scaling factor, and apply scaling factor
uncertainty

Observed warming Observed
trend and 5-95%
uncertainty range GHG i
based on HadCRUT4 ANT
(black). |
| | OA
Attributed warming
trends with assessed = NAT
likely ranges (colours). —+— Internal Variability
I L1 | I I R R
-0.5 0.0 0.5 1.0

°C
IPCC WG1 AR5, Fig 10.5



we don’t know it ecempletely?
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Statistical model for X,

— a single climate simulation j, j=1,...m, for
forcing i produces

~

Xi,j — Xi + 8i,j

Simulated 110 Deterministic
ear change = forced -+ Internal
y J = variability
vector response
= X, =X;+§;
L. l L. 1
where 255 = — )
EE
m;

That is, we assume that the 9, ;’s are independent,
and that they represent repeated realizations of the
internal variability € of the observed system.



Leads to a more complicated regression model

Y = YForced

<
X — XForced + A

yForced — XForcedB

Columns of X represent ensemble averages (m; ensemble
members averaged to form column i)

Columns of A are independent of each other, and of €, with the
same covariance structure as € except scaled by 1/m,

For simplicity, scale X by M = diag(y/m; , ...,/my)

- Columns of A have same covariance matrix as €
- Need to remember to undo this later



Fitting the more complicated regression model

Y = Yyforced 4 ¢

~

X = XForced + A

yForced — XForcedB

Fitting involves finding the Xfo<ed and B that minimize the “size” of
the nx(s+1) matrix of residuals [A, €]

The assumptions about the covariance structure determine how
the “size” of the matrix of residuals is measured

Note that because we scaled X, the estimate of Xfor<¢d will be too
large by a factor of M, which means that we will have to adjust the
estimated X*ee«d and f§ to compensate



Y = YForced | ¢

~~~

X = XForced + A

yForced — XForcedB

Find XFereed gnd f that maximize joint likelihood of € and A

- minimize the “size” of the nx(s+1) matrix of residuals

Y _ VForced Y Forced
nxs nx1
taking into account its covariance structure.

To take care of the covariance structure we “prewhiten” with P — 2_1/2

—> after prewhitening, we minimize

H [X . )’ZForced’ Y — X\Forced’g] HZ

f

where ||A||,2c is the squared Frobenius norm (sum of eigenvalues of ATA)



> minimize |[[X — XForced 'y — X‘Forced’g-

SN NS N

> minimize || [X, Y] — [XF orced XF Orcedﬁ_

Note that the matrix on the left is of rank s+1
rightis of rank s

Eckart-Young-Mirsky matrix approximation theorem (Huffel and
Vandewalle, 1991, pp31) states that:

the minimum loss (measured as the least squared Frobenius
norm) between a matrix and its p-lower-rank approximation is the
sum of the last p eigenvalues from the singular value
decomposition (SVD) of the original matrix.

We require an approximating matrix of only one rank lower

- minimum loss is given by the last eigenvalue v,
in the SVD of the left hand matrix



Let [X, Y] = Udiag(vy, ..., Vg, V1) VE

nx(s+1) (s+1)%(s+1) (s+1)x(s+1)

The minimum loss approximation is obtained when

AN

B = V4,1 (the last singular vector of [X, Y]) and

[XForced yForced] — ydiag(vy, ..., Vs, 0)V?

Don't forget to rescale 8 and XForced with M1



Aside — the problem of minimizing

H [X} Y] _ [XForced, XForcedB\] H]Zc

IS entirely parallel to the generalized linear
regression problem.

For OLS we take Xforced =X

[[X, Y] — [&Foreed, gForeedp] | = ||[%, ¥] — [X,XB]|

- v - %3]

That is, we find an approximation for a vector,
rather than a matrix, but measuring distance
essentially the same way



Statistical Inferences under TLS

« Residual consistency test
— Exact distribution not available analytically because the
estimation problem is non-linear

— Approximate distribution suggested by Allen and Stott (2003) is
g8 8~k — s)Fy—sp, = Xi_s whenv, > k

— Ribes et al (2012a) show, using Monte Carlo simulations, that
this test operates at actual significance levels well below
specified levels for reasonable values of &, v,, v,

« Confidence intervals for scaling factors
— Based on approximation I,Dg = £§22 183' — EtZZ 1.<:~SFS’1,2

— Given a critical value C of F;,, , find B’'s that satisfy Y =sC

— Nonlinearity makes intervals/regions non-symmetric, particularly
when signal is weak relative to noise



Joint 90% confidence region for ANT
and NAT detection in TNn and TXXx

TNn TXx

~ o ~ . Min et al, 2013, Fig. 9

5 0 2 4 6 -2 0 2 4 6
ANT ANT

Details: 1951-2000 TNn and TXx from HadEX (Alexander et al, 2006), decadal
time averaging, “global” spatial averaging, CMIP3 models (ANT — 8 models, 27
runs; ALL — 8 models, 26 runs; control — 10 models, 158 chunks)



Covariance matrix estimation
— e




More on covariance matrix
estimation

A key source of uncertainty is the estimate of the covariance
matrix

Even with CMIP5, we often do not have enough information to
estimate X well

Several recent studies have attempted to avoid problems with
covariance estimation by either

— not fully optimizing (e.g., Polson et al, 2013; TLS without
prewhitening)

— Keeping dimension small (e.g., Sun et al, 2014; Najafi et al, 2014;
Zhang et al, 2013; Min et al, 2013).

Keeping dimension small

— Increases signal-to-noise ratio

— Eliminates the need for EOF truncation

— Forces explicit space- and time-filtering decisions prior to
conducting the D&A analysis

— Involves a trade off (e.g., we might lose the ability to distinguish
between different signals)



More on covariance matrix
estimation

An alternative approach is to use a more sophisticated estimator
that the sample covariance matrix

Ribes (2009, 2012a, 2012b) suggest using the regularized estimator
of Ledoit and Wolf (2004 ), which is given by a weighted average of
the sample covariance matrix and the identity matrix

> = AC + pl

This estimate is always well conditioned, is consistent, and has
better accuracy when sample size is small

Since this estimator is full rank, EOF truncation is not needed

Its application requires careful predetermination of the level of signal
detail we require from the observations

For example, Ribes et al (2012a) consider the effect of different
amounts of spatial filtering of surface temperature
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A further challenge - EIV

Y = YFforced 4 ¢

X = XForced + A

Forced — wForced
Y =X B

We assumed that columns of A have the same
covariance structure as ¢

That is, we assumed that only internal variability
makes the signals uncertain

But model and forcing differences also make the
signals uncertain

Maybe need a more complex representation for A?
See Huntingford et al (2006), Hannart et al (2014)



Conclusions




Conclusions

* The method continues to evolve

* Thinking hard about regularization is a good
development (but perhaps not most critical)

« Some key questions

— How do we make obijective prefiltering choices?

— How should we construct the “monte-carlo”

sample of realizations that is used to estimate
internal variability?

— Similar question for signal estimates

— How should we proceed as we push to answer
guestions about extremes?



Thank you
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